
micromachines

Article

Numerical Analysis of Thermophoresis of a Charged
Spheroidal Colloid in Aqueous Media

Yi Zhou , Yang Yang, Changxing Zhu, Mingyuan Yang and Yi Hu *

����������
�������

Citation: Zhou, Y.; Yang, Y.; Zhu, C.;

Yang, M.; Hu, Y. Numerical Analysis

of Thermophoresis of a Charged

Spheroidal Colloid in Aqueous

Media. Micromachines 2021, 12, 224.

https://doi.org/10.3390/mi12020224

Academic Editor: Jason P. Beech

Received: 3 February 2021

Accepted: 13 February 2021

Published: 23 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Key Laboratory of High Performance Ship Technology, Ministry of Education, School of Energy and Power
Engineering, Wuhan University of Technology, Wuhan 430063, China; zhouyi@whut.edu.cn (Y.Z.);
yang-yang@whut.edu.cn (Y.Y.); zcxwhut@whut.edu.cn (C.Z.); myyang@whut.edu.cn (M.Y.)
* Correspondence: huyi75@whut.edu.cn; Tel.: +86-27-8654-0330

Abstract: Thermophoresis of charged colloids in aqueous media has wide applications in biology.
Most existing studies of thermophoresis focused on spherical particles, but biological compounds
are usually non-spherical. The present paper reports a numerical analysis of the thermophoresis
of a charged spheroidal colloid in aqueous media. The model accounts for the strongly coupled
temperature field, the flow field, the electric potential field, and the ion concentration field. Numerical
simulations revealed that prolate spheroids move faster than spherical particles, and oblate spheroids
move slower than spherical particles. For the arbitrary electric double layer (EDL) thickness, the
thermodiffusion coefficient of prolate (oblate) spheroids increases (decreases) with the increasing
particle’s dimension ratio between the major and minor semiaxes. For the extremely thin EDL
case, the hydrodynamic effect is significant, and the thermodiffusion coefficient for prolate (oblate)
spheroids converges to a fixed value with the increasing particle’s dimension ratio. For the extremely
thick EDL case, the particle curvature’s effect also becomes important, and the increasing (decreasing)
rate of thermodiffusion coefficient for prolate (oblate) spheroids is reduced slightly.

Keywords: thermophoresis; thermodiffusion coefficient; spheroids; rods; hydrodynamic effect;
particle curvature’s effect

1. Introduction

Thermophoresis describes the motion of a charged colloidal particle with respect to
the aqueous media in response to an external applied temperature gradient [1–3]. The
thermophoresis approach has been used to separate, trap, and concentrate nanoparticles in
liquid media [4–7]. For biological and biocompatible compounds [8] in aqueous solutions,
the thermophoretic techniques provide useful tools to quantify the protein−ligand bind-
ing constants [9] and the copy numbers of noncoding RNA [10], examine the hydration
layer [11], and determine the biomolecular interactions [12].

Extensive theoretical [13–15] and experimental studies [16–18] on thermophoresis of
spherical particles in aqueous solutions have investigated various effects of the particle
size [19–21], electrolyte concentrations [22,23] and types [24], the bulk temperature [25], and
so on. However, as most biological and biocompatible compounds in aqueous solutions
are non-spherical [8], the interest in colloidal thermophoresis of non-spherical particles
is considerably increasing. Our group [26] carried out thermophoretic experiments of
peanut-like particles, and observed both translational and rotational movements with
the smaller translational thermophoretic velocities than those of the spherical particles
of similar sizes. Several studies [27–30] have focused on the thermophoresis of rod-like
particles. Blanco et al. [27] conducted thermophoretic experiments of the rod-like fd-Y21M
virus, and they did not find the shape anisotropy of the fd-Y21M virus. Tan et al. [28] built
a numerical thermophoretic model for charged rods by using the molecular dynamics
simulation method, and they constructed the rod with a “shish-kebab” model as connecting
beads in a linear disposition. Interestingly, the shape anisotropy of the rod-like particles
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was found in Tan et al.’s work [28]. Moreover, Wang’s studies [29,30] also investigated the
thermophoresis of the rod-like fd-virus, and found that the thermodiffusion coefficient DT
of the bare-virus increases strongly with the Debye length, whereas the DT of the grafted-
virus is almost independent of the Debye length. Based on the Dhont–Briel’s model [31]
for spherical colloids, Wang et al. [29,30] proposed a theory that the DT of a rod can be
approximated as that of a string of spherical beads, which is proportional to the rod-core
dimensions L/2ac, with L and ac respectively being the rod contour length and the rod
radius. However, in these thermophoretic experiments of rod-like particles [27,29,30], there
is one unique particle shape and size, and the Debye length is close to the rod radius.

The aim of this study was to determine the thermodiffusion coefficient of non-spherical
particles with an arbitrary electric double layer (EDL) thickness and different particle
shapes. We chose spheroidal particles [32] because rod-like colloids such as the fd-Y21M
virus can be modelled as prolate spheroids, and dish-like colloids such as the red blood
cell [33] can be modelled as oblate spheroids. The paper is organized as follows: Section 2
proposes a mathematical model to investigate the particle shape effect on thermophoresis.
Section 3 first presents the flow fields around spheroidal particles, and then discusses the
dependencies of thermodiffusion coefficient DT (or thermodiffusion coefficient ratio ξ) on
the particle’s dimension ratio b/a of the major semiaxis to the minor semiaxis and the ratio
κa of the particle’s minor semiaxis to the EDL thickness. Finally, the main conclusions are
presented in Section 4.

2. Mathematical Model

We consider the thermophoretic motion of a dilute spheroidal particle suspension.
Due to negligible particle–particle interactions, a single charged spheroid motion in the
electrolyte solution is studied herein. Driven by the external applied temperature gra-
dient A, the spheroidal particle moves to the cold/hot side [34] with the steady-state
thermophoretic velocity uTP. With setting the symmetric axis along the external applied
temperature gradient A, the three-dimensional problem is simplified to axially symmetric
cylindrical coordinates (r, x), as shown in Figure 1. When the major semiaxis b is along the
symmetric axis, the spheroidal particle is prolate, as in Figure 1a; when the minor semiaxis
a is along the symmetric axis, the spheroidal particle is oblate, as in Figure 1b.
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Figure 1. Thermophoresis of a charged spheroidal particle: (a) the prolate spheroidal particle with the major semiaxis b
along the external applied temperature gradient A; (b) the oblate spheroidal particle with the minor semiaxis a along the
external applied temperature gradient A. With the center of the spheroidal particle located at the origin (O) of a rectangular
domain ABCD with dimensions of L× H, the symmetric axis AD is along the external applied temperature gradient A.
Boundaries AB and CD are set as the cold and hot sides, respectively, with the lengths of L and H being chosen as more
than 200 times the minor semiaxis a, to avoid the boundaries’ effect on the thermophoresis. Boundary BC is the imagined
boundary set in the far-field.
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2.1. Governing Equations

As has been discussed in the literature [14], the temperature distributions are governed
by the energy equation as

kp∇2Tp = 0 for the particle, (1)

ρ f c f V · ∇Tf = k f∇2Tf for the fluid, (2)

where kp and k f are the thermal conductivities of particle and fluid, respectively. ρ f is the
fluid density and c f is the fluid heat capacity. The subscripts p and f represent the particle
and fluid regions, respectively. The nomenclature is provided in Section S1 of supporting
materials.

In the particle-fixed reference frame, the spheroid particle is fixed to be static, and
its surrounding electrolyte solution flows in the opposite direction of the thermophoretic
motion, with the fluid velocity field being denoted as V. The unknown steady-state
thermophoretic velocity is opposite to the far-field fluid velocity as uTP = −u∞. The flow
of the electrolyte solution is governed by the Navier–Stokes equations as

∇ · V = 0, (3)

ρV · ∇V = −∇p + µ∇2V + ρeE−
1
2

E2∇ε, (4)

where the fluid velocity V = (Vr, Vx) with Vr and Vx as radial and axial velocities, re-
spectively, and p is the fluid pressure. The dynamic viscosity and the fluid permittivity
are assumed to be the same as those of water, with the expressions respectively being
µ = 2.761× 10−6 exp(1713/T) and ε = 305.7× 8.85× 10−12 exp(−0.004T) [14]. In Equa-
tion (4), the last two terms on the right-hand side are the electric body force and the
dielectrophoretic force acting on the fluid, where ρe is the free electric charge density, and
E is the local electric field. It is known that the free charge density is defined as

ρe = F∑N
i=1 zici, (5)

where N is the total number of ion species in the solution; the Faraday constant F =
96485.34 C/mol; zi and ci are the ith (i = 1 for cations and i = 2 for anions) ion valence
and molar concentration, respectively. The ith ion molar concentration is governed by the
Nernst–Planck equation as

∇ ·
(

Vci − Di∇ci +
ziFciDi

RT
E
)
= 0, (6)

where the gas constant R = 8.31J/mol ·K. According to Einstein’s law, the ith ion
mass diffusivity Di is given as Di = kBT/(6πµai), with the Boltzmann constant kB =
1.38 × 10−23J/K and ai as the ith ion radius. The first term Vci in the parentheses on the
left-hand side of Equation (6) is due to the bulk convection; the second term −Di∇ci is
the diffusional process; the last term zi Fci Di

RT E is due to the electrical migration. It is known
that E is related to the electric potential φ as E = −∇φ, and φ is related to ρe through the
Poisson equation:

−∇ · (ε∇φ) = ρe. (7)

Equations (1)–(7) form a closed set of governing equations for the thermophoresis
of spheroids in the aqueous solution. They can be applied to describe the temperature
distribution, the solution flow, the ion concentration distribution, and the electric potential
distribution in thermophoresis under various conditions. The corresponding dimensionless
forms of these equations are written as

∇∗2Θp = 0, (8)
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PetV∗ · ∇∗Θ f = ∇∗2Θ f , (9)

∇∗ · V∗ = 0, (10)

ReV∗ · ∇∗V∗ = −∇∗p∗ + µ∗∇∗2V∗ + fre f 1∇∗φ∗
N

∑
i=1

zici
∗ + fre f 2(∇∗φ∗)2∇∗ε∗, (11)

∇∗ ·
(

PecV∗ci
∗ − Di

∗∇∗ci
∗ − zici

∗

Θ
Di
∗∇∗φ∗

)
= 0, (12)

−∇∗ · (ε∗∇∗φ∗) = 1
2

(
κre f a

)2 N

∑
i=1

zici
∗, (13)

The dimensionless variables for the gradient operator, the temperature, the veloc-
ity vector, the pressure, the ith ion concentration, and the electric potential are defined
respectively as follows:

∇∗ = a∇, Θ =
T
T0

, V∗ =
V

ure f
, p∗ =

p
pre f

, ci
∗ =

ci
c0

, φ∗ =
φ

φre f
, (14)

and the reference parameters for the velocity, the pressure, and the electric potential are
defined respectively as

ure f =

(
1− d ln ε

d ln T

)
εre f ζ2

12µre f T0
A, pre f =

ure f µre f

a
, φre f =

RT0

F
, (15)

where a is the spheroidal minor semiaxis; T0 is the average temperature of the particle; ure f
is the thermophoretic velocity under the external applied temperature gradient A for the
extremely thin EDL case [2]. ζ is the particle zeta potential, and c0 is the cation/anion con-
centration in the bulk region for the symmetric electrolyte. κre f a is the ratio of the particle’s

minor semiaxis a to the reference EDL thickness κre f
−1, with κre f =

√
2c0F2/εre f RT0. The

dimensionless thermophysical parameters for the fluid viscosity, the electrical permittivity,
and the mass diffusivity are introduced as

µ∗ =
µ

µre f
, ε∗ =

ε

εre f
, Di

∗ =
Di

Dre f
, (16)

where the subscript ref represents the reference parameters at the average temperature
of particle T0, and the reference mass diffusivity Dre f = 1× 10−9m2/s. The characteristic
numbers of the thermal Peclet number, the ion Peclet number, and the Reynolds number
are given as

Pet =
ure f a

α
, Pec =

ure f a
D0

, Re =
ρure f a
µre f

, (17)

with α as the fluid thermal diffusivity. Furthermore, the dimensionless body force coeffi-
cients for the electric body force and the dielectrophoretic force are respectively expressed as

fre f 1 = −
Fc0φre f a
ure f µre f

, fre f 2 = −
εre f φre f

2

2ure f µre f a
. (18)

2.2. Boundary Conditions

For the applied temperature field, we impose a constant temperature gradient along
the x direction through setting the non-dimensional values of 1− AaL∗/2T0 at the cold
side and 1 + AaL∗/2T0 at the hot side. For the flow field, we employ a non-slip boundary
condition at the particle–liquid interface, and far-field boundary conditions of zero shear
stress and zero pressure along the imagined boundaries. For the ion concentration field,
the zero-ion penetration boundary condition is set at the particle–liquid interface, and a



Micromachines 2021, 12, 224 5 of 12

dimensionless value of 1 is set along the imagined boundaries. For the electric potential
field, we impose a constant value of ζ∗ = ζ/φre f at the particle–liquid interface, and
insulation conditions along the imagined boundaries. The detailed boundary conditions
are provided in Section S2 of Supplementary Materials.

2.3. Numerical Method

Equations (8)–(13), which are strongly coupled, were numerically solved with the
commercial software COMSOL Multiphysics 5.6. To verify the numerical method, we
simulated a benchmark analytical solution of thermophoresis of a single spherical particle
wherein the thermal conductivities of particle and liquid were the same, and found that the
numerical results are in excellent agreement with the benchmark solution [35]; the detailed
description is in Section S3 of the supporting materials.

3. Results and Discussion

In the present work, the thermophoresis of the charged spheroid worked at room
temperature (i.e., T0 = 298.15K), and it was driven by the external applied temperature
gradient, which was set as the experimental value A = 1.55× 104K/m [21]. The aqueous
media was chosen as a lithium chloride (LiCl) solution with a negligible thermoelectricity
effect [36]. The thermal conductivity of particle was assumed to be the same as that of fluid
to simplify the analysis.

3.1. Flow Field Around Spheroidal Particles

Within the particle-fixed reference frame, the particle is fixed and the fluid flows in a
direction opposite to the particle thermophoretic motion. For the case wherein the EDL
thickness is much smaller than the particle’s minor semiaxis (e.g., κa = 100), the fluid flow
fields around a prolate spheroid, a spherical particle, and an oblate spheroid are presented
in Figure 2. It is shown that the fluid around these spheroids flows along the x direction
(i.e., the temperature gradient direction). Due to the particle curvature, the streamline
curvature around the prolate spheroid is lower than that around the spherical particle, and
the streamline curvature around the oblate spheroid becomes higher. Moreover, the velocity
magnitudes at the upper pole of the particle surface ((x∗, r∗) = (0, 1) for prolate spheroids
and (x∗, r∗) = (0, b/a) for oblate spheroids) increase sharply near the particle surface, and
then decrease slowly as one gets further from the particle surface. The magnitudes of
the far-field velocity u∞ of the prolate spheroid are much larger than that of the spherical
particle, and the magnitude of u∞ of the oblate spheroid is the smallest.

Figure 3 depicts the fluid velocity fields around a spheroid with three different particle
shapes, when the EDL is thick (e.g., κa = 0.01). Compared with Figure 2, it is clearly shown
that the variation regions of flow fields of these spheroids for thick EDL cases are larger
than those for thin EDL cases; the velocity magnitudes increase as the distance from the
particle surface increases. Moreover, the magnitude of u∞ of the prolate (oblate) spheroid
for thick EDL cases is slightly larger (smaller) than that of the spherical particle.
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3.2. Thermodiffusion Coefficient of Spheroidal Particles

The thermodiffusion coefficient DT is proportional to the far-field fluid velocity u∞
through the following expression.

DT =
u∞

A
. (19)

Figure 4 displays how the thermodiffusion coefficients DT of prolate spheroids vary
with κa for b/a ranging from 1 to 6. It is shown that the thermodiffusion coefficient of
prolate spheroids is larger than the spherical particle, which is similar to the conclusion
of [29]. The thermodiffusion coefficient variation of prolate spheroids with κa is similar to
that of the spherical particle, showing a decreasing and then increasing trend. With the
increase of b/a, the prolate particle approaches a rod-like particle, and the thermodiffusion
coefficient increases. Due to the faster increasing rate, the DT of prolate spheroids for thin
EDL cases becomes larger than those for thick EDL cases, and κa corresponding to the
turning point of DT reduces for a larger b/a.

The thermodiffusion coefficient variation of oblate spheroids with κa is also shown in
Figure 4. We can see that the thermodiffusion coefficient of oblate spheroids is smaller than
the spherical particle, with a similar dependence of DT on κa. With the increase of b/a, the
oblate particle approaches a disk-like particle in shape, and the thermodiffusion coefficient
decreases. Due to the faster decreasing rate, the DT of oblate spheroids for thin EDL cases
become much smaller than those for thick EDL cases, and the DT of b/a = 6 almost keeps
a fixed value when κa > 3.
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of the particle’s minor semiaxis to the EDL thickness at the average temperature T0 for six different
values of the particle’s dimension ratio b/a for both prolate and oblate spheroids. b/a = 1 represents
the sphere.

3.3. Thermodiffusion Coefficient Ratio of Spheroids to Spheres

To more clearly show the particle shape effect on thermodiffusion coefficients DT , the
thermodiffusion coefficient ratio ξ = DT/ DT |S is discussed (here, DT |S is the thermodiffu-
sion coefficient of a spherical particle). Figure 5 shows the variations of the numerical ξ
with κa for b/a ranging from 1 to 6. For thick EDL cases (κa < 0.1), ξ of prolate particles
is independent of κa. With increasing κa, ξ of prolate spheroids increases to a maximum
value and then decreases. However, ξ of oblate spheroids for thick EDL cases decreases
with κa, and this decreasing tendency becomes stronger for a larger b/a. With an increasing
κa, the ξ of oblate spheroids is almost independent of κa for thin EDL cases.
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3.3.1. Thermodiffusion Coefficient Ratio for the Extremely Thin EDL Case

For the extremely thin EDL case (i.e., κa = 100), the particle curvature’s effect on
the ion distribution is negligible, and the ions move relatively with respect to a planar
surface [37]. Moreover, according to our previous work [14], the thermophoretic velocity
is proportional to the local temperature gradient at the upper pole of the particle sur-
face ((x∗, r∗) = (0, 1) for prolate spheroids and (x∗, r∗) = (0, b/a) for oblate spheroids).
Therefore, the thermophoretic problem for the extremely thin EDL case can be treated
as a thermal creep flow around the particle surface, and the thermophoretic force FTP is
balanced by the viscous drag [38]. Hence, the thermodiffusion coefficient ratio for a prolate
spheroid for the extremely thin EDL case is given as

ξ = 1.5
b
a

1 +
(

1
λ − λ

)
arccothλ

√
λ2 − 1

[
λ

λ2−1 −
1
λ

] , (20)

and the thermodiffusion coefficient ratio for an oblate spheroid under the extremely thin
EDL case is given as

ξ = 1.5
a
b

1−
(

λ + 1
λ

)
arccotλ√

1 + λ
2
(

λ

1+λ
2 − 1

λ

) , (21)

where λ = b/
√
(b2 − a2) and λ = a/

√
(b2 − a2). The estimations of ξ for prolate and

oblate spheroids expressed by Equations (20) and (21) with the particle’s dimension ratio
b/a of the major semiaxis to the minor semiaxis for the extremely thin EDL case are shown
in Figure 6. Clearly, our analytical results are in the remarkably good agreement with
our numerical results for both prolate and oblate spheroids. Therefore, one can conclude
that for the extremely thin EDL case, the thermophoresis of spheroids is mainly under the
hydrodynamic effect, and the particle curvature’s effect on the ion distribution is negligible.
It is shown in Figure 6 that the thermodiffusion coefficient ratio ξ for a prolate (an oblate)
spheroid is larger (smaller) than one, and it increases (decreases) with b/a. With a further
increasing b/a, the ξ of prolate spheroids increases and converges to a fixed value of 1.5,
which means that the thermodiffusion coefficient of a rod-like particle for the extremely
thin EDL case is 1.5 times that of a spherical particle. ξ for oblate spheroids becomes close
to zero with a further increasing b/a, as the flow is blocked by the dish-like particle. For
human red blood cells with a b/a of 4, the thermodiffusion coefficient for the extremely
thin EDL cases is about 0.4 times of that of spherical particles.
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3.3.2. Thermodiffusion Coefficient Ratio for the Extremely Thick EDL Case

For the extremely thick EDL case (i.e., κa = 0.01), the EDL region is much larger than
the flow region as shown in Figure 3, which means that the particle curvature’s effect
on the ion distribution is noticeable. According to [39], the Stokes drag on prolate and
oblate spheroids is proportional to the thermophoretic velocity, and it is balanced by the
thermophoretic force FTP. The thermodiffusion coefficient ratio of prolate spheroids is
given as

ξ =
3
8

FTP
FTP|s

((
1 + ep

2)L− 2ep
)

b
a ep3

, (22)

and the thermodiffusion coefficient ratio of oblate spheroids is given as

ξ =
3
8

FTP
FTP|s

ep
(
1− ep

2) 1
2 −

(
1− 2ep

2)arcsinep
b
a ep3

, (23)

where the eccentricity ep =
√

b2 − a2/b, and the thermophoretic force FTP is obtained
through integrating the numerical thermophoretic force density (the electrical force density
and the dielectrophoretic force density of Equation (11)) in the EDL region.

The variations of thermodiffusion coefficient ratios of prolate and oblate spheroids
with b/a for the extremely thick EDL case (i.e., κa = 0.01) are also shown in Figure 6. Clearly
ξ of prolate (oblate) spheroids for κa = 0.01 have a similar increasing (decreasing) trend
with b/a as that for κa = 100, meaning that the hydrodynamic effect is also significant for
the thick EDL cases. However, the value of ξ of prolate (oblate) spheroids for κa = 0.01 is
smaller (larger) than that for κa = 100, which indicates that the particle curvature’s effect on
the ion distribution retards the increasing (decreasing) trend. The semi-analytical results are
also shown in Figure 6, which reasonably agree with the numerical results. The deviation
of our predictions from the numerical results is probably due to the ignored temperature
gradient when calculating the Stokes drag. Therefore, for the thermophoresis of spheroids
under thick EDL cases, both the hydrodynamic effect and the particle curvature’s effect on
the ion distribution are significant.

The present work describes the thermophoresis of prolate and oblate spheroids in
aqueous media, showing the anisotropic thermophoretic motion. The major semiaxis of
the prolate spheroid is parallel to the external temperature gradient A, while the major
semiaxis of the oblate spheroid is perpendicular to A. According to the [28], a freely
moving spheroid is randomly aligned in the liquid, with the unique thermodiffusion factor
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DT,iso =
(

2DT,⊥ + DT,‖

)
/3, where DT,⊥ and DT,‖ are, respectively, the thermodiffusion

coefficients of spheroids with the major semiaxis being perpendicular and parallel to A.
In the present work, thermodiffusion coefficient variation studies of prolate and oblate
spheroids with κa and b/a can shed light on the variations of DT,‖ and DT,⊥. Due to
the hydrodynamic effect, when the major semiaxis is parallel (perpendicular) to A, the
thermodiffusion coefficient of the spheroid is larger (smaller) than that of the sphere (i.e.,
DT,‖ > DT |S, DT,⊥ < DT |S). Especially for thin EDL cases, when the particle’s dimension
ratio b/a becomes large, DT,‖ >> DT,⊥. Therefore, the unique thermodiffusion factor of
a freely moving spheroid can be simplified as DT,iso = DT,‖/3 for thin EDL cases, when
b/a >> 1.

The present work shows that the thermophoresis of symmetric spheroids in aqueous
media has a translational motion. If the particle becomes asymmetric, e.g., the peanut-like
particle [26] and the Janus particle [40], a rotational thermophoresis can be observed. Such
anisotropic thermophoresis of an asymmetric particle could have applications in micro-
and nano-swimmers [41].

4. Conclusions

We have developed a numerical model for describing the thermophoresis of a single
charged spheroid in aqueous media. The numerical results show that the thermophoretic
coefficient DT of prolate (oblate) spheroids is larger (smaller) than that of spherical particles,
and the increasing (decreasing) tendency is dependent on κa and b/a. For the extremely
thick EDL case (i.e., κa = 0.01), under both the hydrodynamic effect and the particle
curvature’s effect, the increasing (decreasing) rate of DT for prolate (oblate) spheroids is
smaller than that for the extremely thin EDL case. For the extremely thin EDL case (i.e.,
κa = 100), due to the dominant hydrodynamic effect, the thermophoretic coefficient DT
of prolate (oblate) spheroids increases (decreases) with increasing b/a and converges to a
fixed value. When the EDL thickness is close to the particle’s minor semiaxis, the increasing
rate of prolate spheroids becomes larger than that for κa = 100, but the decreasing rate
of oblate spheroids is close to that for κa = 100. For a freely moving spheroid, the
unique thermodiffusion factor DT,iso is one third of the thermodiffusion coefficient DT,‖ of
spheroids, with the major semiaxis being parallel to the external temperature gradient A,
for thin EDL cases when b/a >> 1.
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