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Abstract: 2D WS2 is a promising candidate for the next generation nanoelectronics, spintronics,
valleytronics, and optoelectronics. However, the uncontrollably large-area growth of WS2 nanosheets
and their unsatisfactory performance of the photodetectors based on WS2 hindered its applications.
Here, we proposed a CVD method using tungstic acid as the precursors to grow WS2 flakes. After be-
ing characterized by AFM, Raman, PL, and TEM, we found the as-grown WS2 flakes were high-quality
structures. Then the photodetectors based on the as-grown WS2 were fabricated, which exhibited
high responsivity (7.3 A W−1), a fast response rate (a response time of 5 ms and a recovery time of 7
ms), prefect external quantum efficiency (EQE) (1814%), and remarkable detectivity (D*) (3.4 × 1012

Jones). Our works provided a new CVD method to grow some high-quality WS2 nanosheets.

Keywords: WS2 flakes; tungstic acid; chemical vapor deposition; photodetectors

1. Introduction

Atomically thin tungsten disulfide (WS2), a 2D crystal with some interesting and
important properties, is a promising candidate for the next generation of nanoelectron-
ics, spintronics, valleytronics, and optoelectronics [1–7]. For example, WS2 has a direct
bandgap in the visible range and high absorption relative to its thickness [5,8]. WS2 exhibits
ambipolar field-modulation behavior [9]. The theoretical calculations predict that it has a
reduced effective mass, allowing higher carrier mobility [10]. Monolayer WS2 has strong PL
emission efficiency, stronger than other TMDCs [11,12]. WS2 exhibits strong spin-orbit cou-
pling and band splitting due to spin enabling spintronics/valleytronics [13–16]. WS2 also
has high nonlinear susceptibility, suggesting its use for nonlinear optical devices [17,18].
Nevertheless, most researchers on WS2 are largely limited because of the relatively small
lateral size of exfoliated flakes, not to mention the randomness of their shape, thickness,
and crystal quality [19,20]. Liquid exfoliation has an advantage for the mass produc-
tion of WS2, but it is difficult to control defects, hindering its application to electronic
devices [21–23]. CVD is a hopeful approach to grow large-area WS2 flakes for extensive
device applications. There are two common methods to synthesize WS2 by supplying
tungsten sources on inert substrates before sulfurization in CVD. One is thin tungsten films
or thin tungsten oxide films deposited by various methods including e-beam evaporation,
magnetron sputtering, and atomic layer deposition [11,24–29]. The other is that of tungsten
oxides solid precursors vaporized with solid sulfur sources simultaneously during the CVD
process [30–34]. As it is difficult to control the tungsten sources location, distribution, and
uniformity precisely, and the poor adhesion of the sources to inert substrates, the controlled
CVD growth of large-area uniform monolayer WS2 remains a challenge. Some groups used
metal substrates (Au) instead of the inert substrates to synthesize a large-area monolayer
WS2 film; they also tested the electrical properties of WS2-based field-effect transistors
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after bubbling transfer from Au substrates to SiO2/Si substrates [35–37]. Here we report
a new method, spin-coating tungsten acid as a tungsten source on SiO2/Si substrates
directly before sulfurization, to grow single crystalline WS2 monolayers with a size of up
to hundreds of micrometers. We also found that photodetectors based on single crystalline
WS2 flakes have a high responsivity of 7.3 A W−1 with a fast response rate of 5 ms, an
external quantum efficiency (EQE) of 1814%, and a detectivity (D*) of 3.4 × 1012 Jones.

2. Materials and Methods

The WS2 flakes were synthesized by using tungstic acid on SiO2/Si substrates as the
precursors and sulfurizing via a chemical vapor deposition (CVD) method. First, 2.8 g
of tungstic acid (99.9%, Alfa) was dispersed in the oxalic acid solution (0.15 M/L) by
ultrasound. Then the tungstic acid colloidal solution was dispersed on a clean SiO2/Si
substrate by spin-coating. After that, the whole substrate was annealed in air at 100 ◦C for
1h. Finally, the SiO2/Si substrates with tungstic acid were sulfurized by CVD. For CVD
growth, the Si/SiO2 substrates with the tungstic acid colloidal solution were placed at
the center of the quartz tube, and the 0.1 g S powders (99.5%, Alfa) were placed on the
upstream side of the Si/SiO2 substrates. The quartz tube was flushed with Ar (5N) gas
several times and purged to 0.1 Pa with a mechanical pump. The furnace temperature
was raised to 900 ◦C in 30 min and kept for 30 min with a flow rate of 50 sccm Ar gas.
After growth, the furnace was naturally cooled to room temperature. The synthesized WS2
samples were characterized by an atomic force microscope (AFM, SPM9700, Shimadzu),
Raman spectroscopy, and a transmission electron microscope (TEM, Tecnai G2 F30 S-TWIN,
FEI). The Raman spectra were recorded in the backscattering geometry at a 532 nm line
with an argon ion laser Raman spectrometer (LabRAM HR800, Horiba JobinYvon). The
Raman mappings were collected by alpha300 R, WITec GmbH, Ulm, Germany, the laser
wavelength was 532 nm, and the scanning step interval was 300 nm.

We fabricated the photodetectors based on the WS2 flakes by a standard photolithog-
raphy procedure (MDA-400M, Midas). The 10/50 nm Ti/Au electrode patterns were
deposited by an E-beam deposition system (Nexdep, Angstrom Engineering). The pho-
todetector measurement devices contained a broadband laser-driver light source (LDLS,
EQ-1500, Energetiq) calibrated by a UV-enhanced silicon photodiode in an ambient atmo-
sphere, a semiconductor characterization system (4200-SCS, Keithley), and an oscilloscope
(DSO-X 3052A, Keysight). The oscilloscope light pulse chopped was 500 nm, and the
frequency was 3 Hz.

3. Results and Discussion

Figure 1a shows the optical image of the as-grown triangle WS2 flakes on SiO2/Si
substrate; the majority of the flakes were more than 220 µm. The thickness of these triangle
crystals was measured by atomic force microscopy (AFM) (Figure 1b). The AFM step
height of the WS2 flake was typically measured at 0.7 nm, which corresponds to a one-layer
structure.

Figure 1. (a) Optical microscope images of the monolayer WS2. (b) AFM images of the monolayer
WS2.
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We have further investigated the layer number of the resulting atomically thin WS2
triangles by Raman spectroscopy. As shown in Figure 2a, the strongest peak of the WS2
triangle flake at about 350 cm−1 includes three subpeaks, which are resolved by a multipeak
Lorentzian fitting. According to the calculated phonon dispersion [38] and experimental
studies [13,39–41] of 1L-WS2, the in-plane vibrational E1

2g(M) mode peak is at 343 cm−1, the
second-order mode of longitudinal acoustic phonon 2LA (M) peak is at 350 cm−1, and the
in-plane vibrational E1

2g(Γ) mode peak is at 355 cm−1, respectively. The other peaks at 418,
295, and 322 cm−1 are attributed to the out-of-plane A1g(Γ) mode, the combination modes
of 2LA(M)-2E2

2g(Γ), and the combination modes of 2LA(M)-E2
2g(Γ), respectively. The

spectral fingerprint of a monolayer WS2 is the frequency separation of 62 cm−1 between the
E1

2g(Γ) mode and the A1g(Γ) mode [11]. Raman images (Figure 2b,c) plotted by extracting
the intensity were acquired to demonstrate the uniformity of our WS2 samples. The 2LA(M)
phonon mode was much more intense than the A1g(Γ) mode. The as-grown WS2 triangle
flake was uniform.

Figure 2. (a) Raman characterization of the monolayer WS2 triangle flake with 532 nm excitation
wavelengths. (b) A1g(Γ) intensity mapping for the WS2 triangle flake. (c) Intensity ratio mapping of
2LA(M) over A1g(Γ) for the WS2 triangle flake.

The optical properties of the monolayer WS2 triangle flakes were further investigated
by microphotoluminescence (PL). The monolayer WS2 flake has a PL peak at about 642 nm,
and its full width half maximum (FWHM) value is 22 nm (Figure 3a). The corresponding
PL peak-integrated intensity, position, and width mappings of the monolayer WS2 triangle
flake are shown in Figure 3b–d, respectively. The results of the PL indicated the as-grown
WS2 was defect free and uniform.

The structures of the monolayer WS2 triangle flakes were characterized by TEM.
Figure 4a shows the low magnitude bright-field TEM image of a WS2 triangular crystal.
The high-resolution TEM (HRTEM) image (Figure 4b) shows the hexagonal lattice fringes,
which indicates a perfect atomic structure with a lattice spacing of 0.27 nm, corresponding
to the (100) planes. The corresponding selected area electron diffraction (SAED) pattern
(Figure 4c) revealed the defect free nature of the WS2 flake [36]. Then the elemental
compositions of the WS2 triangle flakes were acquired by EDX mapping and EDX spectrum.
EDX mapping in Figure 4d,e indicates the W and S elements distribute evenly. EDX
spectrum in Figure 4f demonstrates the atomic ratio of W and S is around 1:2, which is
consistent with the original stoichiometry of WS2. The TEM results further prove that
as-grown WS2 flakes are defect free.
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Figure 3. (a) PL spectra of the monolayer WS2 triangle flake. (b–d) PL images of the peak integrated
intensity, position, and width, respectively.

Figure 4. (a) Low-magnification TEM image of the WS2 triangle flake. (b) High-resolution TEM
image and (c) SAED pattern image of the WS2 triangle flake. (d,e) W and S elemental mapping in the
black rectangle region of the WS2 flake in (a,f) EDX spectrum of the WS2 flake.

To research the optoelectronic properties of the WS2 flakes, photodetectors based on
them were fabricated. The spectral response curve reaches a minimum at the wavelength
of ≈645 nm in Figure 5a. Hence, the bandgap is about 1.92 eV by calculation, which is
consistent with the PL results. Fitting the plot of photocurrent Iph on light intensity P for
the WS2 flake as Iph ≈ Pθ obtains the value of θ ≈ 0.96 (Figure 5b), hinting the as-grown
WS2 has very few defects or traps to photo-induced electron/hole pairs in the test power
density range [42]. We further tested the cyclability of the photodetector under 500 nm
incident light with the light on/off time interval of 30 s under a bias of 1 V (Figure 5c).
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The performances of the photodetector are stable. The response and recovery rates were
5 ms and 7 ms tested by an oscilloscope, respectively (Figure 5d). The photoresponsivity
was 7.3 A W−1, according to the Rλ = Iph/PS, where Iph is the photoexcited current, P
is the light power intensity, and S is the effective area of the photodetector. The external
quantum efficiency (EQE) was 1814%, according to the EQE = hcRλ/eλ, where h is the
Plank’s constant, c is the light velocity, Rλ is the photoresponsivity, e is the elementary
electronic charge, and λ is the exciting wavelength. The specific detectivity (D*) was
3.4 × 1012 Jones, according to the D* = RλS 1/2/(2eI dark)1/2, where I dark is the dark current.
The performance of our photodetector is more inspiring than the most reported WS2 based
photodetectors shown in Table 1.

Figure 5. Optoelectronic properties of the WS2 triangle flake. (a) The spectral response curve of the
WS2 triangle flake. Inset: the fitting curve of obtaining the bandgap. (b) Photocurrent as a function of
illumination intensity at Vbias = 1 V. Inset: the optical image of the WS2 photodetector; the scale bar
is 10 µm. (c) Time-resolved photoresponse of the WS2 photodetector under a bias voltage of 1 V and
illumination power of 3.68 mW·cm−2. (d) Response and recovery curves.

Table 1. Comparison of the key parameters of our photodetector.

Photodetectors Fabrication
Method Rλ (A/W) EQE (%) Response

Time (ms) Reference

Multilayer WS2 CVD 92 × 10−6 - 5.3 [4]
Multilayer WS2 Exfoliated 5.7 1118 <20 [43]
Monolayer WS2 CVD 18.8 × 10−3 - <4.5 [44]
Multilayer WS2 PLD 0.51 137 4.1 × 10−3 [45]
Monolayer WS2 CVD 3.07 763 370 [46]

Multilayer WS2
Drop

casting 145 × 10−3 - 153.78 [47]

Monolayer WS2 CVD 7.3 1814 5 This work

4. Conclusions

In summary, we grew the monolayer WS2 triangle flakes via a CVD method with the
tungstic acid, and researched the performance of the photodetectors based on them. The
utilization of tungstic acid colloidal solution could improve the uniformity of the tungsten
sources on the substrates. The as-grown monolayer WS2 flakes have a size of about 220 µm,
a bandgap of about 1.92 eV, and no defects. The photodetectors based on them showed
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excellent performance, such as high responsivity of 7.3 A W−1, large EQE of 1814%, and a
fast response rate of 5 ms.
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