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Abstract: We conducted a laser parameter study on CO2 laser induced electrical conductivity on a
polyimide film. The induced electrical conductivity was found to occur dominantly at the center
of the scanning line instead of uniformly across the whole line width. MicroRaman examination
revealed that the conductivity was mainly a result of the multi-layers (4–5) of graphene structure
induced at the laser irradiation line center. The graphene morphology at the line center appeared as
thin wall porous structures together with nano level fiber structures. With sufficient energy dose per
unit length and laser power, this surface modification for electrical conductivity was independent
of laser pulse frequency but was instead determined by the average laser power. High electrical
conductivity could be achieved by a single scan of laser beam at a sufficiently high-power level.
To achieve high conductivity, it was not efficient nor effective to utilize a laser at low power but
compensating it with a slower scanning speed or having multiple scans. The electrical resistance over
a 10 mm scanned length decreased significantly from a few hundred Ohms to 30 Ohms when energy
dose per unit length increased from 0.16 J/mm to 1.0 J/mm, i.e., the laser power increased from
5.0 W to 24 W with corresponding power density of 3.44 × 10 W/cm2 to 16.54 W/cm2 respectively
at a speed of 12.5 mm/s for a single pass scan. In contrast, power below 5 W at speeds exceeding
22.5 mm/s resulted in a non-conductive open loop.

Keywords: CO2 laser irradiation; polyimide film; graphene structure; electrical conductivity; Micro-
Raman spectra

1. Introduction

Laser ablation of polymers has been studied since the early 1980s [1]. Ultraviolet
laser ablation of polyimide films in air is a multiphoton excitation process resulting in
polyimide photochemical decomposition into oxides of carbon and elemental carbon,
etc. [2,3]. Electrical conductivity in polyimide is induced through the release of nitrogen
and oxygen to result in graphitizing carbon sheets [4]. The electrical conductivity of
polyimide can increase up to 15~16 orders of magnitude under the irradiation of ultraviolet
laser [5]. Recently, graphene stacked structures in polyimide film was observed under CO2
laser irradiation [6]. Since then, laser-inducing graphene on polyimide has attracted much
attention [7]. Research on graphene has led to its successful applications from electronics to
catalysis due to the excellent chemical and electrical properties of graphene [8,9]. It is well
known that polyimide is an important material for microelectronics. The combination of
graphene and polyimide has made polyimide film even more fascinating for applications
in microelectronics and sensing, such as supercapacitor energy storage devices [7,10] and
stretchable sensors [7,11].
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Nonetheless, for practical application, the laser irradiation parameters have to be
well understood for the generation of graphene structure in polyimide surface to achieve
induced conductivity. In addition to laser power and scanning speed, the effect of laser
beam scanning passes, pulse frequency, etc. on graphene synthesis and the layers of
graphene structures formed are yet to be investigated appropriately. Furthermore, the
electrical resistance of an individual line scanned on the polyimide surface is critical
for practical manufacturing of electrical circuits in polyimide. Thus, this study aims to
explore the key laser parameters to produce graphene structure on the polyimide film
as the graphene structure determines the electrical property of laser modified polyimide
film. More importantly, this investigation attempts to understand the morphology of the
graphene structure on the polyimide film surface induced by irradiation with various
CO2 laser parameters. The interplay of the various key processing parameters is to be
revealed for the determination of the optimum parameters for an effective and efficient
enhancement of electrical conductivity.

2. Experimental

The polyimide film employed in this investigation was a commercially available 75 µm
thick polyimide (Kapton) foil. The CO2 laser used was Synrad Fire-star Ti60, which had a
wavelength of 10.64 µm. The laser has a full power of 60 W, which was able to modulate at
different pulse repetition rates ranging from 1 kHz to 100 kHz. The laser beam was focused
through a galvo scanner focal lens with a focal length of 160 mm and a focal diameter of
about 430 µm. Laser parameters investigated were power level, scanning speed, pulse
frequency and number of passes. Power levels of 5% to 50% were used with the scanning
speed varied from 5 mm/s up to 250 mm/s, and pass number of one up to ten.

During laser ablation, polyimide film was exposed to air. After laser modification,
a layer of black compound could be observed along the scanned line on the surface of
the film. The black scanning line was then tested with resistivity meter probes (34401A
6 1

2 Digit Multimeter Agilent) placed over two ends of a 10 mm length of the scanned
line. The electrical resistance over the irradiated 10 mm line could then be quantitatively
measured. The surface morphology of irradiated polyimide was characterized with a
Scanning Electron Microscope (SEM/EDS) from Joel JSM-IT300LV, Oxford XMax80.

Raman spectroscopy with a laser source of 785 nm and 50× objective magnification
was used to determine the chemical make-up of the irradiated line. The Raman Imaging
Microscope was from inVia Raman Microscope, Renishaw. Raman laser power used for
analysis should be low so as not to modify the surface, but high enough to provide a
good signal to noise ratio. For most samples, a laser power of 5% was used to obtain clear
peak profiles. A lower power of 1% was used instead for samples which were poorly
conductive/non-conductive and produced too much fluorescence at 5% laser power. The
Raman spectrum scanned was from 800 shift/cm−1 to 3000 shift/cm−1.

3. Results and Discussion
3.1. Electrical Resistance of the Laser Irradiation Line

To avoid excessive charring of polyimide, investigation was first carried out with low
laser power, and subsequently the power was increased. Figure 1 shows that the electrical
resistance obtained with a single laser scan at a speed of 12.5 mm/s. For laser power less
than approximately 5 W, the polyimide surface was not modified for a noticeable decrease
in resistance, and a nonconductive open loop was obtained. When the laser power was
increased from 5.0 W to 24 W with corresponding power density of 3.44 × 10 W/cm2 to
16.54 W/cm2 respectively, the measure electrical resistance decreased from a few hundred
Ohms to 30 Ohms over the irradiated 10 mm length, indicating the significant decrease
of resistance with an increase of laser power. In contrast, non-conductive open loop was
produced with irradiation power below 5 W at speeds exceeding 22.5 mm/s. Thus, to
achieve low resistance, i.e., high electrical conductivity, sufficiently high laser power was
recommended to irradiate the polyimide surface.
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Figure 1. Electrical resistance decreased with increasing laser power with a single pass scanning at a
scanning speed of 12.5 mm/s and power modulation repetition rate of 90 kHz.

During laser irradiation, resistance modification was a function of both the irradiation
laser power level and the irradiation time. Indeed, the modification would depend on the
laser energy dose available, namely energy density (J/cm2), for absorption by the material.
For a constant laser spot area, the combined effect of laser power and scanning speed may
be conveniently discussed with energy dose per unit length expressed as power per unit
scanning speed ((W/(mm/s) = (J/mm)). Thus, instead of plotting the changes of electrical
resistance with either power or scanning speed, the resistance values could be plotted as
a function of energy dose per unit length as shown in Figure 2. It depicts the electrical
resistance values obtained at various speeds from 5 mm/s to 35 mm/s with either 1 or
2 passes scanning at a constant laser power of 5.0 W (power density of of 3.44 W/cm2).
Clearly, lower resistance was produced with increasing energy dose per unit length from
0.154 J/mm at speed of 35 mm/s to 1.0 J/mm at speed of 5 mm/s. As shown in Figure 2,
double the energy dose per unit length by scanning twice could significantly induce further
reduction of the electrical resistance.
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Figure 2. Electrical resistance increased with energy dose per unit length applied to irradiate
polyimide surface (power of 5.0 W with corresponding power density of 3.44 W/cm2).

Reducing the scanning speed was not effective in compensating the decreasing laser
power to result in low electrical resistance. This clearly indicates that a certain laser power
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density was required to induce electrical resistance reduction. Scanning at the very slow
speed of 5 mm/s, the electrical resistance remained above 200 Ohms despite the sample
was scanned twice. Open loop resistance was measured at speed higher than 35 mm/s. To
achieve low electrical resistance, these results indicate that it is not efficient nor effective to
utilize a laser at low power but compensating it with a slower scanning speed or having
multiple scans. Sufficiently high laser power level, thus power density, was preferred for
low electrical resistance.

Although high laser power is desirable for achieving low electrical resistance, scanning
speed is an important parameter for the final outcomes. The combined effect of power and
speed may be reflected conveniently by the energy dose per unit length applied. A similar
energy dose per unit length value could be obtained by using either high power with high
speed or low power with low speed. For example, a high energy dose per unit length
could be obtained by increasing laser power or decreasing scanning speed. Except for the
low laser power of 5.0 W, Figure 3 shows that similar value of modified resistance was
obtained with similar energy doses per unit length even if the power level or density was
different, with the electrical resistance significantly reduced with increasing energy dose
per unit length. However, when the laser power is too low, i.e., at laser power of 5.0 W, the
resistance obtained was much higher than that for higher laser power for the same energy
dose per unit length. This might be attributed to the effective width of laser irradiation.
The low laser power of 5.0 W produced a narrow modified scanning line width due to the
low pulse energy, as compared to the wider line width produced by higher laser power
with high pulse energy. Above a certain power level or power density, the increase in
modified line width would be much less sensitive to the increase in power density. This
modified line width has a direct effect on electrical resistance as it would be a function
of the physical size of the modified resistive/conductive line. Further discussion on the
irradiation line width can be found in later section.
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Figure 3. Electrical resistance increased with energy dose per unit length applied to irradiate
polyimide surface for a single pass scanning at various laser powers (5, 18, 24, and 30 W gave 3.44,
12.40, 16.54, and 20.67 W/cm2, respectively).

Figure 3 depicts that the results obtained at energy doses per unit length of 0.16–1.0 J/mm
with scanning speeds of 5 to 174 mm/s under various laser powers. Indeed, the reduction
of resistance plateau to a low and similar value for the three moderately high laser powers
investigated. These results indicate the interplay between laser power and scanning speed
for achieving low resistance. By contrasting the results in Figure 3 to that in Figure 2, it
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can be deduced that a moderately but sufficiently high laser power is far more efficient
and effective than a low laser power. At the low laser power of 5.0 W, Figure 2 indicates
that much higher resistance was obtained at a significantly lower scanning speed, even for
2 pass scanning. These analyses indicate that a moderately slow speed and a moderate laser
power were optimum for modifying the polyimide surface from an electrical insulator to an
electrical conductor.

The increase of energy dose per unit length by increasing the number of passes
could be different from that by increasing the laser power, as pulse energy or power
density was high at high laser power. As indicated in Figure 2, at low laser power, 2 pass
scanning had resulted in lower electrical resistance than a single pass scanning. As such,
intuitively, multiple scans could be utilized similarly at higher laser power to further
reduce the electrical resistance. Indeed, as indicated in Figure 4, electrical resistance
decreased with an increase in energy dose per unit length induced by increasing pass
number. Unfortunately, when scanning exceeded pass number 5 (i.e., energy dose per
unit length exceeded 5 × 0.36 J/mm), instead of surface modification along the scanning
line, it caused thermal burning damage instead, see Figure 4; the electrical resistance could
not be properly measured as the scanning line did not appear as a line anymore due to
the damage. This indicates that the effect of an increase in energy dose per unit length
by increasing the number of passes would be different from that by increasing the laser
power, as pulse energy or power density was high at high laser power. For comparison, the
lowest resistance of 63 Ω obtained by multiple scans in Figure 4 was still higher than the
30 Ω obtained with a single pass scan in Figure 1 albeit at a higher laser power at a slower
scanning speed; these results indicate that multiple scanning was not an efficient way to
achieve a low electrical resistance. The initial modified layer could block the subsequent
laser beam to further interaction with polyimide, with less effective modification beyond
the previously modified layer as the pass number increased. Instead, additional scanning
might cause damage of the previously modified layer.
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scanning speed of 50 mm/s (which produced an energy dose per unit length of 0.36 J/mm per pass).

It will be of interest to investigate the effect of pulse repetition rate on electrical
resistance. The range of pulse repetition rate investigated was from 1 kHz to 100 kHz,
which was the range of the laser system. In general, for a laser beam at a given laser power,
the pulse energy decreases with increasing pulse frequency.

Figure 5 presents the effects of pulse frequency on the resistance measured at different
energy doses per unit length. These energy doses per unit length were obtained with
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different combination of power and scanning speed, namely energy dose per unit length
of 0.4 J/mm obtained with power of 5.0 W and speed of 12.5 mm/s, energy dose per
unit length of 0.25 J/mm with 5.0 W and 20 mm/s, and energy dose per unit length of
0.36 J/mm with 18 W and 50 mm/s. Intuitively, one would expect that higher energy dose
per unit length should produce lower electrical resistance. However, Figure 5 indicates that
higher energy dose per unit length of 0.4 J/mm produced higher resistance values (blue
curve) than lower energy dose per unit length of 0.36 J/mm (black curve). This can be
attributed to the pulse energy or the power density which was higher at high laser power
(18 W) for the lower energy dose per unit length of 0.36 J/mm as compared to that at low
laser power (5 W) for the higher energy dose per unit length of 0.4 J/mm. This indicates
that pulse energy plays a critical role as well in determining the modified resistance in
addition to the total amount of the energy (expressed as energy dose per unit length)
deposited into polyimide.
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Figure 5. Effect of pulse frequency on electrical resistance under irradiation at different energy dose
per unit length in a single scan (0.4 J/mm produced from 5.0 W and 12.5 mm/s, 0.25 J/mm from
5.0 W, and 20 mm/s; and 0.36 J/mm from 18 W and 50 mm/s).

At the lower power of 5.0 W, the pulse energy was low, the electrical resistance
decreased with increasing pulse frequency; this decrease of resistance with frequency was
much more significant at the high scanning speed of 20 mm/s with short irradiation time.
At this scanning speed, open circuits were observed at the low pulse frequencies, indicating
that the total power or total energy deposited into the polyimide surface was not sufficient
for modifying it. As the scanning speed decreased to 12.5 mm/s, the rate of decrease of
resistance with an increase in pulse frequency was much smaller and appeared to reach
a limiting value at high frequency. This decrease of resistance with pulse frequency is to
be expected as higher pulse frequency could increase the number of pulses deposited per
laser spot and thus increasing the total power deposited per spot for the modification of
the polyimide surface.

In contrast, and somewhat counter intuitively, at a moderately-high power of 18 W
(power density of 12.40 W/cm2), even at a much higher scanning speed of 50 mm/s, the
measured resistance value remained approximately constant and was independent of the
pulse frequency; the resistance was also smaller as compared to the measured resistance at
power of 5.0 W at the lower scanning speeds for frequencies investigated. This indicates
that once the threshold of individual pulse energy for the modification of polyimide was
reached, the surface modification, and thus the measured resistance, would be independent
of pulse frequency and instead a function of the average laser power.
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In summary, high electrical conductivity, namely low resistance, could be achieved
at high power with high irradiation scanning speed independent of pulse frequency.
If sufficiently high laser power cannot be delivered, conductivity may be achieved at low
power with slow scanning speed with more than a single pass at high pulse frequency;
however, this is not quite desirable as the value of the conductivity achieved would be
lower and less consistent when it is a function of many parameters.

3.2. Morphology of the Irradiation Line

Figure 6 shows the morphology of the polyimide after irradiation at various laser
parameter values resulting in different measured resistance. The nonconductive irradiation
line had a smooth shrunk surface induced from laser melting solidification. With a decrease
in electrical resistance, progressively the irradiated line showed a porous structure along
the scanning line center. Indeed, the material modification was not uniform across the
whole width of the scanning line, with much higher and extensive modification at the
center of the line. The crescents appeared in the scanning belt indicated pulse overlapping,
with each crescent corresponding to one pulse. These observations indicate that not the
entire width of the irradiation line would be electrically conductive; highest conductivity
would be at the line central portion where the most extensive modification was located.
The observed material modification profile is to be expected as it corresponded to the
Gaussian energy intensity profile of the laser beam, with modification most extensive at the
center of the line where the laser energy intensity is the highest at the center of the beam.
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It is to be expected that with an increase in irradiation energy dose per unit length
through an increase in laser power from 5 W to 30 W and a decrease in scanning speed
from 450 mm/s to 5 mm/s, there was an obvious increase in irradiation line width as
shown in Figure 7. This is because the laser–polyimide interaction was enhanced under a
high energy dose per unit length, i.e., at high power with longer interaction time. Indeed,
rather independent of the individual change in laser power or scanning speed, the line
width produced under similar energy dose per unit length per pass would be similar, either
scan one pass or two passes. At low energy dose per unit length at low laser power, only
the tip of the gaussian beam had sufficient energy to induce modification of polyimide
surface. Therefore, the line width was much less than one spot width (diameter) at this
low energy dose. The line width would increase with an increase in energy dose per unit
length and laser power. However, with sufficiently high laser power, this increase in line
width would become less sensitive with an increase in laser power. Indeed, the critical role
of laser power in addition to energy dose per unit length is highlighted by the relatively
narrower line width at the lower laser power of 5.0 W despite of the same or higher energy
dose per unit length as compared to that at higher laser power, see Figure 7.
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Figure 7. Scanning line width under various energy dose per unit length per pass for one or two passes (power of 5, 18, 24,
and 30 W gave density of 3.44, 12.40, 16.54, and 20.67 W/cm2, respectively).

However, the changes in line width with frequency were not significant especially
for single pass irradiation in Figure 8; this is consistent with the observed changes of
resistance with frequency in Figure 5. When reaching the threshold of pulse energy to
induce polyimide modification, the extent of modification would be a function of the
average laser power and independent of pulse frequency. At high scanning speed of
225 mm/s, the polyimide surface was not sufficiently modified even at moderately high
laser power of 18 W. As a result, not only the irradiation line width was narrow but also
non-conductive.
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Figure 8. Scanning line width scanned under various laser pulse frequency with energy dose per
unit length per pass of 0.36 J/mm for one or two passes obtained at power of 18 W (12.40 W/cm2)
and speed of 50 mm/s. The laser spot width is indicated in the figure.

For lines which had been modified conductively, the modification line width was
significantly larger than the spot size of 430 µm in diameter, as observed in Figure 6.
However, by comparing the morphology of conducting and non-conductive lines, the line
width of the electrically conductive region was estimated to be around 220 µm, which was
just about half of the laser spot diameter. This line width of the conductive region would
be the key parameter for scanning line pitch with multiple overlapped line scanning for
conductivity modification of an area.

Figure 9 presents the detailed observation of the porous structure. Correlating these
observations with that in Figure 6, it can be deduced that the more porous and extensive
were the structure, the lower the electrical resistance measured. After laser irradiation,
the examined morphology was modified from a smooth surface to bubble porous, feather
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porous, and or flank porous with nano level fiber structures with decreasing electrical
resistance from 1900 Ω to 189 Ω. The low resistance morphology was typically multi-
layered flakes or frameworks topography; this could well be the desired structure for high
electrical conductivity induced under laser irradiation.
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Figure 9. High magnification SEM images showing the porous structure transition to feather structure
together with fiber structures with decreasing electrical resistance.

3.3. MicroRaman Analysis of Porous Structures

It has been previously identified that laser generation of a conductive layer is due
to the local carbonization of polyimide under laser irradiation through photo-thermal
and photo-degradation mechanisms [3–6]. For the photo-thermal mechanism, polyimide
absorbs the incident photon energy and converts it into heat. This induces extremely
high temperature in the irradiated region and results in carbonization [4]. For the photo-
degradation mechanism, the transition of polyimide molecules from the ground state to
the excited state after photon energy absorption results in chain breaks and the formation
of free radicals. For a long-wavelength laser, the IR laser couples to the C-C bonds present
in the carbon precursor and provides efficient photothermal heating [9]. The polyimide
film absorbs the energy strongly to cause undesired effects, such as ablation, deformation,
and even burning in air. It has been reported that the chain-growth polymers may un-
dergo rapid depolymerization at the laser-induced temperatures. The mechanism of laser
graphitization in polymers is strongly correlated to the structural features present in the
repeat units, such as aromatic and imide repeat units. Polyimide contains aromatic and
imide repeat units which can form graphene [6]. The detailed photochemical mechanisms
responsible for the large change in electrical conductivity induced by laser radiation in
polymers appear to be complex. To further elucidate these mechanisms, MicroRaman was
employed to systematically investigate the modified region under irradiation with various
laser parameters.

Since the first measurement of the Raman spectrum of graphite [12], Raman scattering
has become a popular characterization technique in carbons science and technology [13].
With a laser source of 785 nm, Figure 10 shows the Raman Spectra acquired from the
various electrical resistance samples. Three peaks were clearly observed, namely D-peak at
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1360 cm−1, G-peak at 1600 cm−1, and 2D-peak at 2700 cm−1; these peaks were identified to
be graphene structures. Figure 10 agrees rather well with Wang et al. that at Raman laser
excitation of 785 nm, G band was observed at 1581 cm−1 and 2D band at 2591 cm−1 [14].
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The G-peak signifies the presence of carbon–carbon bond stretching, while the D-peak
signifies the presence of disorder or impurities in the graphene sample which suggests
the existence of defects in the graphene matrix [6,7]. The 2D to G ratio could provide a
good indication of the existence of high-quality single layer graphene. The presence of
high-quality single layer graphene may be confirmed when the ratio of I2D/IG is greater
than, or equal to 2 [15]. When the I2D/IG ratio is below 0.6, it is generally accepted that
the graphene film contains more than four layers, with a near certainty of more than five
layers when I2D/IG is below 0.4 [16]. From Figure 10, it can be deduced that no single layer
graphene was synthesized under laser direct irradiation in air. The produced graphene was
multiple layers, with the number of layers around 4–5. It further shows that the electrical
resistance was a function of I2D/IG ratio. Electrical resistance decreased with increasing
I2D/IG ratio. The non-conductive modification layer was observed to be at a I2D/IG ratio
of below 0.17 in Figure 10, indicating the many layer-structure (>5) of graphene.

In view of the graphene intrinsic electric property, it has been reported that the
electrical conductivity was related to the graphene layers. Higher electrical conductivity is
associated with less layers of graphene structures [17]. The higher the ratio of I2D/IG, the
smaller the number of graphene layers, and the higher the electrical conductivity. However,
the electrical resistance of a material not only depends on its intrinsic electric property
but also relies on the dimensions of its physical structure. Correlating the observations
here to the irradiation line width (Figures 7 and 8) and the graphene porous structure
(Figure 6), obviously, lower resistance was achieved at wider irradiation line width of
the multi-layered graphene porous structures. The measured resistance values over the
irradiated 10 mm length in polyimide surface were a convolution results of multiple factors,
namely the multiple layered graphene structure and the irradiation cross-section area of
the graphene structures (i.e., the modification thickness and width). Everything being
equal, the larger the irradiation region, the lower would be the electrical resistance.

Furthermore, the prominent peak of D and G bands as well as their large intensity
ratios in Figure 10 would indicate a certain amount of defects, probably oxidation induced
in air environment, which could be related to the unclear edges and large pores observed in
the SEM images in Figure 9. The porous graphene frameworks consisted of interconnected
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multi-layered graphene sheets, a typical feature of the randomly stacked multi-layered
graphene which corresponds to the symmetric profile of the 2D band, with full width at half
maximum of ∼50 cm−1 in Figure 10. The 2D peak position upshifts to 50 cm−1 when the
number of layers increases from 1 to 5 [16]. It has been revealed that electrical conductivity
of graphene derivatives strongly depends on the oxidation level [18]. Therefore, to achieve
a single layered graphene structure with good electrical conductivity, probably, laser
irradiation under vacuum, inert gas or even chemically active environment would be
preferred for microelectronic device manufacturing.

4. Conclusions

Graphene structures were produced on polyimide surface through a single scan of CO2
laser beam under air atmosphere. SEM characterization revealed that the graphene had a
morphology of thin wall porous structures together with nano level fiber structures. The
electrical resistance of the laser irradiation line was dominated by the graphene structures
generated at the irradiation line center instead of uniformly across the whole line width;
the dominant electrically conductive center line width was about half of the laser spot
diameter. This conductive width would be a key indicator for the line pitch necessary
for multiple overlapped scanning lines for achieving a conductive area on a polyimide
surface. Micro-Raman characterization found that for the electrically conductive layer
produced on the polyimide surface, the graphene had a multiple layer structure of 4–
5 layers indicated by a I2D/IG ratio of 0.3–0.5. A laser parametric study concluded that to
achieve high electrical conductivity effectively required sufficiently high laser power for
the modification of polyimide surface. From a practical application perspective, a single
scan with sufficiently high laser power at a high speed is preferred than multiple scans
with low laser power at a slow speed. With sufficiently high laser power, the electrical
conductivity after laser surface modification was a function of laser average power and
was independent of pulse frequency; the resistance reduction was dominantly a function
of the energy dose per unit length. However, with a low and therefore insufficiently high
laser power, resistance reduction was complicated and was a function of both the energy
dose per unit length and the pulse frequency. At a constant energy dose per unit length at
low laser power, the interval time between pulses became important in determining the
resistance reduction. Resistance reduction was more effective at a shorter pulse interval
time with an increase in pulse frequency. More importantly, low laser power was not
effective in enhancing electrical conductivity, even with multiple passes. In addition, the
trend of resistance reduction was consistent with the modified line width and pulse spot
overlapping observed in irradiation morphology. With sufficiently high laser power, the
increase in line width was insensitive with laser power and was a function of energy dose
per unit length. At low laser power, obvious increase in line width was a result of an
increase in energy dose per unit length through the increase in laser power and decrease in
scanning speed. The electrical resistance decreased from a few hundred Ohms to 30 Ohms
when the energy dose per unit length increased from 0.16 J/mm to 1.0 J/mm, i.e., laser
power increased from 5.0 W to 24 W (power density of 3.44 × 10 W/cm2 to 16.54 W/cm2

respectively) at a scanning speed of 12.5 mm/s. In contrast, for laser power below 5 W at
speeds exceeding 22.5 mm/s resulted in non-conductive open loop.
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