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Abstract: In order to investigate the thermal effect of a servo axis’ positioning error on the accuracy
of machine tools, an empirical modeling method was proposed, which considers both the geometric
and thermal positioning error. Through the analysis of the characteristics of the positioning error
curves, the initial geometric positioning error was modeled with polynomial fitting, while the
thermal positioning error was built with an empirical modeling method. Empirical modeling
maps the relationship between the temperature points and thermal error directly, where the multi-
collinearity among the temperature variables exists. Therefore, fuzzy clustering combined with
principal component regression (PCR) is applied to the thermal error modeling. The PCR model
can preserve information from raw variables and eliminate the effect of multi-collinearity on the
error model to a certain degree. The advantages of this modeling method are its high-precision and
strong robustness. Experiments were conducted on a three-axis machine tool. A criterion was also
proposed to select the temperature-sensitivity points. The fitting accuracy of the comprehensive error
modeling could reach about 89%, and the prediction accuracy could reach about 86%. The proposed
modeling method was proven to be effective and accurate enough to predict the positioning error at
any time during the machine tool operation.

Keywords: thermal error modeling; fuzzy clustering analysis; principal component regression;
temperature-sensitivity points; CNC machine tools

1. Introduction

With the development of the machine manufacturing industry, the demand for high-
precision machine tools is increasing. Not only a better accuracy, but also a higher removal
rate is provided by high-precision machine tools than that of traditional machine tools.
High-speed machining technology can provide high spindle revolution, high axial feed
rate, and a high-CPU (Central Processing Unit) processing speed. Machining efficiency can
be improved greatly, and the machining time can be reduced significantly. However, the
more heat is generated by the high-speed machining technology, and the more the accuracy
of the machine tools is damaged. Thermally induced error is demonstrated as one of the
greatest contributors to the accuracy of the high-precision and ultra-precision machine
tools. A thermally induced error can account for 40–70% of the total errors [1–3], which
must be reduced to keep the accuracy of the machine tools during processing.

Generally speaking, there are two ways to reduce the thermal error: error avoidance
and error compensation [4]. In the error avoidance, the thermally symmetric design of
machine structure, the separation of heat sources, rearrangement of machine tool structures,
the improvement of the rigidity of machine tool structure, and materials with low thermal
expansion coefficient, an air-cooling system with a hollow ball screw, room temperature-
controlled workshop, etc. are the common methods to reduce the thermal error [5,6]. The
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basic accuracy of machine tools can be ensured in this way, but the costs dramatically
increase with the increase in accuracy grade. In contrast, error compensation is a cost-
efficient way to enhance the accuracy of machine tools [7]. A thermal error is predicted
by the error model, and then compensated by the software [8]. The main steps of error
compensation are: (1) the relationship between the errors and the location is established
considering temperatures; (2) the compensation signals based on the error model sent to
the CNC (Computer Numerical Control) controllers; (3) the tool and the workpiece have
relative motions in the opposite direction to the predicted errors.

Thermal error measurement, error modeling, and error compensation have been the
focus of many significant studies in recent years. Two popular methods of thermal error
modeling are theoretical modeling and empirical modeling. In the theoretical modeling,
through the calculations of heat generations and convective heat transfer coefficients of
different components in a machine tool, the temperature distribution can be obtained,
and the deformation can also be gained according to thermo-elasticity. Both the analytic
method and the numerical method could effectively solve the problems of establishing
differential equations. The finite element method with the help of mathematical software
is the most common method. However, the accurate boundary conditions and the heat
transfer characteristics of theoretical modeling are in need of theoretical modeling, which
are difficult to clearly identify. A three-dimensional FEA (Finite Element Analysis) model
was proposed to conduct a transient thermal structure interactive analysis of a high-speed
spindle by Ma et al. [9]. Shi et al. [10] investigated the effect of thermal expansion on the ball
screw feed drive system of a precision boring machine tool, and the theoretical model for
thermally induced error along with heat generation characteristics was established. Zhang
et al. [11] used the finite element method to predict the temperature field of a high-speed
and high-precision motorized spindle under different working conditions.

Empirical modeling is different from theoretical modeling, where the relationship
between the thermal errors and the temperature measurements was mapped by the
data-driven models such as the neural network [12,13], gray model [14], support vec-
tor model [15], and time series model [16]. A thermal error model with the four key
temperature points was proposed by Guo et al. [17] using an ant colony algorithm-based
back propagation neural network (ACO-BPN). Wang et al. [18] proposed a compound error
model by Newton interpolation for the geometric and thermal errors of a milling center. A
comprehensive compensation model was established through the decomposition of the
geometric error and thermal error components by Li et al. [19], where the thermal effects
caused by internal and external heat sources were modeled separately. Xiang et al. [20]
presented a strategy to build an error model of an NC (Numerical Control) lathe consider-
ing both thermal and load effects. An offline compensation technique modifying the NC
G-codes for positional, geometrical, and thermally induced errors of machine tools was
presented by Eskandari et al. [21].

In this paper, an empirical modeling was applied to build the thermal error model. The
core idea of empirical modeling was to map the relationship between the thermal errors and
the temperature measurements. However, if the multi-collinearity among the temperature
variables existed, the accuracy and the robustness of the thermal error modeling would be
directly affected. Therefore, the highly correlated variables must be screened out. Various
approaches were presented to eliminate the influence of the multi-collinearity among the
variables. The gray correlation theory [22] and the clustering [23–26] are the commonly
used methods to optimize the temperature variables. The fuzzy clustering analysis, gray
correlation, stepwise regression, and determination coefficient were combined to select
temperature-sensitive points by Miao et al. [27].

The establishment of the thermal error model has two requirements. One is that
the model has a high enough accuracy, and the other one is that the model has a strong
enough robustness. Therefore, a thermal error modeling method considering these two
requirements is presented in this paper.
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The multi-collinearity among independent variables needs to be removed before
establishing the thermal error model. In the traditional methods, after the classification, the
representative variable in each group is selected, and the variables finally chosen to build
the error model from these representative variables are determined by the least degree of
multi-collinearity. The benefits of the traditional method are that the multi-collinearity can
be furthest reduced, and the predicted robustness can be guaranteed.

Generally, the stronger the correlation between input variables and the thermal error
is, the more accurate the precision of the model is. However, some variables which have
low correlation with respect to the thermal error are picked out by these methods, which
may decrease the accuracy and robustness of the thermal error model. Therefore, in this
paper, the selection method of variables is different from the traditional ones. After the
representative variables are picked out, the fitting accuracy of the error model should be
considered first. The variables for building the thermal error model are selected based on
sample determination coefficient and the significance of the regression equation, which
gives priority to the fitting precision of the error model. However, there may be still
multi-collinearity among the input variables selected by this method. Principal component
regression is then applied to build the thermal error model. Multi-collinearity among the
input variables can be further reduced. The robustness and prediction accuracy of the error
model can be enhanced.

The rest of this paper is arranged as follows: in Section 2, the modeling of principal
component regression is established. Section 3 deals with the selection of temperature
measuring points based on fuzzy clustering analysis. A three-axis machine tool is taken as
an example to verify the proposed method in Section 4, and some conclusions are presented
in Section 5.

2. Modeling of Thermal Positioning Error

It is well known that the positioning error of the servo axis is not only related to the
position coordinate but also affected by the temperature field as shown in Figure 1.
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Figure 1. Y axis positioning error under different temperature conditions.

2.1. The Characteristic Thermal Positioning Error

Geometric error and thermal error mostly contribute to the positioning error. The
other error sources such as loads, dynamic forces, motion control, and the control software,
account for a small portion of the positioning error. Therefore, only the geometric error
term and the thermal error term are taken into account when the model of the positioning
error is built [19,28–30]. The geometric error term together with the thermal error term can
be easily measured by a laser interferometer.

The equation of the positioning error of the P axis (P = X, Y, Z) is expressed as

δPP(P, T) = δG(P) + δT(P) + ε (1)

where δPP(P, T) is the total positioning error of the P axis (P = X, Y, Z); δG(P) is the
geometric error term measured at the cold state, which is only related to the location of the
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P axis; δT(P) is the thermally induced positioning error which is related to the machine
temperature field and the location of the P axis; ε is other error sources of the P axis
positioning error.

The initial positioning error δG(P) can be fitted by polynomial as expressed in Equation (2),
and the thermally induced positioning error δT(P) is shown in Equation (3):

δG(P) =
n

∑
i=0

αi pi (2)

δT(P) = (ki − k0)p (3)

where αi is the coefficient of the polynomial;p is the nominal position of the P axis; ki is the
slope of each positioning error curve;k0 is the slope of the initial positioning error curve.

The thermally induced positioning error δT(P) can be calculated as follows:

(1) Calculate the slope (ki) of each error curve. According to the first-order polynomial
fitting, a series of slopes can be obtained.

(2) Map relationship between the slopes and the pivotal temperatures.

The slope ki is a linear function of the pivotal temperature variables which are selected
by fuzzy clustering analysis. The details of selection are described in the next section.
Usually, the relationship between the slopes and the pivotal temperature variables can be
built by multiple linear regression (MLR):

ki = β0 + β1T1 + β2T2 + · · ·+ βnTn + ε (4)

2.2. Principal Component Regression

When the thermal error model is built by the MLR, multi-collinearity among vari-
ables exists, and the prediction accuracy and robustness of the error model are degraded.
Therefore, principal component analysis is presented to eliminate the influence of multi-
collinearity among variables. PCR (principal component regression) is also one kind of
mathematical statistics methods, which is usually applied to the regression analysis. Princi-
pal components are unrelated to each other and carry the most information among raw
variables.

The process of PCR is mainly divided into five steps:

(1) Standardize the data;
(2) Calculate correlation matrix R of the standardized data;
(3) Calculate the principal components according to the correlation matrix;
(4) Select the principal components. Principal components are selected according to the

scree plot and cumulative percentage which is usually bigger than 85%;
(5) Carry out the regression analysis with the selected principal components.

The slope ki is a linear function of the principal components instead of the raw
temperature variables:

k = βP (5)

where k =


k0
k1
...

kp

, β =


β0
β1
...

βp


T

are the regression coefficients; P =


1
P1
...

Pp

 =

[
1
P′

]

are the selected principal components:

P′ = αT (6)
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where P′ =


P1
P2
...

Pp

, T =


T1
T2
...

Tn

, and α =


α11 α12 · · · α1n
α21 α22 · · · α2n

...
...

...
...

αp1 αp2 · · · αpn


3. Selection of Temperature Measuring Points

Thermal error modeling is a challenging task because the mechanism causing the
machine tool deformations is so complex that thermal error cannot be accurately predicted.
In order to improve the robustness and the prediction accuracy of the error model, the
multi-collinearity among the temperature variables must be eliminated through selecting
the representative temperature variables from many temperature sensors preliminarily
installed on the machine tool. The essence of identifying the representative temperature
variables is to conduct classification, and then select one variable from each group to
represent this category. The clustering analysis is one of the most common tools for
the classification.

3.1. Clustering Analysis

Fuzzy cluster analysis is widely used, which has unique advantages compared to the
traditional ones. In this paper, the maximal tree method was chosen.

The maximal tree method is implemented through the following steps. Firstly, correla-
tion analysis between every two temperature variables is made, and the fuzzy similarity
matrix is obtained. Secondly, the maximal tree is built based on the prim method. Thirdly,
clustering analysis is conducted to classify the whole temperature variables. Lastly, repre-
sentative temperature variables are gained from each clustering based on the correlation
coefficient between the temperature variables and the thermal error. The permutation and
combination of these representative temperature variables are regarded as input variables
of the error model.

3.2. Clustering Criterion

In the process of clustering, the criterion of selecting the optimal clustering result is
very important. The criterion is a quantitative indicator determine the optimal clustering
result from the whole clustering results. In this paper, the sample determination coefficient
(R2) and the significance of the regression equation were taken as the criteria.

The sample determination coefficient is:

R2 =
SSR
SST

= 1− SSE
SST

(7)

SST =
n
∑

i=1
(ki − k)

2
, SSR =

n
∑

i=1
(k̂i − k)

2
, SSE =

n
∑

i=1
(ki − k̂i)

2
, and SST = SSR + SSE.

where ki is the measured value, k̂i is the fitted value, and k =
n
∑
i

ki.

F statistics is constructed:

F =
SSR/p

SSR/(n− p− 1)
(8)

This obeys F distribution, whose degrees of freedom are p and n−p−1. When
F > Fα(p, n− p− 1), the regression equation is significant under the significance level
which is usually equal to 0.05. On the contrary, the regression equation is not significant.

The closer R2 is to 1 and the more significant the regression equation is, the better the
optimal clustering result is. The flow chart of the thermal positioning error modeling is
shown in Figure 2, where MLR is abbreviated as multiple linear regression.
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4. Experiment and Verification

The experiments were conducted on a three-axis machine tool whose structure is
shown in Figure 3. The positioning error of the Y axis was taken as an example to verify
the thermal positioning error modeling, the modeling processes and experiments of the
X axis and the Z axis were similar to the Y axis. A laser interferometer (Renishaw XL-80)
was used to measure the positioning error, and the principle of measurement was shown
in Figure 4. Measurement was based on the principle of light interference. A laser beam
1© was emitted from the laser head, which was divided into two beams of light 2© and
3© through the interference mirror. Beam 2© directly returns to the receiving point of the
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laser head through the interference mirror, and beam 3© reflects to the receiving point by
the reflector. The displacement of the reflector can be obtained according to the number
of pulses.
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The distribution of temperature was detected by the PT100 temperature sensors, where
the Pt 100 temperature sensors with two wires were used. The scene of the measurement
can be seen in Figure 5. Considering the structure of the machine tool and the actual
operating conditions, 11 temperature sensors were preliminarily installed on the parts
of the machine tool, such as the bed, screw, and similar others. The arrangement of the
sensors is shown in Figure 6 where T means the temperature sensor. Here, T6 and T11 are
not included. The installation locations of the temperature sensors are explained in Table 1.
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Table 1. The installation locations of temperature sensors.

Sensor Location

1 Y axis motor
2 Column
3 Front end of Y axis guideway
4 Bed
5 Back end of Y axis guideway
6 Environment around the machine tool
7 Front bearing of Y axis
8 Work table
9 Rear bearing of Y axis

10 Leading screw nut
11 Environment of the room

4.1. Thermal Positioning Error Measurement and Modeling

The starting point of the positioning error measurement was set to be the machine
reference origin of the Y axis, and the positioning error was bi-directionally measured
every 10 mm in the whole stroke range of 280 mm. Firstly, the geometric positioning error
was measured when the machine tool was initially switched on. Then, the machine tool
is cooled down to the initial condition which is the same as the first measurement, and
the positioning error was measured again. This process was repeated four times, and
the geometric positioning error was calculated by averaging the obtained five groups of
data. The machine tool was warmed up by moving the Y axis slide all along its stroke
with a feed rate of 20 mm/s and an acceleration of 10 mm/s2. However, the process of
the positioning error measurement in the heating process was different from that of the
geometric positioning error. When the machine tool began to be heated, the thermal state
changed dramatically. Even the movement of the Y axis for measurement would make
the thermal state change greatly. Therefore, the measurement of the positioning error was
repeated only twice at the beginning of the heating process. With the development of
the heating process, the change in thermal state was gradually slow. At this stage, the
positioning error was measured three times. Finally, the machine tool reached the thermal
equilibrium state which changed very little, and the positioning error was measured five
times. Meanwhile, the temperatures were measured at an interval of 10 min until the ball
screw system reached a thermal equilibrium state. As shown in Figure 1, the measurements
of the positioning error were synchronized with the temperature measurements after the
machine tool had been warmed up for 0, 20, 60, 120, 210, 240, 340, and 390 min, respectively
(represented by the numbers 0, 1, 2, 3, 4, 5, 6, and 7).
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Modeling for the thermal positioning error could be carried out. Firstly, the initial
positioning error was modeled with polynomial fitting, for which the expression is:

δG(Y) = 6.8499× 10−10y5 − 5.5207× 10−7y4 + 1.5173× 10−4y3 − 0.0144y2

−0.3732y− 1.6437
(9)

Secondly, the slope of each trend line was calculated, which is given in Table 2. The
thermally induced positioning error is:

δT(Y) = (ki − k0)y = ∆ky (10)

Table 2. The slope of each trend line.

No. Curve Slope ki 4k

0 0 0
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7

The slope ki is a linear function of the key temperature variables which are selected in
the following.

4.2. Selection of Key Temperature Variables

Eleven sensors (PT100) were preliminarily installed on the machine tool, and the
temperature curves of 11 temperature sensors were plotted at intervals of 10 min and are
described in Figure 7. It can be seen that the temperatures are rising until the ball screw
system reached a thermal equilibrium state.
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Figure 7. Temperatures of 11 temperature sensors.

The key temperature variables were selected by fuzzy clustering analysis. The steps
of the maximal tree method were implemented as follows:

(1) The correlation coefficient between every two temperature variables is calculated:

rij =

m
∑

k=1
(xik − xi)

(
xjk − xj

)
√

m
∑

k=1
(xik − xi)

2
√

m
∑

k=1

(
xjk − xj

)2
(11)

Then, all the correlation coefficients that form the fuzzy similarity matrix are shown
in Equation (12):
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R =



1 0.91291 0.8972 0.88765 0.97532 0.95647 0.81976 0.908 0.97891 0.95868 0.86397
1 0.98677 0.98366 0.96459 0.94869 0.93909 0.9865 0.9602 0.96513 0.94943

1 0.98309 0.95065 0.93572 0.94915 0.98747 0.95176 0.96321 0.93318
1 0.94542 0.92853 0.96927 0.9921 0.9519 0.96418 0.94085

1 0.98288 0.88303 0.96299 0.98226 0.96855 0.91988
1 0.86006 0.94684 0.96524 0.94873 0.89664

1 0.96475 0.90592 0.93318 0.91032
1 0.96373 0.97348 0.94578

1 0.98947 0.90734
1 0.91689

1



(12)

(2) The maximal tree is built based on the prim method. First, Variable 1 is taken, and
the maximum correlation coefficient relative to Variable 1 is determined from Variable 2 to
Variable 11. Here, r1,9 = 0.97891 is maximum, and the tree is drawn as
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Then, in the rest of variables, the maximum correlation coefficients relative to Variables
1 and 9 are determined, respectively—which are r1,5 = 0.97532 and r9,10 = 0.98947. The
bigger one remains and the tree is achieved.
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In a similar way, finally, the maximal tree is built as shown in Figure 8.
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Figure 8. The maximal tree of the clustering analysis of the maximal tree method.

(3) Clustering analysis was conducted. When λ is in [0,1], the branches of the maximal
tree whose correlation coefficients are less than λ are cut off, and a disconnected graph was
obtained. The connected branches are the cluster results based on the threshold value λ.
The cluster results can be seen in Table 3.
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Table 3. Cluster results of maximal tree method.

Threshold Value of λ Cluster Result

[0, 0.94943) {T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11}
[0.94943, 0.96927) {T1, T2, T3, T4, T5, T6, T7, T8, T9, T10}, {T11}
[0.96927, 0.97348) {T1, T2, T3, T4, T5, T6, T8, T9, T10}, {T7}, {T11}
[0.97348, 0.97891) {T1, T5, T6, T9, T10}, {T2, T3, T4, T8}, {T7}, {T11}
[0.97891, 0.98226) {T1}, {T2, T3, T4, T8}{T5, T6, T9, T10}, {T7}, {T11}
[0.98226, 0.98288) {T1}, {T2, T3, T4, T8}, {T5, T6}, {T7}, {T9, T10}, {T11}
[0.98288, 0.98366) {T1}, {T2, T3, T4, T8}, {T5}, {T6}, {T7}, {T9, T10}, {T11}
[0.98366, 0.98747) {T1}, {T2}, {T3, T4, T8}, {T5}, {T6}, {T7}, {T9, T10}, {T11}
[0.98747, 0.98947) {T1}, {T2}, {T3}, {T4, T8}, {T5}, {T6}, {T7}, {T9, T10}, {T11}
[0.98947, 0.9921) {T1}, {T2}, {T3}, {T4, T8}, {T5}, {T6}, {T7}, {T9}, {T10}, {T11}

[0.9921, 1] {T1}, {T2}, {T3}, {T4}, {T5}, {T6}, {T7}, {T8}, {T9}, {T10}, {T11}

(4) The representative variable of each cluster is chosen. The temperature variable
in each clustering who has the maximal correlation coefficient with respect to the slope
ki is chosen as the representative temperature variable of this clustering. The correlation
coefficients are calculated based on Equation (11), and the result is shown in Table 4. Based
on the correlation coefficients, the combination of variables in each cluster result is shown
in Table 5.

Table 4. The correlation coefficients between temperature variables and slope ki.

Temperature Variable Correlation Coefficient Temperature Variable Correlation Coefficient

T1 0.9725 T7 0.8536
T2 0.9660 T8 0.9382
T3 0.9538 T9 0.9667
T4 0.9160 T10 0.9440
T5 0.9814 T11 0.8889
T6 0.9673

Table 5. The combination of the representative variables in each cluster.

No. Cluster Result

1 T5,
2 T5,T11
3 T5,T7,T11
4 T2,T5,T7,T11
5 T1,T2,T5,T7,T11
6 T1,T2,T5,T7,T9,T11
7 T1,T2,T5,T6,T7,T9,T11
8 T1,T2,T3,T5,T6,T7,T9,T11
9 T1,T2,T3,T5,T6,T7,T8,T9,T11

10 T1,T2,T3,T5,T6,T7,T8,T9,T10,T11
11 T1,T2,T3,T4,T5,T6,T7,T8,T9,T10,T11

(5) The input variables of the error model are selected. When the optimal input
variables are selected, the fitting accuracy of the error model should be considered first.
According to the sample determination coefficient and the significance of the regression
equation, the selection results are obtained in Tables 6–8. When the number of variables is
5, the sample determination coefficient is nearly equal to 1, and the regression equation
is significant. While the number of variables is less than five, the sample determination
coefficient is smaller than that of five variables. If the number of variables were 6, although
the sample determination coefficient is equal to 1, the regression equation could be less
significant than that of five variables. When the number of variables is bigger than six, the



Micromachines 2021, 12, 201 12 of 22

tolerance is exceeded, and some variables have to be excluded. Therefore, the best number
of input variables is five, and they are T1, T2, T5, T7, T11—as shown in Table 5.

Table 6. Sample determination coefficient R2.

The Number of Variables R2

1 0.963
2 0.963
3 0.971
4 0.989
5 0.997
6 0.999

Table 7. Variance analysis of 5 variables.

Model Sum of Squares df Mean Square F Sig.

1
Regression 0.012 5 0.002 120.014 0.008
Residual 0.000 2 0.000

Total 0.012 7

Table 8. Variance analysis of 6 variables.

Model Sum of Squares df Mean Square F Sig.

1
Regression 0.012 6 0.002 170.838 0.058
Residual 0.000 1 0.000

Total 0.012 7

The relationship between the slopes and five input variables is established by multiple
regression analysis. The model summary and coefficients of the regression equation are
shown in Tables 9 and 10. Although the regression equation is significant, not all the
variables pass the significance test. This means that the multi-collinearity exists among
input variables. Therefore, a thermal error modeling method of principal component
regression (PCR) algorithm is presented to eliminate the effect of multi-collinearity.

Table 9. Model summary of MLR.

Model R R Square Adjusted R Square Std. Error of the Estimate

1 0.998 0.997 0.988 0.0044024

Table 10. Coefficients of MLR.

Model
Unstandardized Coefficients Standardized Coefficients

t Sig.
B Std. Error Beta

1

(Constant) −0.8782 0.3738 −2.3492 0.1433
T1 0.0178 0.0081 0.5553 2.1937 0.1595
T2 0.0946 0.0244 1.0014 3.8770 0.0605
T5 −0.0016 0.0195 −0.0331 −0.0817 0.9423
T7 −0.0608 0.0166 −0.4553 −3.6675 0.0670
T11 −0.0238 0.0235 −0.1006 −1.0133 0.4176

4.3. Principal Component Regression Modeling

Principal component analysis is one kind of mathematical statistics methods. PCR is
applied to regression analysis with principal components which are unrelated to each other.
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Therefore, PCR can eliminate the influence of multi-collinearity among input variables.
The construction of the principal component can be seen in Table 11.

Table 11. Total variance explained.

Component
Initial Eigen values Extraction Sums of Squared Loadings

Total Percentage of Variance Cumulative Percentage Total Percentage of Variance Cumulative Percentage

1 4.645 92.896 92.896 4.645 92.896 92.896
2 0.194 3.880 96.776
3 0.118 2.367 99.143
4 0.036 0.725 99.868
5 0.007 0.132 100.000

According to the cumulative percentage bigger than 85% and scree plot shown in
Figure 9, only the principal component 1 is selected as the input variable. The analysis
results of PCR are given in Tables 12–14. The equation of PCR is:

kpi = −0.3243 + 0.0396C1i (13)

where kp is the slopes calculated by PCR, and C1 is the principal component 1.
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Table 12. Model summary of the PCR.

Model R R Square Adjusted R Square Std. Error of the Estimate

1 0.968 0.938 0.927 0.0110105

Table 13. Variance analysis of PCR.

Model Sum of Squares df Mean Square F Sig.

1
Regression 0.011 1 0.011 90.326 0.000
Residual 0.001 6 0.000

Total 0.012 7

Table 14. Coefficients of PCR.

Model
Unstandardized Coefficients Standardized Coefficients

t Sig.
B Std. Error Beta

1
(Constant) −0.3243 0.0039 −83.3080 0.0000

C1 0.0396 0.0042 0.9684 9.5040 0.0000
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The relationship between principal component 1 and the five temperature variables is:

C1i = −50.6062 + 0.1631T1i + 0.4902T2i + 0.2512T5i + 0.6614T7i + 1.1666T11i (14)

The analysis results are shown in Tables 15–17. The equation of PCR with five temper-
ature variables is:

kpi = 0.0065T1i + 0.0194T2i + 0.0099T5i + 0.0262T7i + 0.0462T11i − 2.3283 (15)

Table 15. Model summary of principal component 1.

Model R R Square Adjusted R Square Std. Error of the Estimate

1 1.000 1.000 1.000 0.00000000

Table 16. Variance analysis principal component 1.

Model Sum of Squares df Mean Square F Sig.

1
Regression 7.000 5 1.400
Residual 0.000 2 0.000

Total 7.000 7

Table 17. Coefficients of principal component 1.

Model
Unstandardized Coefficients Standardized Coefficients

t Sig.
B Std. Error Beta

1

(Constant) −50.6062 0.0000 −51938166.3663 0.0000
T1 0.1631 0.0000 0.2084 7731564.4627 0.0000
T2 0.4902 0.0000 0.2120 7708140.8593 0.0000
T5 0.2512 0.0000 0.2132 4941567.5591 0.0000
T7 0.6614 0.0000 0.2023 15306040.9534 0.0000
T11 1.1666 0.0000 0.2015 19050321.8342 0.0000

The obtained model for the Y axis positioning error is expressed as follows:

δPYY(Y, T) = 6.8499× 10−10y5 − 5.5207× 10−7y4 + 1.5173× 10−4y3 − 0.0144y2

+(0.0065T1i + 0.0194T2i + 0.0099T5i + 0.0262T7i + 0.0461T11i − 2.3112)y
−1.6437

(16)

Multiple linear regression (MLR) and artificial neural network (ANN) are also used to
build the thermal error model to compare with the PCR. The input variables of the MLR
and the ANN are the same as PCR.

The slope calculated by MLR is:

kmi = −0.8782 + 0.0178T1 + 0.0946T2 − 0.0016T5i − 0.0608T7i − 0.0238T11i (17)

The Y axis thermal positioning error of MLR is expressed as follows:

δMYY(Y, T) = 6.8499× 10−10y5 − 5.5207× 10−7y4 + 1.5173× 10−4y3 − 0.0144y2

+(0.0178T1 + 0.0946T2 − 0.0016T5i − 0.0608T7i − 0.0238T11i − 0.8611)y
−1.6437

(18)

4.4. Artificial Neural Network Modeling

Artificial neural network (ANN) is usually applied to nonlinear fitting. The neural
network model is a network structure, which is composed of an input layer, hidden layers
(one or two), and an output layer. For the neural network model shown in Figure 10, the
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node numbers of the input layer and output layer are determined by the input variables
and output variables. The node numbers of the hidden layer can be selected by optimizing
the structure of the neural network.
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Figure 10. The structure of the neural network model.

The neural network in this paper has only one hidden layer, as shown in Figure 10.
The input layer has five nodes indicating that the model has five input variables, and
the output layer has one node indicating that the model has one output variable. MSE
(mean square error) and R2 for different number of nodes in the hidden layer are given
in Tables 18 and 19. It can be seen that the MSE and R2 of the hidden layer with four
nodes, five nodes, and six nodes are almost the same, therefore the hidden layer with four
nodes which has the least nodes of the hidden layer among three neural network model
is selected.

Table 18. MSE of the neural network with different nodes in the hidden layer.

Number of Nodes MSE

3 1.137 × 10−5

4 9.9999 × 10−6

5 9.9909 × 10−6

6 9.9962 × 10−6

7 2.0819 × 10−5

Table 19. R2 of the neural network with different nodes in the hidden layer.

Number of Nodes R2

3 0.9961
4 0.9966
5 0.9966
6 0.9966
7 0.9928

4.5. The Modeling Results for the Y Axis Positioning Error

For convenience, this experiment is abbreviated as experiment I. The modeling results
of three models are shown in Figures 11–13, and the residual error of three models can be
seen in Figure 14. The performances of three models are calculated in Table 20 where the
RMSE, MAXR, and MINR are short for root mean square error, maximal residual error, and
minimum residual error, respectively.
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Figure 11. The fitting results of the PCR model (measured positioning error marked with dots) in
experiment I.
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Figure 12. The fitting results of the MLR model (measured positioning error marked with dots) in
experiment I.
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Figure 13. The fitting results of the artificial neural network (ANN) model (measured positioning
error marked with dots) in experiment I.
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Figure 14. Residual error in experiment I: (a) residual error of PCR model; (b) residual error of MLR model; (c) residual
error of ANN model.

Table 20. Fitting results of three models.

Model RMSE MAXR MINR

PCR 1.9978 3.9 −6
MLR 1.3134 2.1 −3.4
ANN 1.3357 2.8 −3.3

MAXR means maximal residual error, and MINR means minimum residual error.

Although the fitting accuracy of the PCR model is worse than that of the other two
models, the fitting curves of the PCR model could match quite well with the actual mea-
sured values. This is because that the PCR model only contains the data of principal
components which are less than the data carried by the MLR model or the ANN model.
The performance of the MLR model is a little better than that of the ANN model. Even
though the fitting accuracy of the PCR model is the worst, it can reach about 89% which is
still very high.

4.6. Experimental Verification of the Positioning Error Modeling

Subsequently, the robustness and predictive accuracy of the positioning error modeling
were verified based on another set of experimental data (abbreviated as experiment II).
The temperatures are plotted every 10 min in Figure 15, and the positioning error can be
observed in Figure 16, where the feed rate is 15 mm/s and the acceleration is 8 mm/s2 to
warm up the machine tool. The temperature of experiment II is different from experiment
I. Environment temperatures of the room in two experiment are the main differentia.
Experiment I was conducted in the daytime and experiment II was in the evening. Sunshine
and central heating were also different.
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Figure 15. Temperatures of 11 temperature sensors of experiment II.
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Figure 16. Positioning error of experiment II.

When the machine tool had been warmed up for 40, 120, 160, and 220 min (represented
by the numbers 0, 1, 2, and 3), the measured positioning errors were compared with the
predicted positioning errors calculated by three positioning error models. The modeling
results are shown in Figures 17–19, the residual error can be seen in Figure 20, and the
details of each positioning error curve can be observed in Figure 21. The performances
of three models are evaluated in Table 21. The prediction accuracy of the PCR model can
reach about 86%, which is the highest. The prediction accuracy of the MLR model is higher
than that of the ANN model.
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Figure 17. The prediction results of the PCR model (measured positioning error marked with dots)
in experiment II.
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Figure 18. The prediction results of the MLR model (measured positioning error marked with dots)
in experiment II.
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Figure 19. The prediction results of ANN model (measured positioning error marked with dots) in
experiment II.

Micromachines 2021, 12, 201 19 of 22 
 

 

 

Figure 18. The prediction results of the MLR model (measured positioning error marked 
with dots) in experiment II. 

 

Figure 19. The prediction results of ANN model (measured positioning error marked 
with dots) in experiment II. 

 

Figure 20. Residual error in experiment II: (a) residual error of the PCR model; (b) residual error of the MLR model; and 
(c) residual error of the ANN model. 

0
50

100
150

200
250

3000

1

2

3
-100

-80

-60

-40

-20

0

Po
si

tio
ni

ng
 e

rr
or

 (μ
m

) 
0

50
100

150
200

250
3000

1

2

3
-100

-80

-60

-40

-20

0

Po
si

tio
ni

ng
 e

rr
or

 (μ
m

) 

(a) 

Re
si

du
al

 (μ
m

) 

(b) 

Re
si

du
al

 (μ
m

) 

(c) 
Re

si
du

al
 (μ

m
) 

Figure 20. Residual error in experiment II: (a) residual error of the PCR model; (b) residual error of the MLR model;
and (c) residual error of the ANN model.

Table 21. Prediction results of three models.

Model RMSE MAXR MINR

PCR 4.2093 8.3 −2.2
MLR 6.4909 12.1 −2.1
ANN 7.3053 19.7 −2.3

In experiment I, the fitting accuracy of the PCR model is the lowest. However, in
experiment II, the prediction accuracy of the PCR model is in fact the best. The selection
method of the temperature-sensitive points in this paper, to some extent, can reduce the
multi-collinearity among the input variables. However, when the input variables are
selected, what should be first considered is that the fitting accuracy of the error model is the
highest. Therefore, multi-collinearity still exists among the selected input variables. Then
PCR is applied to establishing the thermal error model which does not have the problem of
multi-collinearity. The prediction accuracy of the PCR model is better than that of the other
two models, which means that the PCR model is of strong robustness.

If the model had the problem of multi-collinearity, when the conditions of the experi-
ment changed, i.e., the distribution of temperatures was different, the prediction accuracy
would degrade. Therefore, the PCR model is more suitable for thermal error modeling.
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Figure 21. Prediction result of each curve: (a) result of the error modeling at 40 min; (b) result of the error modeling at
120 min; (c) result of the error modeling at 160 min; and (d) result of the error modeling at 220 min.

5. Conclusions

Based on empirical modeling and experimental analysis, a modeling method of
thermal positioning error is presented in this paper. The experimental results showed that
the predicted positioning errors were well matched with the measured positioning errors
at any time during the machine tool operation. The following conclusions can be drawn:

(1) The thermal positioning error model is constructed by empirical modeling. The initial
geometric positioning error is modeled with polynomial fitting, and the thermal
positioning error is predicted by principal component regression. The high-precision
and strong robustness of the error model can be achieved.

(2) Fuzzy clustering analysis of the maximal tree method is applied to classifying the data.
A criterion which is the combination of the sample determination coefficient and the
significance of the regression equation is presented to search for the optimal clustering
result. The optimal clustering can be obtained, and the number of temperature sensors
can be reduced from 11 to 5.

(3) PCR is applied to thermal positioning error modeling because PCR can greatly reduce
the multi-collinearity among the input variables and improve the robustness of the
error model. The positioning error model could accurately predict the positioning
error under different thermal states. The fitting accuracy of the error modeling could
reach about 89%, and the prediction accuracy could reach about 86%. Hence, the PCR
model is a candidate for the thermal modeling.

(4) The proposed thermal error model in this article is verified. Based on the presented
model, the corresponding development of the actual hardware equipment will be
part of future studies.
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