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Abstract: Edge mode could disturb the ultra-subtle mass detection for graphene resonators. Herein,
classical molecular dynamics simulations are performed to investigate the effect of edge mode on
mass sensing for a doubly clamped strained graphene resonator. Compared with the fundamental
mode, the localized vibration of edge mode shows a lower frequency with a constant frequency gap
of 32.6 GHz, despite the mutable inner stress ranging from 10 to 50 GPa. Furthermore, the resonant
frequency of edge mode is found to be insensitive to centrally located adsorbed mass, while the
frequency of the fundamental mode decreases linearly with increasing adsorbates. Thus, a mass
determination method using the difference of these two modes is proposed to reduce interferences for
robust mass measurement. Moreover, molecular dynamics simulations demonstrate that a stronger
prestress or a higher width–length ratio of about 0.8 could increase the low-quality factor induced by
edge mode, thus improving the performance in mass sensing for graphene resonators.

Keywords: graphene resonator; edge mode; mass sensing; quality factor; molecular dynamics simulation

1. Introduction

Since Geim and co-workers fabricated monolayer graphene by mechanical exfoliation
in 2004 [1], graphene-based device manufacturing infrastructure has seen considerable
advancements [2–5] due to the excellent mechanical properties [6–8], preeminent thermal
properties [9,10], and tunable electrical performances [11–14]. A variety of nanotechnolo-
gies have been developed, including thermal interface materials [15–17]; electromagnetic
composites [18,19]; gas separation membranes [20]; and sensor-based applications [21],
such as accelerometers [22], biomedical detection [23], and gas measuring [24]. Among
them, the graphene-based mass sensor has attracted increasing attention with the benefit
of its unprecedented atom-thick two-dimensional structure, which provides enough area
for the incoming mass flux. Traditional graphene mass sensors mainly operate by means of
the conductance changes they cause to the adsorbed mass [24–27], which is susceptible to
temperature variation and is only suitable for certain gases. However, the manufacture
of the graphene resonator in 2007 [2] provided an alternative approach for mass sensing
with the aid of frequency change induced by the adsorbent mass, thereby representing a
promising method to achieve atomic-scale resolution.

To date, a number of authors have studied various methods to realize atomic-scale
mass sensing by using graphene resonators. For example, Duan et al. [28] adopted a hybrid
structure of graphene sheets supported by carbon nanotubes as a resonator, and then
performed molecular dynamics (MD) simulations to demonstrate ultrahigh mass resolution
up to 1 yg (10−24 g) with a mass responsivity of 0.34 GHz/yg. Then, Jiang et al. [29]
investigated the feasibility of the graphene nanomechanical resonant mass sensor and
showed that the mass sensitivity would triple if the actuation energy was about 2.5 times the
initial kinetic energy of the nanoresonator. In addition, some efforts, including decreasing
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geometric sizes [30], utilizing vacancies [31], and adjusting capacitive force [32], have been
made to improve the performance of graphene-based resonant mass sensors. Though
ultrahigh mass resolution of up to 1 yg has been reported, the impact of edge modes,
which always occur at the free edges of graphene sheets and even break the coherence of
fundamental oscillation [3,33], has rarely been discussed.

The molecular dynamics method, which directly computes the state of every atom and
takes the scale effect into consideration, seems to be the most suitable method to investigate
the edge mode of graphene sheets compared with finite element methods [34], nonlocal
elasticity theory [35,36], and molecular structural mechanics methods [37]. As a computer
simulation method for analyzing the movements of atoms and molecules and providing
a view of the dynamic “evolution” of the studied system, molecular dynamics has been
used to study the mechanical properties [38,39] and thermal properties [40–42] of novel
nanomaterials including graphene, and the results meet well with those of the experiment.

In this paper, molecular dynamics simulation is performed to investigate the distinct
responses between edge modes and fundamental modes to adsorbed mass on graphene
sheets, and a novel mass determination method based on the frequencies of these two
modes is proposed, which is expected to diminish the interferences caused by mutable
stress in graphene. In previous studies, the mass was determined by the fundamental fre-
quency shift, which is hypersensitive to the stress in graphene in addition to the absorbed
mass. However, it is difficult to control the stress in graphene accurately and steadily.
For example, temperature fluctuation can induce distinct thermal expansions between
graphene and silicon oxide substrate, thereby changing the graphene inner stress signif-
icantly [2]. Moreover, the shift in gate voltage, if actuated using electrical methods, can
disturb the stress [4]. MD simulations in our study indicate that the frequency difference
between fundamental eigenmodes and edge eigenmodes shows a faint dependency upon
stress variance. Hence, adopting edge mode in mass determination is expected to minimize
the disturbance of stress fluctuations and identify the absorbed mass more accurately. In
this case, in combination with the negative effects [33,43] induced by edge modes on the
quality factor of the graphene resonator, proper improvement methods, including exerting
stronger prepress and maintaining a lager width–length ratio, are proposed to ensure the
mass sensing performance of graphene resonators with edge modes.

2. Simulation Structures and Methods

Molecular dynamics simulations have been used to study the impact of edge modes
on mass sensing for strained graphene resonators [44,45]. The studied doubly clamped
graphene sheets with adsorbates are commonly treated as divided atoms and molecules
interacted by interatomic potentials or molecular mechanics force fields [46–48]. For the
systems obeying the ergodic hypothesis, the macroscopic thermodynamic properties can
be confirmed by directly tracing the trajectories of atoms and molecules, usually by means
of numerically solving the corresponding Newton’s or Hamilton’s equations.

In the present MD simulation, the modeling schematic diagram of a graphene-based
resonant mass sensor is shown in Figure 1. The sensing element as a nanoscale resonator is a
doubly clamped monolayer graphene sheet. Under the actuation imposed by external force
(either electrical or optical method), the vibration frequency of graphene sheet depends
largely on the absorbed mass and graphene inner tension. Note that if the tension is kept
steady or the tension-reduced frequency shift is compensated appropriately, absorbed mass
can thus be deduced from the graphene sheet’s mechanical frequency.

In Figure 1, graphene sheets with a length of 100 Å and widths ranging from 50 Å
to 100 Å, composed of 1862–3795 carbon atoms, were considered, and on the surface, one
or more gold atoms were added as absorbed mass. The interactions among these atoms
were described using three widely used potential functions. Covalent bonds between
carbon atoms were expressed as the adaptive intermolecular reactive empirical bond order
(AIREBO) [47–49], while the potential and embedded-atom method (EAM) [50] was used
to describe the interactions among multiple gold atoms. Then van der Waals adhesion
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energy between graphene and absorbed gold atoms was estimated using the Lennard–Jones
12-6 equation [51]. All of the MD simulations were performed with the help of the Large-
scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) package from Sandia
National Laboratories (Albuquerque, NM, USA) [45]. In this case, the developed MD
simulation model as indicated in Figure 1 underwent a 100 ps equilibration process with a
time step of 1 fs under the NPT ensemble, where the number of atoms, the pressure (0 Pa),
and the temperature (10 K) were kept constant in order to obtain the relaxed structure with
minimum energy. Then, a moderate and continuous deformation was imposed to exert
axial stress ranging from 10 to 50 GPa. The strained graphene sheet was doubly fixed and
underwent a second equilibrium process. Afterwards, a sinusoidal initial velocity profile
was applied to the graphene sheet to excite flexural vibration, and the initial velocity was
constrained under 1 Å/ps to avoid violent nonlinear vibration according to our previous
work [52]. In this way, the doubly clamped graphene sheet started vibrating under the NVE
ensemble, where the atom numbers, the volume, and the energy were constant. During the
simulation period, essential physical quantities, including kinetic energy, potential energy,
stress, and oscillation amplitudes, were recorded for further frequency response analysis.
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Figure 1. Atomic schematic of doubly clamped monolayer graphene resonator for classic molecular
dynamics (MD) simulation.

3. Results and Discussions
3.1. Two Distinct Vibration Eigenmodes

Referring to the previous literature [4,6,53], doubly clamped monolayer graphene
sheets can be regarded as tensioned membranes without bending stiffness. Thus, according
to the continuum elastics model, the corresponding fundamental resonant frequency is
expressed as

f f undamental =
1

2L

√
σ

ρ
(1)

where L is the length of the graphene sheet and σ is the axial tension in graphene. The
equivalent density ρ, in terms of the contributions from both graphene and adsorbates, is
calculated considering the thickness of the monolayer graphene sheet to be 3.35 Å and the
ideal density to be 2200 kg/m3 for pure grapheme [2,5].

As for the doubly clamped vibrating graphene sheet with a length of 100 Å and a
width of 50 Å, as shown in Figure 1, an axial stress of 10 GPa was exerted on it with a gold
atom placed in the middle as absorbed mass. Figure 2 illustrates the frequency spectrum of
the kinetic energy obtained by MD simulation. Apparently, there are two peaks at 174 and
230 GHz, representing two distinct vibration eigenmodes, respectively. Theoretically, the
fundamental mechanical frequency of the graphene sheet is deduced to be 117 GHz from
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Equation (1) by neglecting the effect of this gold atom. The corresponding frequency of
the kinetic energy is 234 GHz, moving closer to the second peek in Figure 2, which is
twice that of the mechanical resonant frequency. Consequently, it can be estimated that
the second peek represents the fundamental frequency, while the first peek results from
another vibration mode.
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Figure 2. Normalized fundamental spectrum of kinetic energy for a doubly clamped graphene sheet
with a length of 100 Å and a width of 50 Å.

To identify which vibration eigenmode the first peek represents, the mechanical
vibrations of the graphene sheet were observed by visualization software OVITO [54],
and not unexpectedly, two distinct eigenmodes were found. One eigenmode was the
typical fundamental eigenmode illustrated above, while the other was localized at the
free edges of the graphene sheet called “edge mode”, as depicted in Figure 3, where the
local bulking induced by the edge modes has a lager out-of-plane displacement with an
amplitude of 3.8 Å, just like the flapping wings. In contrast, the vibration amplitude in the
fundamental mode was only about 1.5 Å. More importantly, the flapping movement had a
different frequency to the fundamental vibration, thereby resulting in the two peaks in the
kinetic energy spectrum, as shown in Figure 2. To verify this, the oscillation amplitudes
of the center group and edge group of carbon atoms were recorded, respectively. Since
the edge modes are located at the free edges of graphene sheet, the central part vibrated
following the fundamental mode with a frequency of 115 GHz as presented in Figure 3b,
where a small peak on the left represents the subtle effects of edge modes. At the free
edges, since the edge mode plays a dominant role, the spectrum showed a peak at 87 GHz,
which represents the edge mode frequency and corresponds to the first frequency peak in
Figure 2. Moreover, it is worth mentioning that the vibration of the edge eigenmode was
stronger than that of the fundamental eigenmode in this case; however, the proportions
of the edge eigenmodes decreased quickly when exerting stronger stress or widening the
graphene sheets.
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3.2. Effect of Edge Mode on Mass Sensing
3.2.1. Distinct Response to Centrally Distributed Adsorbates

Resonant mass sensors are dependent on the fundamental frequency shifts in response
to adsorbates. When the external mass is absorbed on the graphene sheet, the equivalent
density ρ will increases, thus reducing the fundamental frequency. The frequency shift can
be written by

∆ f f undamental = − 1
4L

K
√

σ

ρ0

∆ρ

ρ0
(2)

where ρ0 is the density of pure graphene and ∆ρ is the increment of equivalent density,
assuming the absorbed mass is evenly distributed. The factor K is used to adjust the
frequency shifts caused by distinct distributions of adsorbates and equals 1 when adsor-
bates are evenly distributed. Since the volume of graphene sheet can be regarded to be
unchanged, Equation (2) is then rewritten as

f f undamental =

(
1
2
− K

4
∆m
m0

)
1
L

√
σ

ρ0
(3)

where m0 is the mass of pure graphene sheets and ∆m represents the mass of adsorbates.
In contrast, due to the unpredicted results when using standard elastic beam theory, the
frequency of edge modes shows a considerably different response to central adsorbates.

To compare the distinct response to the centrally distributed absorbates between edge
modes and fundamental modes, 1–10 gold atoms as adsorbates were placed in the middle
of the graphene sheet with a length of 100 Å and a width of 50 Å, along with the applied
axial stress ranging from 10 to 50 GPa. Figure 4a presents an overview of the resonant
frequencies of two modes versus the mass of adsorbates and axial stress. This chart can be
explained from several perspectives. Firstly, the resonant frequencies of the two modes
show the significant dependence on axial stress, and they are both proportional to the
square root of the stress. For clarity, the frequencies without adsorbates as a function of
axial stress are displayed in Figure 4b. For the fundamental eigenmode, the theoretical
result can be expressed as 33.7σ0.5 according to Equation (1), and it matches with the MD
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results considerably well, with an R-square of more than 0.99 and a maximum relative
error of about 6%. Moreover, this relative error decreases to about 2% if a stronger tension
(>15 GPa) is exerted, which can be explained by the fact that the stretched graphene sheet
is closer to the ideal tensioned membrane structure. On the other hand, the two curves in
Figure 4b reveal that the difference between fundamental frequency and edge frequency
seems to remain steady despite the variational stress. Thus, the resonant frequency of edge
modes can be described as

fedge =
1

2L

√
σ

ρ0
− Cbias (4)

where Cbias is a constant. Equation (4) is then used to fit the MD results, showing an
excellent R-square value up to 0.99, as displayed in Figure 4b, and the frequency gap
between the fundamental modes and edge modes is about 32.6 GHz. From a different
perspective, unlike the surface of fundamental modes warping along the axis of absorbate
mass in the chart in Figure 4a, the edge modes’ fitting surface remained flat, thus revealing
that edge modes are quite unsensitive to the centrally distributed adsorbates. To exhibit
the relations between frequencies and adsorbed mass clearly, the sections of 10, 15, 20,
and 25 GPa from Figure 4a were chosen and are individually presented in Figure 4c. It is
apparent that the fundamental frequencies show a clear linear relation with the mass of
attached gold atoms. Moreover, the further fitting results show the slopes of −60.9, −85.9,
−96.0, and −107 with R-squares of 0.98, 0.98, 0.99, and 0.99, respectively. In contrast, the
frequencies of edge modes show low variances of less than 4% in response to the absorbates.
The corresponding R-squares are 0.43, 0.30, 0.36, and 0.17, respectively, which indicates
weak linear relationships. As a result, the frequency of the edge mode still conforms to
Equation (4) with the centrally distributed adsorbates.

3.2.2. Determination of Centrally Distributed Mass in the Two Modes

The working principal of typical graphene-based resonant mass sensors complies
with Equation (3), where the linear relationship between the fundamental frequency and
adsorbate mass is critical for mass determination, assuming the stress σ in graphene is
constant. However, the stress in graphene sheet is susceptible to numbers of factors, such as
the temperature fluctuations [2], the variance of the gate voltage by electrical actuation [4],
and the adsorbates themselves [3]. If the stress σ in Equation (3) is not a constant, the
absorbed mass cannot be determined accurately simply by the fundamental frequency.
Fortunately, the edge eigenmode may offer a solution.

The MD simulation results shown in Figure 4a indicate that when adsorbed mass
is distributed at the center of graphene sheets, frequencies of fundamental eigenmodes
and edge eigenmodes conform with Equation (3) (K equals 4 derived from MD results)
and Equation (4). In this case, since the two independent equations regarding absorbate
mass and stress are included, the absorbate mass and stress can be solved together, thus
eliminating the interference induced by mutable stress. Then, by combining the frequencies
of fundamental modes and edge modes expressed as Equations (3) and (4), the mass of
central adsorbates can be defined by

∆m =
m0

2

(
1 −

f f undamental

fedge + Cbias

)
(5)

where ∆m is absorbed mass; m0 is the mass of the graphene sheet (excluding fixed areas);
Cbias is a constant as illustrated before, which is irrelevant to the stress in graphene. Note
that the above derivation is under the premise that the mass is centrally distributed; never-
theless these adsorbates cannot be located at the exact middle of graphene sheets. Thus,
the acceptable range of the adsorbates where the mass determination method proposed
above is applicable is worth discussing.
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To determine the appropriate range for centrally distributed adsorbates, two gold
atoms as absorbed mass were moved from the center of graphene sheets to the edges
along the width direction, and then the corresponding frequencies of the two modes were
recorded and are depicted in Figure 5. Two samples of graphene sheet with sizes of
100 × 50 Å and 100 × 80 Å were considered, and different levels of stress, including 10 and
25 GPa, are discussed, respectively. Herein, the fundamental frequency shift induced by
the single gold atom, which can be calculated by Equation (3), was chosen as a threshold.
When the gold atoms move from the interior to the edge, if the resonant frequency drift
is beyond this threshold, they can be regarded as out of central area, and the proposed
mass determination method in Equation (5) would be unapplicable. Under this criteria,
the adsorbates with a transversal distance within 30 percent of the width can be regarded
as being in the middle, as shown in Figure 5, since the frequency drifts are less than the
threshold. However, the adsorbates with a transversal distance of more than 50% of the
graphene sheet with a 50 Å width and 70% of the graphene sheet with a 80 Å width, as
displayed in Figures 5a and 5b, respectively, lead to much higher frequency shifts than the
threshold and then cannot be treated as being in the middle. Note that the wider graphene
sheets tend to have narrower drifting parts where the resonant frequencies vary drastically.
Thus, enlarging the width properly is an effective way to increase the valid center area for
the added adsorbates.
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3.2.3. Constraints for Evenly Distributed Adsorbates

The discussions and conclusions above make sense only in the case of centrally
distributed adsorbates. When adsorbed mass is evenly distributed, the frequencies of the
fundamental mode and edge mode decrease synchronously, as can be seen in Figure 6a,
which exhibits the MD results (dots) and theoretical results (surfaces) of frequency shifts for
both modes with evenly located adsorbates. The differences between the two eigenmodes
remain almost unchanged with variational absorbed mass and stress, and the range of the
frequency gap is within 4 GHz. Figure 6b provides the MD results under 10 GPa axial
stress, which indicates that the frequency gap declines slightly (<4 GHz) with increased
absorbates, and the linearity is not that strong, with a R-square of 0.91. As a result, the
frequency gap between these two modes can be regarded as constant, and the relation can
be described as fedge ≈ ffundamental − 30. In this case, we cannot obtain two independent
equations regarding absorbate mass and stress and solve them together like in the case of
central distribution. That is, the frequency of edge modes cannot provide more independent
and valid information for mass determination, so the mass determination method proposed
above is not applicable for evenly distributed adsorbates.

Micromachines 2021, 12, x 9 of 13 
 

 

  

(a) (b) 

Figure 6. (a) Resonant frequencies of fundamental modes and edge modes versus evenly distributed absorbed mass and 
axial stress. Length and width of the considered doubly clamped graphene sheet are 100 and 50 Å, respectively. (b) Reso-
nant frequency gap between fundamental modes and edge modes versus the absorbed mass with axial stress of 10 GPa. 

3.3. Effects of Edge Mode on the Q Factor 
The quality factor (Q) is always an important issue for resonant sensors, and a higher 

Q factor means less energy dissipation per oscillation period and higher resolution for 
mass sensing [55,56]. The Q factor for graphene-based resonators has been measured to 
be 100–1800 at temperatures from 300 to 50 K since it was first reported [2], and recently, 
it was increased to 9000 when cooled down to 10 K [5]. Besides the intrinsic energy dissi-
pation of graphene, extrinsic loss mechanisms, including air damping (if not operating in 
a vacuum) and clamping losses, are keys limiting factors [55]. In addition, edge mode is 
also a crucial mechanism causing a low Q factor [3,33], especially for doubly clamped 
graphene sheets.  

To elucidate the edge effects on the Q factor for improving Q value, graphene sheets 
with different widths and inner stress were investigated by recording the diminishing 
amplitudes of fundamental vibrations that imply energy dissipations. Figure 7a–d com-
pare the different amplitude damping of four samples. Since the square of amplitude is in 
direct proportion to the oscillation energy, the Q factor can be confirmed by 

2
0

2 2
0

Q=2π
t

Aft
A A

 (6)

where f is the fundamental frequency; t is duration of the traced vibration; A0 and At are 
the amplitudes of fundamental oscillation at the beginning and end of simulation, respec-
tively. In terms of Equation (6), the Q factors of these four samples are then calculated to 
be 1463, 2520, 2321 and 4405, respectively. It is apparent from these four charts that the 
graphene sheet with smallest width and stress has much more energy loss in oscillation, 
while that with the largest width and stress has the least energy loss, and its Q factor is 
three times bigger than that of the former. The intermediate two also clearly show less 
amplitude diminishing, with Q factors of 2520 and 2321, respectively. Incidentally, the 
ripples on the margins of these amplitude curves occur due to the incoherent mixing of 
vibrations of two modes with different frequencies, which is called the beating phenome-
non. Comparing the four results, it can be seen that enlargement of the width and stress 
could effectively improve the Q factor of graphene resonators.  

Figure 6. (a) Resonant frequencies of fundamental modes and edge modes versus evenly distributed absorbed mass and
axial stress. Length and width of the considered doubly clamped graphene sheet are 100 and 50 Å, respectively. (b) Resonant
frequency gap between fundamental modes and edge modes versus the absorbed mass with axial stress of 10 GPa.



Micromachines 2021, 12, 189 9 of 13

3.3. Effects of Edge Mode on the Q Factor

The quality factor (Q) is always an important issue for resonant sensors, and a higher
Q factor means less energy dissipation per oscillation period and higher resolution for
mass sensing [55,56]. The Q factor for graphene-based resonators has been measured to be
100–1800 at temperatures from 300 to 50 K since it was first reported [2], and recently, it was
increased to 9000 when cooled down to 10 K [5]. Besides the intrinsic energy dissipation of
graphene, extrinsic loss mechanisms, including air damping (if not operating in a vacuum)
and clamping losses, are keys limiting factors [55]. In addition, edge mode is also a crucial
mechanism causing a low Q factor [3,33], especially for doubly clamped graphene sheets.

To elucidate the edge effects on the Q factor for improving Q value, graphene sheets
with different widths and inner stress were investigated by recording the diminishing
amplitudes of fundamental vibrations that imply energy dissipations. Figure 7a–d compare
the different amplitude damping of four samples. Since the square of amplitude is in direct
proportion to the oscillation energy, the Q factor can be confirmed by

Q =2π f t
A2

0
A2

0 − A2
t

(6)

where f is the fundamental frequency; t is duration of the traced vibration; A0 and At are the
amplitudes of fundamental oscillation at the beginning and end of simulation, respectively.
In terms of Equation (6), the Q factors of these four samples are then calculated to be 1463,
2520, 2321 and 4405, respectively. It is apparent from these four charts that the graphene
sheet with smallest width and stress has much more energy loss in oscillation, while that
with the largest width and stress has the least energy loss, and its Q factor is three times
bigger than that of the former. The intermediate two also clearly show less amplitude
diminishing, with Q factors of 2520 and 2321, respectively. Incidentally, the ripples on the
margins of these amplitude curves occur due to the incoherent mixing of vibrations of two
modes with different frequencies, which is called the beating phenomenon. Comparing
the four results, it can be seen that enlargement of the width and stress could effectively
improve the Q factor of graphene resonators.

For clarity, the impacts of the width and stress on the Q factor are therefore further
studied individually. Figure 7e presents the relationship between the Q factor and the
axial stress. As can be seen, the Q factor rises rapidly with increasing stress from 1463 at
10 GPa to 7989 at 50 GPa. Moreover, the Q factor is proportional to stress to the 2.5 power.
In addition, widening the graphene sheets can also effectively improve the Q factor, as
depicted in Figure 7f. For the 50 Å wide graphene sheet with a width–length ratio of
0.5, energy dissipations are quite violent, and the corresponding Q factor is calculated
to be as low as 1463. When the width increases to 80 Å, the Q factor rises to 2321, but
it does not continue to clearly rise with a larger width. The fitting of a power equation
shows an exponent of about 0.12. As a result, increasing the tensile stress in graphene can
greatly optimize the Q factor of graphene resonators, and it also enhances the sensitivity for
mass measuring. Moreover, widening the graphene sheets with a width–length ratio near
0.8 considerably improves the Q factor; however, an excessive width seems to be useless
for a further increase in Q value.
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4. Conclusions

In conclusion, classical molecular dynamics simulations are adopted to investigate
the impact of edge mode on mass sensing for a doubly clamped monolayer graphene
resonator. The vibrations of edge mode were found to localize at the free edges and possess
larger amplitude. Specifically, in the MD simulation for a 100 × 50 Å graphene sheet, the
vibration amplitude of edge mode achieved 3.8 Å, nearly 2.5 times that of the fundamental
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mode. Moreover, the frequency gap of the two modes was calculated to be 32.6 GHz,
which is irrelevant to the axial stress in graphene. Thus, considering that fundamental
frequencies drop linearly with increasing centrally absorbed mass, while the frequencies of
edge mode remain constant, a novel method of mass determination combining the two
vibration modes was developed in order to diminish the interference of mutable stress
in graphene sheets. More importantly, the MD results show that the vibration of edge
mode broke the coherence of the mechanical fundamental oscillation, thus aggravating the
energy dissipation and then resulting in a lower Q factor, which was as low as 1463 for
the 100 Å × 50 Å graphene sheet with tensile stress of 10 GPa. However, increasing the
stress in graphene can greatly increase the Q factor up to 7989 when an axial stress of
50 GPa is exerted. Moreover, appropriately widening the graphene sheets with a higher
width–length ratio above 0.8 can double the Q factor, although excessive width does not
contribute to an extremely high Q factor.
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