micromachines

Article

An Efficient Computation Offloading Strategy with Mobile
Edge Computing for IoT

Juan Fang *(¥, Jiamei Shi, Shuaibing Lu *'*/, Mengyuan Zhang and Zhiyuan Ye

check for

updates
Citation: Fang,].;Shi,J.;Lu,S.;
Zhang, M.; Ye, Z. An Efficient
Computation Offloading Strategy
with Mobile Edge Computing for IoT.
Micromachines 2021, 12, 204.
https:/ /doi.org/10.3390/mi12020204

Academic Editors:

Roberto Cavicchioli and Paolo Burgio

Received: 6 January 2021
Accepted: 15 February 2021
Published: 17 February 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China;
shijiamei@emails.bjut.edu.cn (J.S.); mengyuanzhang@emails.bjut.edu.cn (M.Z.); yezy@emails.bjut.edu.cn (Z.Y.)
* Correspondence: fangjuan@bjut.edu.cn (J.E); lushuaibing@bjut.edu.cn (S.L.); Tel.: +86-139-1129-6256 (J.F.)

Abstract: With the rapidly development of mobile cloud computing (MCC), the Internet of Things
(IoT), and artificial intelligence (AI), user equipment (UEs) are facing explosive growth. In order
to effectively solve the problem that UEs may face with insufficient capacity when dealing with
computationally intensive and delay sensitive applications, we take Mobile Edge Computing (MEC)
of the IoT as the starting point and study the computation offloading strategy of UEs. First, we
model the application generated by UEs as a directed acyclic graph (DAG) to achieve fine-grained
task offloading scheduling, which makes the parallel processing of tasks possible and speeds up
the execution efficiency. Then, we propose a multi-population cooperative elite algorithm (MCE-
GA) based on the standard genetic algorithm, which can solve the offloading problem for tasks
with dependency in MEC to minimize the execution delay and energy consumption of applications.
Experimental results show that MCE-GA has better performance compared to the baseline algorithms.
To be specific, the overhead reduction by MCE-GA can be up to 72.4%, 38.6%, and 19.3%, respectively,
which proves the effectiveness and reliability of MCE-GA.

Keywords: mobile edge computing; computation offloading; offloading strategy; genetic algorithm

1. Introduction

Mobile cloud computing (MCC), the Internet of Things (IoT), and artificial intelligence
(AI) are evolving rapidly, so new applications such as video analysis, virtual reality, and
intelligent vehicles are constantly emerging. Moreover, applications may require real time
processing such as drone flight control applications, Augmented Reality (AR)/Virtual
Reality (VR), and online gaming, with requirements of latencies below a few tens of
milliseconds [1]. Cisco notes that by 2021, IoT devices will dominate connectivity. Of the
27.1 billion connected devices in the world, the Internet of Things will reach 13.7 billion [2].
Although MCC can provide centralized computing resources, due to a large amount of
data to be transmitted, the transfer of all IoT sensed mobile terminal data to the cloud data
center will bring huge crowding pressure and high delay to the network, thus seriously
affecting the quality of user experience.

To solve the above problems, mobile edge computing (MEC) emerged. MEC refers
to the formation of the edge cloud on the edge servers close to mobile devices in the
IoT. It provides users with computing and storage resources which reduces the share of
network resources, the energy consumption of UEs, and the network delay [3-5]. With
the help of MEC, the intelligence of IoT can be improved and the IoT can be rooted in
every vertical industry. At present, MEC has attracted extensive attention in the industry.
MEC has many application scenarios, among which the typical application scenarios are as
follows. (1) There are some local edge application services related to network information
function opening and network access, such as positioning and navigation system based
on the wireless network [6]. (2) There are some high-definition video acceleration servers.
The powerful computing capacity of MEC can greatly reduce the response delay of users
while watching videos to ensure the smoothness [7,8]. (3) There are some network edge

Micromachines 2021, 12, 204. https:/ /doi.org/10.3390/mi12020204

https://www.mdpi.com/journal /micromachines

https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://orcid.org/0000-0002-4542-8727
https://orcid.org/0000-0001-9850-2196
https://doi.org/10.3390/mi12020204
https://doi.org/10.3390/mi12020204
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/mi12020204
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/2072-666X/12/2/204?type=check_update&version=2

Micromachines 2021, 12, 204

20f 17

application services for industrial IoT, Internet of vehicles, and other application scenarios,
which have ultrahigh demand for delay, reliability, and computing performance [9,10]. (4)
There are many computationally intensive tasks in the blockchain that need to be offloaded
to the edges [11,12]. By combining the features of decentralization, consensus mechanism
and peer-to-peer interconnection of the block chain technology, the edge nodes can be
trusted and authenticated to improve the security of the service and system [13].

MEC is a promising enabler of future Internet such as the fifth generation (5G) [14],
enabling multiple future 5G applications and network services such as IoT applications,
haptic Internet, AR/ VR use cases, or remote driving [15]. Computation-intensive applica-
tions, such as AR and VR, require a lot of computation in a very short period of time, which
need very high computing power. For example, AR is a technology that uses additional
information generated by computer to enhance or extend the user’s view of the real world.
Additionally, VR is a computer simulation technology that uses a computer to fuse multiple
information and entity behavior to simulate three-dimensional dynamic views. Both of
them need to collect real-time information about the status of users including locations and
orientations, and then perform calculations. The MEC server can provide rich computing
resources and storage resources, buffer audio and video content according to the location
information, determine the push content, send it to the user or quickly simulate the 3D
dynamic view, and interact with the user, thus greatly improving the user experience.

In MEC, the improvement of mobile application performance is largely dependent on
efficient task offloading decisions. Therefore, offloading decision-making has been widely
concerned by scholars in recent years. Yang et al. [16] considered the capacity constraints
of lead-time and backhaul links and the maximum delay constraints of users and proposed
an effective unloading scheme to minimize the total network energy consumption. Zhang
et al. [17] proposed a computation offloading scheme for energy perception by weighing
energy consumption and time delay, and introduced the residual energy of the smart device
battery into the definition of the weighted factor of energy consumption and delay, which
effectively reduces the total system consumption. However, the above literature failed to
allocate the limited wireless and computing resources reasonably. Tong et al. [18] proposed
an adaptive task offloading and resource allocation algorithm in MEC environment. The
algorithm used the Deep Reinforcement Learning (DRL) method to determine whether
the task needs to be offloaded and allocate computing resources for the task. However,
the deep reinforcement learning method also has some defects. It is difficult to adjust
parameters, and the training time is long. There are also many solutions for offloading
problems under different environmental scenarios from the perspective of optimizing
energy consumption. Zhang et al. [19] adopted artificial fish swarm algorithm to design
the offloading strategy of energy consumption optimization under the constraint of time
delay. This strategy considered the link condition in the task data transmission network
and effectively reduced the equipment energy consumption, but it had the defect of high
algorithm complexity. In the scenario of multiple resources, Xu et al. [20] designed a task
scheduling algorithm of energy consumption minimization particle swarm optimization
for multiple resources matching to reduce energy consumption of edge terminal equipment.
Zhao et al. [21] proposed a privacy perception computing offloading algorithm based on
Lyapunov optimization theory. Liu et al. [22] studied deep learning task offloading. In order
to better deploy deep learning applications and optimize network power consumption, a set
of sparse beamforming framework based on mixed L1/L2 norms was proposed. However,
the above literature does not take into account the delay. At present, some researches
regard the computing task of mobile terminal offloading as composed of several subtasks
with dependencies among each other and consider the fine-grained task offloading. Ding
et al. [23] studied the code-oriented partition computing offload strategy and proposed an
offloading strategy to determine the user’s execution location and minimize the system
overhead. However, the parallelism of the tasks is not considered.

Different from the above methods, our paper designs an efficient computation of-
floading strategy in the auxiliary network with multiple MEC servers, which considers

Micromachines 2021, 12, 204

30f17

the partition of users” applications. It realizes fine-grained task offloading scheduling.
Our study aims at minimizing the overhead of generated applications by improving the
parallel computing capacity of MEC servers. The main contributions of this paper are
shown as follows.

1. We consider the heterogenous properties of MEC and the resource limitation of UEs
and MEC servers. We jointly optimize the execution delay and energy consumption
of applications generated by UEs.

2. We consider fine-grained task computation offloading of fine-grained tasks, which
have dependencies, model the user-generated mobile application as a directed acyclic
graph, and make the parallel processing of tasks possible.

3. Inorder to reduce the overhead of applications generated by UEs and improve the
utilization rate of system resources, we proposed a multi-population coevolutionary
elite genetic algorithm (MCE-GA) to solve resource allocation and task scheduling
problem. By simulation experiments, we verify the effectiveness of the MCE-GA
algorithm.

The rest of this paper is organized as follows. Section 2 describes the system model
and formulates the problem of computing offloading. Section 3 describes the proposed
computation offloading algorithm. Section 4 describes the proposed simulation analysis
method and compares it with other algorithms. Section 5 summarizes our study.

2. System and Computation Model

In this section, we describe the system and computation model of MEC in detail.

2.1. System Model

We consider the scenario of multiple users and multiple MEC servers. In the whole
network, UEs are connected through base stations and wireless channels. Multiple MEC
servers are deployed beside the base stations to provide computing services for UEs. Cloud
servers are located on top of the core network far from the UEs. Compared with the
unpredictable delay and long transmission distance caused by mobile cloud computing
technology used by UEs to offload computing to cloud servers, MEC can provide com-
puting services for UEs more quickly and efficiently and relieve the pressure on core
networks [24]. In our work, we only consider the computation offloading problem between
the user layer and the edge layer, where the user chooses to offload the task to the local or
MEC server.

The overall network of system is shown in Figure 1. In this system, the top end is the
cloud server communicating with the base station through a switch. There are multiple
base stations in the whole network. A number of small MEC servers are deployed near
each base station, and the communication can be conducted between MEC servers. On the
terminal smart device side, the tasks can be executed directly on the local server or sent via
the data transfer unit to a MEC server in its area for remote computation.

The whole network of system is composed of several small areas, which are indepen-
dent of each other. We consider the computation offloading situation in a small area and
have the following assumptions. There are U UEs and M MEC servers in an area. UE;
(i €{L,2,...,U}) offloads computing tasks to MEC; (j € {1,2,...j,... M}) through wire-
less links communication. The wireless links are orthogonal, so links do not interfere with
each other. What’s more, UE; communicates with all MEC servers that can be connected
and perceives the computing resources of these MEC servers. UE; can choose to compute
locally or offload MEC servers in this area. Let f; and F; denote the computing capacity of
UE; and MEC;, respectively. The main notations involved in this paper are given in Table 1.

Micromachines 2021, 12, 204

40f17

\}{{EC Server
~
AN

™~

Figure 1. Overall network of system.

Table 1. Notations.

Symbol Description
UE User equipment
MEC MEC servers
fi Computing capacity of UE;
F Computing capacity of MEC;
A; Application generated by UE;
(4 Task of Application
W Workload of vy,
dy Data size of vy
Ok The ratio of the output/input data size
Tk Maximum delay a task can tolerate
B Transmission bandwidth
N Background noise
p The transmission power of UE;
d; The distance between UE; and MEC;
dj; The distance of MEC servers
h The channel gain
k; The coefficient factor of UE!s chip architecture
0 The channel fading coefficient

2.2. Application Model

We assume that the application generated by UE is composed of several tasks with
dependency. We first model it using a directed acyclic graph (DAG) to achieve fine-grained
task offloading scheduling. Based on that, we analyze the probability of the parallel
processing for tasks, which can speed up the execution efficiency and corresponds to a
more realistic scenario. Figure 2 shows an example of the application model produced
by UE.

We model the application as a DAG graph, where UE; generates application A;. So
UE; can also be expressed as A; = {V}, E;}, where V; is the set of generated tasks, and E; is
the dependency relationship between tasks. We define a task generated by UE as v where
v € V;. For example, in Figure 2, there are vy, v1 € E;, and there is a directed edge from vy
to v1 in A;, thus v1 must be executed after vy. Moreover, we define v, = {wy, di, 0%, T¢ }. Wi
refers to the total workload of vg, which indicates the number of CPU clocks cycles required
to execute vy. dj indicates data size of the task and oy, refers to the ratio of the output/input
data sizes of tasks generated by UE;, T presents the maximum delay a task can tolerate.
We use a binary variable I ;; € {0,1} to indicate whether the task was offloaded to the

Micromachines 2021, 12, 204 50f17

MEC;. We use I; ;o = 1 to indicate that the task was executed locally. Since we assume one
task can only be executed on one position, we set Z]-Ai 0lkij=1

y,

Figure 2. The application model generated by user equipment (UE).

2.3. Communication Model

In the whole system, there are mainly three kinds of communication depending on
user’s offloading location. (1) UE; offloads vy to MEC;. (2) MEC; receives the computation
result of v from MEC;. (3) UE; receives the result of vy from MEC;.

According to Rayleigh fading channel model [25], the rate of UE; to transmit vy to

MECj can be defined
pijhi
Ti,j,v = BlOg <1 + ’ (1)
dg N

where B represents the transmission bandwidth, p; ; represents the transmission power
from UE; to MEC;, h; ; represents the channel gain between UE; and MEC;, d; ; represents
the distance between UE; and MEC;, 0 represents the path loss exponent, and N represents
Gaussian noise.

The rate of UE; to receive the result of vy from MEC; can be defined as

B pjihj,i
Tiires = Blog <1 + d?iN : 2)

Similarly, p; ; represents the receiving power of UE; from MEC;, h;; represents channel
gain, and d; ; represents the distance between MEC; and UE;.

Moreover, when MEC; executes task vy, if v;_; is executed in MECj, then the trans-
mission rate of receiving the result of the precursor task from MECj is defined as

i/

p ./, ,h ./’.
i~ Blog <1 + M) ®
7]

where p; ; represents transmission power of MECy, hj ; represents channel gain, and dj ;
represents distance between MEC; and MEC;.

2.4. Computation Model

In this subsection, we describe the computation model in detail. Computing offloading
is performed either locally or by MEC servers. We consider fine-grained task offloading,
so the dependencies between tasks are also needed to be considered. The dependencies
between tasks mean that all precursors of task must have finished executing before it can
begin executing. Obviously, more complex dependencies between tasks will increase the
complexity of task computation offloading decision. Next, we give the definition of ready
time as follows.

Definition 1 (Ready Time). Ready Time denotes the total wait time required for task
vy to start execution.

Micromachines 2021, 12, 204

60of 17

(1) Local Computation Model

According to the task model defined above, wy, is the workload of the task vy, which
is the total CPU cycles needed to execute the task. f; is the computing ability of UE;. The
local execution delay of task vy for UE; is defined as

[Wi
Tk,i,exe = f)

In addition, we assume that UE; have limited resources and can only execute one task
at a time, so UE; have a waiting queue to store tasks that need to be computed locally. A
wait delay occurs when multiple tasks of UE; are offload locally. The waiting delay of task
vy is the total delay of the completion delay of the tasks in the waiting queue that arrived
earlier than task vy.

We use FTj, to represent the completion delay of the precursor of task vy, F T;er‘:'l.

to represent the return delay after the precursor for task vy, was completed, and TZIU ait O
represent the local execution delay of task vg. F T;ii ; can be defined as
dpre * 0
pre pre
Flyei = ——— ®)
jipre

where dre represents data size of the precursor of task vy, 0y represents ratio of the output
data size to the input data size of task vpre, and 7} ; ;o represents the rate from MEC; to UE;.
Thus, the ready time of vy can be defined as

. 1
Kl i Preg;raeg(vk)(FTPre,i +F rriii,i' Twait)’ ©)

where T! . indicates the total waiting time required for task vy to start execution.
Therefore, the total delay for task vy of UE; to execute locally can be defined as

FTli,i = Tli,i,exe + RTIi,i' (7)

According to [26], the total energy consumption for task v, of UE; to execute locally
can be defined as
B = kiwf?, ®)

where k; is the coefficient factor of UE;’s chip architecture.
(2) MEC Server Computation Model

When UE; chooses to offload to MEC server for computation, the transmitting delay
of task vy from UE; to MEC; is defined as

. d f
T . =k ©)
k,itrs 7i,j,k

The computational time of task vy executed at MEC; is defined as

J _ Wi
Tk,i,exe - Fj, (10)

where dj is the data size of vy, 7; j 1 is the transmission rate from UE; to MEC;, and F; is the
computing ability of MEC;.

Similarly, the ready time for the task v needs to be considered. When the task vy
chooses to offload on MEC;, the ready time involves waiting for the precursor tasks of task
v to finish executing and passing the result back to MEC;, waiting for the transmitting
delay of task vy from UE; to MEC;. In addition, we suppose that the MECs also have
limited computing resources and execute one task at a time, so the ready time also includes

Micromachines 2021, 12, 204

7 of 17

the sum of the completion delays of tasks in the MEC; waiting queue that arrive before the
current task. Figure 3 shows an example of the task queue model.

MEC server
L
-_—
[]

TO T1 T2 T3 Tn
/Z— Task arrive
] —
S LU
Task being executed Wait queue

Figure 3. An example of the Task Queue model.

Thus, the ready time for task v executed on MEC; is expressed as RT]Z ; and can
be defined ‘ ‘ '
]]]

RTk,i = preélp}rae;((vk)(P Tprei + F ;ifz,i' Toaitr Tk,i,trs)’ (11)

where FT,; is the delay of the precursor of vy, F T;‘;ili is the result return time of the

precursor task of v, and Tz];; qi¢ 18 the queue wait delay in MEC;.
Thus, the total delay of task vy executed at MEC; can be defined as

j i j
FT), =T], ., + RT] . (12)

J1,exe

The total energy consumption of task vy executed at MEC; can be defined as

E{C,i =Pp ij * Tli,i,trs + p i * Tli,i,res' (13)

2.5. Problem Formulation
In this subsection, we formulate the computation offloading problem to optimize the

overhead of applications generated by UE;.
The total delay of UE; can be formulated as

[vi

M M .
Titorar = 3 (1= Y Tif) FTy + Y i jFTL)- (14)
k=1 j=1 j=1

The total energy of UE; can be formulated as

[vi]

M M ‘
Eitotar = 3 (1= Y Ti)Ep;+ Y IiijEg ;) (15)
pa =1 =1

Some tasks require low latency and some require low energy consumption. In order
to consider these two consumptions, we draw on the work of [27] and define the total
overhead of UE; as

G = ﬁ * Ei,totul + (1 - :B) * Ti,totul/ (16)

Micromachines 2021, 12, 204 8of 17

where B € [0,1] represents the tradeoff parameter of delay and energy.
In order to minimize the execution overhead of the application generated by UE;, for
UE;, we can formulate the problem as

P1: n}inCi
|vi
s.t. Cl:Titorar < X Tk
k=1 (17)
C2: (v, kt1) € Eiy 0k, V41 € Vi

M
C3: 'ZO Ik,i,j =1, Ik,i,j S {0, 1}
j=

where I; is the offloading decision set of UE;. In P1, C1 is the execution delay constraint
of the application generated by UE;. C2 indicates the sequence of task execution the
dependency between the tasks. C3 represents the decision of task offloading. We limit that
a task can only be executed at one location at a time.

3. Proposed Algorithm

In this paper, we propose a Multi-population Coevolutionary Elite Genetic algorithm
(MCE-GA) to solve this problem and make a reasonable offloading decision. We introduce
multiple populations for parallel optimization. We endow different populations with
different controls to achieve different search objectives. Each population evolves in parallel
according to its own different evolutionary strategies and genetic manipulation. By co-
evolution of migration operator, the optimal solution is obtained. Artificial selection
operator is used to save the optimal individual and the convergence of the algorithm is
judged in each evolution.

3.1. The Flow of MCE-GA
In this subsection, we introduce the flow of MCE-GA.

(1) Chromosome and Fitness Function

For simplicity, real number coding is used. In our algorithm, individuals are defined
as chromosomes, indicating that each chromosome individual is a computation offloading
decision to problem P1. We assume that UE; has k tasks. The individual structure of
chromosome is shown in Figure 4. Each chromosome individual contains the user’s tasks
scheduling policy. The resulting decision is variable for the task, i.e., choosing where the
task offloading.

a, a . a,

Figure 4. The chromosome structure.

We take the total overhead incurred by UE; as the fitness value of the individual. Thus,
the fitness function is defined as

Fitness = ,B * Ei,total + (1 - AB) * Ti,totalr (18)

where E; 1, is the total energy of UE; and T; 4, is the total delay of UE;.
(2) Initialization and Selection

We generate the initial populations randomly, but within the restraints in Problem
P1. The individuals of the populations are generated and the variable values of genes
are guaranteed to be within their range. Thus, we set the genes of the initial populations
to a;(0) = random (M), where random(value) returns a random number in the interval

Micromachines 2021, 12, 204

9of 17

[0,value]. If a; == j, then the task v; is executed on MEC;. We use a; = 0 to represent the
task v; to be executed locally.

The selection operation is then performed within each population. For selection
operations, two methods are used in a wide range, namely, roulette and tournaments.
The roulette selection method calculates the probability of each individual according to
the fitness value of the individual and randomly selects individuals to form the offspring
population according to the probability. Therefore, the greater the fitness value of the
individual, the greater the chance it has to be selected. Multiple rounds of selection are
required to select mating individuals. A uniform random number between 0 and 1 is
generated for each round, and this random number is used as the selection pointer to
determine the selected individual. Due to random operation, the selection error of this
selection method is also relatively large, and sometimes, the high fitness of the individual
is not selected. In addition, the selection strategy roulette used in roulette is more suitable
for the maximization problem. Therefore, a tournament selection strategy is adopted in
this paper to select a certain number of individuals from the population at a time, and then
select the best one to enter the offspring population. The first reason is that this method
has a low computational cost. Another point is that choosing good parents is better than
choosing only the best parents [28]. This method is more random and has a greater random
error. It maintains diversity and has the chance to produce better individuals. Additionally,
this method does not require the individual fitness value to be positive or negative.

Therefore, different populations take the selection operation independently. N in-
dividuals were randomly selected from the population for fitness comparison, and the
highest fitness individuals were inherited to the next generation.

(3) Crossover and Mutation Operation

In order to preserve the diversity of the population and better solve the problem
of offloading decision, MCE-GA performs iteration, crossover operation, and mutation
operation on each population. Appropriate individuals will be selected for crossover and
mutation operation. Then, offspring will be produced.

For crossover operation, we adopted a two-point crossover. Two-point crossover
means that two intersection points are randomly set in the individual and then partial gene
exchange is carried out. Figure 5 shows the example of the crossover operation for the
computation offloading decision variables. First, two intersection points are randomly set
in two individuals, and then, part of the chromosomes of two individuals between the two
set intersections is exchanged.

Crossover pomnt 1 Crossover point 2
Parent 1 a D | Dma CPe] iy a
Parent 2 ®ag Qm | Do aln-l az,n a5
Crossover
A4
Offspring 1 a D | Ay Ay, | Gay a, »
Offspring 2 a,, a. |l a,.. a o a ., a, i

Figure 5. Crossover of the first row of chromosome.

Moreover, when setting the parameters of cross recombination, we generate the re-
combination probability list and assign different recombination probabilities to different

Micromachines 2021, 12, 204

10 of 17

populations. We can maintain the diversity of the population better and avoid local opti-
mality.

For mutation operation, a list of variation probabilities is generated and different
variation probabilities are assigned to different populations. An individual is chosen and
the mutation probability of each element in the chromosome is in the range of the variables.

In the case of mutation operation, when the variable value of the chromosome exceeds
the range set by the individual chromosome variable, it is repaired. In this paper, truncation
repair is adopted, i.e., the nearest boundary value of the element beyond the boundary
range is taken.

(4) Migration

By setting different probability values and performing individual migration among
populations according to the probability, the diversity of each population is maintained.
All populations can share excellent genes, complete their own evolution, and finally, get
the optimal solution. When making individual out, we choose preferred emigrated from
individuals, and at the time of the move in individual, population with the method of
choosing a bad replacement, so that we can speed up the convergence of the algorithm. In
the Internet environment, most of the request to delay requirement is high, so offloading
decisions need to be made quickly, so we use an elite reserved strategy.

(5) Elite Population Selection

The optimal individual of each evolutionary generation is preserved and compared
with the optimal value of the previous generation, and the difference value is taken as
the basis to judge the convergence of MCE-GA. For the elite population, we do not take
crossover and mutation operation and only retain it.

3.2. Offloading Strategy Based on MCE-GA

In this subsection, we introduce our proposed MCE-GA algorithm in detail. The
algorithm aims to solve resource allocation and task scheduling problem, as shown in
Algorithm 1.

In Algorithm 1, first, we initialize multiple populations and some important pa-
rameters, which including evolutionary stagnation threshold, the maximum number of
iterations, interval steps value of population migration, mutation operator probability,
and crossover operator probability for each population. Moreover, we need to initial-
ize a list to keep track of the elite population. Then, we calculate the fitness value
(lines 3-5). The optimal individual in each population is updated to the elite popula-
tion. The algorithm ends on the basis that the optimal individual in the elite population
remains above the specified algebra. When the iteration does not end, the evolution-
ary operation continues. In the multi-population evolutionary operation, we assume
that populations are independent of each other in selection, crossover, and mutation
operation. So, for each population, we evolve individuals according to the selection,
crossover, and mutation operations described above, and get a new generation of pop-
ulation (lines 8-14). We control population connections and coevolution through pop-
ulation migration. Therefore, the optimal individuals in a population are transferred
to other populations through migration operations (lines 15-16). At each iteration, the
elite population is renewed and the elite individuals of each population are retained (line
17). When evolution reaches the convergence standard, the value of the best individ-

Micromachines 2021, 12, 204

11 0of 17

ual is the user’s offloading strategy. The fitness of the individual is the user’s overhead.
Algorithm 1: MCE-GA

Inputs:

Population size list PopNum, evolutionary stagnation threshold ¢, the iterations T, interval steps
of migration migFr, mutation probability list p,, crossover probability list p.
Outputs:

Optimal offloading policy A, the total overhead C

1: Randomly initialize the populations Pop and Elite population Elite_pop

2: Initialize the inputs

3: Fori=1to PopNum.size do

4: Pop = Popli];

5: Evaluate the fitness value of each individual in the i-th Pop;

6: Update Elite population Elite_pop;

7: While stopping criterion is not met do

8: Fori=1to PopNum.size do

9 offspring = Select (Popl[i]);

10: pop = Cross and Mutate (offspring);

11: Popli] = Pop[i]+ pop;

12: evaluate the fitness value of each individual in Pop[i];
13: Select individuals to get a new generation of population;
14: End For

15: IF evolutionary algebra % migFr == 0 do

16: Carry out population migration;

17: Update Elite population Elite_pop;
18: Return optimal offloading policy and the total overhead.
19: End

4. Simulation and Result
4.1. Simulation Setting
We consider an area of 500 x 500 m?. We set the maximum latency of each UE up to

85% of the local latency. Referring to [24,29], we assume our simulation setting parameters.
We list the important simulation parameters in Table 2.

Table 2. The simulation parameters.

Processing density of UE

Simulation Parameters Value
Channel bandwidth 180 kHz
Path loss exponent 3
Background noise 1013
Number of tasks 61,223
Data size of tasks 300~1000 kb
Transmission power of UE 3W
Computation capacity of MEC server 5GHz
Computation capacity of UE 0.5-1 GHz
Channel fading coefficient 103
Tradeoff parameter 8 0.5

500~800 cycle/bit

Distance between UE and MEC server 80~100 m
Distance of MEC servers 50~100 m
Coefficient factor of device’s chip architecture 1020
Number of MECs 3-7
Ratio of the output data size to the input data size 0.001~0.005
Interval steps of population migration 5
Size of the populations 10,152,025

In this paper, we consider the three baseline algorithms to evaluate the performance,
and make a comparative analysis of their experimental results.

Micromachines 2021, 12, 204

12 of 17

Random selection algorithm (Random): The tasks of applications randomly select
offloading locations.

Greedy algorithm (Greedy): The tasks of applications select the best offloading lo-
cations in the current situation. Greedy is to achieve global optimization through local
optimization, and to construct the optimal solution step by step. At each stage, a seemingly
optimal decision is made. Once the decision is made, it will not be changed. Therefore,
with the greedy algorithm, the current task of application always chooses what looks like
the best offloading location based on its predecessor task processing and the local user and
MEC server situation, but ignores its successor tasks. Standard genetic algorithm (SGA):
SGA introduces the biological evolutionary principle of “survival of the fittest, survival of
the fittest” into the coded tandem population formed by optimized parameters. SGA starts
with an initial set of random offloading strategy and optimizes the offloading strategy
through some standard genetic operations such as selection operation, crossover operation,
and mutation operation until reaching a better offloading strategy or convergence. Because
the optimization does not depend on the gradient, it has strong robustness and global
search ability. However, immature convergence is indeed a phenomenon that cannot be
ignored in the standard genetic algorithm. It mainly shows that all individuals are in the
same state and stop evolving. By comparing the proposed MCE-GA algorithm with these
three algorithms, the effectiveness of MCE-GA is verified.

4.2. Convergence Analysis

In this subsection, the convergence of SGA and MCE-GA are analyzed. The conver-
gence of genetic algorithms has been demonstrated in literature [30,31].

Figure 6 shows the convergence situation of MCE-GA and SGA. We consider that
the MEC servers are lack of computing resource and mobile terminals have low latency
requirements, so the iteration is set to 150 times in this work. The black line shows the
average fitness value of the population, and red line shows the optimal fitness value
of the population. In this paper, the fitness value represents the overhead of the UE
when computing tasks, so the lower the fitness value, the lower the overhead, and the
better the strategy. We can see that MCE-GA basically reaches convergence and maintains
stability quickly, and the average fitness value is basically consistent with the best fitness
value. However, the overhead of SGA still fluctuates in a small range which has not
reached convergence.

—— SGA-Mean
450 SGA-Optimum | - i ' '
400 J 4 ——MCEGA-Mean
. 450 MCEGA-Optimum [
Y 350 \l 160 1 400 |
5 300f| 140 1y 3501 -
E 250 L L 1 B
['\ 100 e S 150
5 200 + \ 80 E .
\ 2 100
150 ‘\ 60 | O 200 |‘
\
40 50 60 70 150 55 60 65 70 75 80 85 90 95 100]
100F TN 1 \
100+ - i
= 30 6I0 9'0 12'0 150 = — T
lterations 0 30 0 erationdd 120 150
(a) (b)

Figure 6. The convergence situation of MCEGA (b) and Standard genetic algorithm (SGA) (a).

Figure 7 shows the different convergence of SGA and MCE-GA. We can see that SGA is
easy to fall into “premature” and converge to the local optimal solution. However, MCE-GA
algorithm introduces multiple population optimization search at the same time. To achieve
the purpose of different searches, different populations are endowed with different control
parameters. The introduction of migration operator is to connect multiple populations

Micromachines 2021, 12, 204 13 of 17

and realize the co-evolution, which makes MCE-GA obtain the optimal solution. Thus, the
overhead of MCE-GA is better than SGA.

—— SGA-Optimun
160 —— MCEGA-Opt imum

140

120 f

Overhead of UE

100 |

80

60 1 1 1 1]
0 30 60 90 120 150

Iteration

Figure 7. Convergence comparison between MCE-GA and SGA.

4.3. Performance Analysis

In this subsection, we analyze the performance of MCE-GA.

Figure 8 shows the impact of different number settings of MEC server on device
overhead. The abscissa is the number of MEC servers, and the ordinate is the device
overhead. The number of MEC servers is set at 3-7. As the number of MEC servers
increases, the overhead of application generated by UE decreases. This is because, the
more the MEC servers there are, the more the rich computing resources there are in the
system; so, users can greatly reduce the delay in executing tasks, thus reducing the overall
overhead. However, we find that when the number of MECs grows from 5 to 7, the
overhead is reduced but not by much. This is because, when the number of MECs increases
to a certain extent, MEC server resources is particularly rich, where the offloading location
is not significantly affected in this case. Therefore, how to set the number of MEC servers to
achieve optimal system performance is particularly important. We set the number of MECs
to 7, and by comparing the four algorithms, we can see that MCE-GA algorithm can better
reduce the overhead of devices. Compared with random method, greedy method, and
standard genetic algorithm, the optimization rate of MCE-GA method is 55.5%, 49%, and
7.1%, respectively. Since the random method is to randomly select the unloading location,
the overhead incurred is random and expensive. The greedy strategy is to select the local
optimal unloading location for the current subtask, but not to consider the offloading
location globally, so the overhead is large. The standard genetic algorithm and MCEGA
algorithm take into account the global offloading strategy, so that the overhead is small,
but the standard genetic algorithm is easy to fall into premature. The offloading decision
made by MCE-GA is better. MCE-GA can better reduce the overhead.

Micromachines 2021, 12, 204

14 of 17

—— Random
—&— Greedy
500 —A— SGA
—w— MCE-GA
400
=
< 300 |
=
<
[}
=
~
(o]
& 200
100
O 1 1 " 1 " 1 1 1

w

4 5 6
Numbers of MEC Server

-

Figure 8. The execution overhead of different number of MEC server.

Figure 9 shows the overhead of UE with different offloading strategies at different
data sizes. From Figure 8, we find that it is better to set the number of servers to 5, because
when the number of servers increases to 7, the reduction in overhead is not obvious, but
the cost of adding MEC servers increases. Therefore, number of MEC servers is set to
5. Then, we set the data size generated by each task, at 300-1000 KB. The experimental
result figure shows that with the increase in data volume, the total overhead of the system
will increase. This is because the increase in data volume will consume more computing
resources of UE and MEC servers, resulting in an increase in the overall system overhead.
When the amount of data is 300 KB, we find that there is little difference between the
greedy strategy, the standard genetic algorithm, and the MCE-GA algorithm. Because the
amount of data that needs to be computed is small and the computing resources in the
system is rich, the overall cost does not differ much. However, the random strategy is
a little big; because the task dependence itself is a very complex problem, the improper
selection of the strategy will cause a lot of ready delay, which will lead to extremely high
overhead. As the data size increases, the advantages of MCE-GA algorithm are reflected,
because when the data volume is larger, the resources of MEC server are limited, the choice
of offloading strategy becomes particularly important. A good strategy can make the
system produce lower overhead. Compared with the random method, greedy method, and
standard genetic algorithm, the optimization rate of MCE-GA method was 77.2%, 41.3%,
and 25.2%, respectively, when the data volume was 500 KB. The offloading decision made
by MCE-GA is better.

Micromachines 2021, 12, 204

150f 17

700

600

500

>

[=3

(=]
T

w

(=3

(=}
T

Overhead of UE

200

100 |

0
200

300

400 500 600 700 800 900 1000 1100
Data Size of Tasks

Figure 9. The execution overhead of different data size of tasks.

—®— Random
—0— (reedy

Figure 10 shows the total device overhead when multiple UEs perform task com-
putation. We set the number of devices from 10 to 50 randomly. The number of tasks
generated by UEs is random, and the data size of each task is random. We can find that
as the number of UEs increases, the overall system overhead is on the rise. Additionally,
MCE-GA has more advantages. As the more UEs there are, the more computing resources
system need. The computing resources of MEC servers and UEs are not infinite, so how
to allocate resources and how to offload intelligent devices are particularly important. In
terms of offloading strategy selection, MCE-GA has a greater advantage. When the number
of equipment is 20, we analyze the performance of the algorithm. Compared with random
method, greedy method, and standard genetic algorithm, the optimization rate is 72.4%,
38.6%, and 19.3%, respectively. The proposed algorithm in this paper can make a better
offloading decision and reduce overhead of UEs.

10000

8000

UEs

6000

Overhead of

4000

2000

Figure 10.

a -V

Random
Greedy
SGA

MCE-GA

— o/ .

Numbers of UE

The execution overhead of different numbers of device.

Micromachines 2021, 12, 204 16 of 17

5. Conclusions

In this paper, we propose the problem of task partitioning computation offloading
strategy under multi-UE and multi-MEC model with limited resources. First, we consider
fine-grained task computation offloading of fine-grained tasks, which have dependencies,
model the user-generated mobile application as a directed acyclic graph, and make the
parallel processing of tasks possible. Second, in order to meet low energy consumption and
low latency service requirements, we consider the execution delay and energy consumption
of applications generated by UEs, and formulate a problem of minimizing overhead of
UEs. Then, we propose MCE-GA algorithm for joint optimization. Finally, we study the
convergence and performance of MCE-GA by simulation. Simulation results show that the
proposed algorithm can find a reasonable allocation of resources and reduce the overhead
of the whole system. It is superior to Random, Greedy, and SGA in reducing overhead
of UEs.

For future work, we will take the cloud into consideration and consider the architecture
of edge-cloud collaboration. Moreover, we will continue our research by considering user
mobility and dynamic computation offloading. Mobility is an inherent feature of many
emerging applications, such as AR to assist museum visits to enhance the visitor experience.
Therefore, mobility management is a key problem that needs to be solved urgently in
computing offloading, and it is also one of the major challenges to further design efficient
computing offloading schemes.

Author Contributions: Conceptualization, J.F, S.L. and].S.; methodology,].F,, J.S., S.L. and M.Z;
validation, J.F,,].S., S.L. and Z.Y.; formal analysis,].F,; investigation, J.F,].S. and S.L.; resources, J.F.
and S.L.; writing—original draft preparation, J.S.; writing—review and editing, J.E,, J.S. and S.L.;
supervision, J.E, S.L., S.L., M.Z. and Z.Y.; project administration, J.E; funding acquisition, J.E. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Beijing Natural Science Foundation, grant number No.
4192007, and the National Natural Science Foundation of China, grant number No. 61202076.

Acknowledgments: This work is supported by the Beijing Natural Science Foundation (4192007),
and the National Natural Science Foundation of China (61202076), along with other government
sponsors. The authors would like to thank the reviewers for their efforts and for providing helpful
suggestions that have led to several important improvements in our work. We would also like to
thank all teachers and students in our laboratory for helpful discussions.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ullah, R;; Rehman, M.A.U.; Naeem, M. A ; Kim, B.-S.; Mastorakis, S. ICN with edge for 5G: Exploiting in-network caching in
ICN-based edge computing for 5G networks. Futur. Gener. Comput. Syst. 2020, 111, 159-174. [CrossRef]

2. Ericsson. Cellular Networks for Massive loT—Enabling Low Power Wide Area Applications; Ericsson: Stockholm, Sweden, 2016; pp.
1-13.

3. Barbarossa, S.; Ceci, E.; Merluzzi, M.; Calvanese-Strinati, E. Enabling effective Mobile Edge Computing using millimeterwave
links. In Proceedings of the 2017 IEEE International Conference on Communications Workshops (ICC Workshops), Paris, France,
21-25 May 2017; pp. 367-372.

4. Belli, D,; Chessa, S.; Foschini, L.; Girolami, M. A Social-Based Approach to Mobile Edge Computing. In Proceedings of the 2018
IEEE Symposium on Computers and Communications (ISCC), Natal, Brazil, 25-28 June 2018; pp. 00292-00297. [CrossRef]

5. Roman, R; Lopez, J.; Mambo, M. Mobile edge computing, Fog et al.: A survey and analysis of security threats and challenges.
Futur. Gener. Comput. Syst. 2018, 78, 680-698. [CrossRef]

6. Wu, Q.; Chen, X.; Zhou, Z.; Chen, L. Mobile Social Data Learning for User-Centric Location Prediction with Application in Mobile
Edge Service Migration. IEEE IoT]. 2019, 6, 7737-7747. [CrossRef]

7. Yangchen, C.; Guosheng, Z.; Xiaoyun, Q.; Jie, Z. Research on cloud vr based on 5g edge computing. Inf. Commun. 2019, 33, 1-3.

8. Li, Y,; Frangoudis, P.A.; Hadjadj-Aoul, Y.; Bertin, P. A mobile edge computing-based architecture for im-proved adaptive HTTP

video delivery. In Proceedings of the 2016 IEEE Conference on Standards for Communications and Networking (CSCN), Berlin,
Germany, 31 October—2 November 2016; pp. 1-6.

http://doi.org/10.1016/j.future.2020.04.033
http://doi.org/10.1109/iscc.2018.8538763
http://doi.org/10.1016/j.future.2016.11.009
http://doi.org/10.1109/JIOT.2019.2903120

Micromachines 2021, 12, 204 17 of 17

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.
31.

Li, L.; Li, Y.;; Hou, R. A Novel Mobile Edge Computing-Based Architecture for Future Cellular Vehicular Networks. In Proceedings
of the 2017 IEEE Wireless Communications and Networking Conference (WCNC), San Francisco, CA, USA, 19-22 March 2017;
pp- 1-6.

Datta, S.K.; Bonnet, C.; Haerri, J. Fog Computing architecture to enable consumer centric Internet of Things services. In
Proceedings of the 2015 International Symposium on Consumer Electronics (ISCE), Madrid, Spain, 24-26 June 2015; pp. 1-2.
Qiu, X,; Liu, L.; Chen, W.; Hong, Z.; Zheng, Z. Online Deep Reinforcement Learning for Computation Offloading in Blockchain-
Empowered Mobile Edge Computing. IEEE Trans. Veh. Technol. 2019, 68, 8050-8062. [CrossRef]

Luong, N.C; Xiong, Z.; Wang, P.; Niyato, D. Optimal Auction for Edge Computing Resource Management in Mobile Blockchain
Networks: A Deep Learning Approach. In Proceedings of the 2018 IEEE International Conference on Communications (ICC),
Kansas City, MO, USA, 20-24 May 2018; pp. 1-6.

Kang, J.; Yu, R.; Huang, X.; Wu, M.; Maharjan, S.; Xie, S.; Zhang, Y. Blockchain for Secure and Efficient Data Sharing in Vehicular
Edge Computing and Networks. IEEE IoT]. 2018, 6, 4660—4670. [CrossRef]

Ullah, R.; Rehman, M.A.U.; Kim, B.-S. Design and Implementation of an Open Source Framework and Prototype For Named
Data Networking-Based Edge Cloud Computing System. IEEE Access 2019, 7, 57741-57759. [CrossRef]

Sonkoly, B.; Haja, D.; Németh, B.; Szalay, M.; Czentye, J.; Szabo, R.; Ullah, R.; Kim, B.-S.; Toka, L. Scalable edge cloud platforms
for IoT services.]. Netw. Comput. Appl. 2020, 170, 102785. [CrossRef]

Yang, L.; Zhang, H.; Li, M.; Guo, J.; Ji, H. Mobile Edge Computing Empowered Energy Efficient Task Offloading in 5G. I[EEE
Trans. Veh. Technol. 2018, 67, 6398—6409. [CrossRef]

Zhang,].; Hu, X.; Ning, Z.; Ngai, E.C.-H.; Zhou, L.; Wei,].; Cheng, J.; Hu, B. Energy-Latency Tradeoff for Energy-Aware Offloading
in Mobile Edge Computing Networks. IEEE IoT |. 2017, 5, 2633-2645. [CrossRef]

Tong, Z.; Deng, X.; Ye, F,; Basodi, S.; Xiao, X.; Pan, Y. Adaptive computation offloading and resource allocation strategy in a
mobile edge computing environment. Inf. Sci. 2020, 537, 116-131. [CrossRef]

Zhang, H.; Guo, |.; Yang, L.; Li, X,; Ji, H. Computation offloading considering fronthaul and backhaul in small-cell networks
integrated with MEC. In Proceedings of the 2017 IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS), Atlanta, GA, USA, 1-4 May 2017; pp. 115-120.

Xu, J.; Li, X.; Ding, R.; Liu, X. Energy efficient multi-resource computation offloading strategy in mobile edge com-puting. CIMS
2019, 25, 954-961.

Xing, Z.; Jianhua, P.; Wei, Y. A Privacy-aware Computation Offloading Method Based on Lyapunov Optimization. . Electron. Inf.
Technol. 2020, 42, 704-711.

Liu, L.; Liu, X,; Zeng, S.; Wang, T.; Pang, R. Research on virtual machines migration strategy based on mobile user mobility in
mobile edge computing. J. Chongging Univ. Posts Telecommun. 2019, 31, 158-165.

Ding, Y.; Liu, C.; Zhou, X;; Liu, Z.; Tang, Z. A Code-Oriented Partitioning Computation Offloading Strategy for Multiple Users
and Multiple Mobile Edge Computing Servers. IEEE Trans. Ind. Inform. 2019, 16, 4800-4810. [CrossRef]

Qiuping, L.; Junhui, Z; Yi, G. Computation offloading and resource management scheme in mobile edge computing. Telecommun.
Sci. 2019, 35, 36.

Sklar, B. Rayleigh fading channels in mobile digital communication systems. I. Characterization. IEEE Commun. Mag. 1997, 35,
136-146. [CrossRef]

Zhang, W.; Wen, Y.; Guan, K,; Kilper, D.; Luo, H.; Wu, D.O. Energy-optimal mobile cloud computing under sto-chastic wireless
channel. IEEE Trans. Wirel. Commun. 2013, 12, 4569-4581. [CrossRef]

Wallenius, J.; Dyer,].S.; Fishburn, P.C.; Steuer, R.E.; Zionts, S.; Deb, K. Multiple criteria decision making, multiat-tribute utility
theory: Recent accomplishments and what lies ahead. Manag. Sci. 2008, 54, 1336-1349. [CrossRef]

Lazar, E.; Petreus, D.; Etz, R.; Patarau, T. Minimization of operational cost for an Islanded Microgrid using a real coded Genetic
Algorithm and a Mixed Integer linear Programming method. In Proceedings of the 2017 International Conference on Optimization
of Electrical and Electronic Equipment (OPTIM) & 2017 Intl Aegean Conference on Electrical Machines and Power Electronics
(ACEMP), Fundata, Romania, 25-27 May 2017; pp. 693-698.

Guo, F; Zhang, H.; Ji, H.; Li, X.; Leung, V.C.M. An Efficient Computation Offloading Management Scheme in the Densely
Deployed Small Cell Networks with Mobile Edge Computing. IEEE/ACM Trans. Netw. 2018, 26, 2651-2664. [CrossRef]
Rudolph, G. Convergence analysis of canonical genetic algorithms. IEEE Trans. Neural Netw. 1994, 5, 96-101. [CrossRef] [PubMed]
Bhandari, D.; Murthy, C.A.; Pal, S.K. Genetic algorithm with elitist model and its convergence. Int.]. Pattern Recognit. Artif. Intell.
1996, 10, 731-747. [CrossRef]

http://doi.org/10.1109/TVT.2019.2924015
http://doi.org/10.1109/JIOT.2018.2875542
http://doi.org/10.1109/ACCESS.2019.2914067
http://doi.org/10.1016/j.jnca.2020.102785
http://doi.org/10.1109/TVT.2018.2799620
http://doi.org/10.1109/JIOT.2017.2786343
http://doi.org/10.1016/j.ins.2020.05.057
http://doi.org/10.1109/TII.2019.2951206
http://doi.org/10.1109/35.620535
http://doi.org/10.1109/TWC.2013.072513.121842
http://doi.org/10.1287/mnsc.1070.0838
http://doi.org/10.1109/TNET.2018.2873002
http://doi.org/10.1109/72.265964
http://www.ncbi.nlm.nih.gov/pubmed/18267783
http://doi.org/10.1142/S0218001496000438

	Introduction
	System and Computation Model
	System Model
	Application Model
	Communication Model
	Computation Model
	Problem Formulation

	Proposed Algorithm
	The Flow of MCE-GA
	Offloading Strategy Based on MCE-GA

	Simulation and Result
	Simulation Setting
	Convergence Analysis
	Performance Analysis

	Conclusions
	References

