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Abstract: Ionic-liquid gating (ILG) is able to enhance carrier densities well above the achievable
values in traditional field-effect transistors (FETs), revealing it to be a promising technique for
exploring the electronic phases of materials in extreme doping regimes. Due to their chemical
stability, transition metal dichalcogenides (TMDs) are ideal candidates to produce ionic-liquid-
gated FETs. Furthermore, as recently discovered, ILG can be used to obtain the band gap of two-
dimensional semiconductors directly from the simple transfer characteristics. In this work, we present
an overview of the operation principles of ionic liquid gating in TMD-based transistors, establishing
the importance of the reference voltage to obtain hysteresis-free transfer characteristics, and hence,
precisely determine the band gap. We produced ILG-based bilayer WSe2 FETs and demonstrated
their ambipolar behavior. We estimated the band gap directly from the transfer characteristics,
demonstrating the potential of ILG as a spectroscopy technique.

Keywords: ionic liquid gating; ionic gate spectroscopy; ambipolar FETs; transition metal dichalcogenides

1. Introduction

The discovery of two-dimensional materials unleashed a revolution in nanoelectron-
ics during the last decade [1]. This family of materials holds enormous promise for the
development of a new generation of semiconductor devices and, over the last few years, a
considerable amount of effort has been invested in studying them and developing suitable
devices that take advantage of their properties.

In 2011, Kis et al. demonstrated for the first time a field-effect transistor (FET) in which
a bilayer MoS2 crystal was used as the semiconductor channel [2]. Since then, similar
devices have been developed using several different two dimensional (2D) materials, and
the device geometry, materials, and fabrication methods have been greatly improved [3].

However, FETs have certain fundamental limitations that cannot be easily overcome:
the dielectric breakdown of the insulating layer and the presence of charged impurities
between the gate electrode and the 2D channel results in a limited gating capability, which
is often not sufficient to reach ambipolar response in 2D semiconductor devices. The
technique of ionic-liquid gating (ILG) aims to overcome these fundamental limitations by
replacing the dielectric material in conventional FETs with ionic liquids [4] with movable
charged ions [5–8]. In recent years, ILG-based 2D transistors have been tested by a number
of research groups, allowing them to achieve extremely large accumulations of charge
carriers, up to 5× 1014 electrons/cm2 while operating at moderate voltages within±3 V [9].

Ionic-gating experiments have been widely used to control and investigate the elec-
tronic properties of oxides [7,10], nitrides [11], organic semiconductors [12–14], carbon-
related materials [15], and III–V semiconductor nanowires [16–19]. The extreme tunability
of charge carrier concentrations that can be obtained by this technique has allowed the
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attainment of new physical regimes, achieving, for example, superconductivity in band-
insulating materials such as SrTiO3 (STO) [20], ZrNCl [11], or KTaO3 [21]. Currently, ILG
has been established as a promising technique not only from an applied point of view, but
also to obtain fundamental knowledge about the phase diagrams of novel materials [9,22].
More recently, ionic-gating experiments have moved forward through other inorganic
systems, such as two-dimensional transition metal dichalcogenides (TMDs).

In this work, we present the operation principles for the use of ILG in TMD-based
transistors. Due to their chemical stability, two-dimensional TMDs are ideal candidates to
produce ionic liquid-gated FETs [23,24]. The very large geometrical capacitance of ionic
liquid-gated devices allowed the observation of superconductivity in MoS2 [25–31] and
WS2 [32–34], among other TMDs [35–37]. This technique has also enabled light emission by
TMD-FETs operating in the ambipolar injection regime [38,39] and the enhancement of the
electron−phonon interaction in multivalley TMDs [24,29,40]. Furthermore, as we present
in this work, ILG-based TMD transistors grant the possibility of determining the band gap
of semiconducting TMDs quantitatively from simple transport measurements [39,41–44].

2. Results
2.1. Device Fabrication and Geometry

Figure 1a schematically shows the geometry of a TMD-based ILG transistor. To illus-
trate the typical geometry and behavior of this family of transistors, we refer to the device
shown in Figure 1b. In our case, the channel is a thin bilayer WSe2 crystal, fabricated
by standard mechanical exfoliation and ulterior transfer onto a SiO2/Si substrate. The
metallic electrodes were fabricated by e-beam lithography and evaporation of titanium
and gold (5/45 nm). In addition to the four electrodes connected to the WSe2 flake, two
electrodes were fabricated to act as the gate (Vg) and reference (Vref) electrodes. As a
final step, the whole device was covered with a droplet of ionic liquid (DEME-TFSI),
contacting the semiconductor channel, as well as the reference and gate electrodes (see
Section S1 in Supplementary Materials for more information on the IL and its deposition).
To minimize the exposure of the IL to the gold pads, the whole device was covered with
polymethyl methacrylate (PMMA), leaving an exposed rectangular window on top of the
semiconductor channel for placing the droplet (see Figure 1c).
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Figure 1. (a) Full schematics of an ionic-liquid-gated field-effect transistor (FET), showing the gate 
and reference electrodes, as well as the electrical circuit used to bias and measure the device. (b) 

Figure 1. (a) Full schematics of an ionic-liquid-gated field-effect transistor (FET), showing the gate and reference electrodes,
as well as the electrical circuit used to bias and measure the device. (b) Optical microscope image of a bilayer of WSe2

contacted in Hall bar configuration (the scale bar is 10 um). (c) Optical microscope image of the device’s polymethyl
methacrylate (PMMA) windows (the scale bar is 50 um).
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2.2. Basic Device Operation and Doping Mechanisms

The basic operation of the ILG transistor is depicted in Figure 2a,b. When a gate
voltage is applied, the finite-sized ions accumulate in consecutive layers close to the TMD
channel, forming a nanocapacitor that is typically 1 nm or less. It enhances a large electric
field, resulting in a strong gating effect that can be controlled by the application of voltage
to the gate electrode.
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Figure 2. (a,b) Schematic diagram of the gating mechanism immediately after applying a gate voltage
(a) and once the electric field inside the ionic liquid is fully screened (b). (c) Evolution of the drain
source current (blue dots), measured immediately after switching Vg from 0 to 1.8 V. The current
progressively increases as the Electrostatic Double Layer (EDL) is formed. The formation process of
the EDL can be fitted to the charge process of two plane-parallel capacitors.

Figure 2c shows the time evolution of the drain-source current in the few-layer WSe2
IL-gated transistor, measured while switching the gate voltage from 0 to 1.8 V. The mea-
sured current Ids can be well-fitted to the equation for the charge process of two plane-
parallel capacitors with different characteristic times:

Ids(t) = A + B
(

1− e
−t
α1

)
+ C

(
1− e

−t
α2

)
(1)

where τ1,2 = 1
α1,2

are the characteristic times of the formation of the ionic layers that we use
as fitting parameters. We obtained the characteristic times of τ1 = 30 s and τ2 = 23 min.
These two characteristic times can be associated to the presence of two different charging
processes. One is related to the fast formation of the first ion compact shells. The other one
is caused by a slower migration and accumulation of ionic species in consecutive layers
until the electric field inside the ionic liquid is fully screened [45].



Micromachines 2021, 12, 1576 4 of 10

While in early works, the doping effect in IL-gated FETs was attributed solely to the
electrostatic screening of the accumulated charges at the interfaces, it is now clear that two
main mechanisms govern ionic-liquid gating, depending on the characteristics of both the
electrolyte and the material used as a channel [46]: electrostatic doping (described above)
and electrochemical doping. For this second mechanism, the migration of ions within the
material plays a key role and may induce an irreversible behavior caused by chemical
degradation. Electrochemical doping is often the dominant gating mechanism when the IL
is used in combination with transition metal oxides. In this case, the doping process also
involves the migration of oxygen atoms from the crystallographic unit cell. The oxygen
atoms act as dopants, enabling the introduction of charge carriers into the system [47–49].
However, in the case of semiconducting TMDs, ionic gating has an almost pure electrostatic
effect and does not cause any chemical modification, as long as the applied gate voltage is
kept within a suitable range, which results in stable and reversible transistor operation.

2.3. The Need for a Reference Electrode

In a conventional metal–oxide–semiconductor field-effect transistor (MOSFET), the
applied gate voltage, Vg, uniformly drops across the gate dielectric. However, as depicted
in Figure 2a,b and discussed above, in EDL transistors the voltage drop concentrates in the
neighboring regions of the gate electrode (V1) and the channel (V2). Thus, in equilibrium
we have:

Vg = V1 + V2, (2)

and only a portion of V2 of the applied voltage, Vg, contributes to gating.
In the hypothetical situation in which V1 becomes negligible, the applied gate voltage,

Vg, drops entirely at the IL/WSe2 interface (V2 = ∆Vg). Experimentally, in ILG measure-
ments, the gate electrode is usually (and intentionally) fabricated to have a large surface
area, so the contribution of V1 can be minimal; however, it cannot be neglected.

In general, V1 and V2 do not change linearly with Vg, and, furthermore, they may
fluctuate over time and/or present hysteretic behaviors. In consequence, it is necessary to
introduce a reference electrode, Vref, to monitor V2 situated in contact with the ionic liquid
(see Figure 2a,b). For sufficiently long times, once the EDLs are fully formed, Vref will be
given by:

Vref = Vg −V1 = V2. (3)

Thus, Vref provides us with a direct measurement of the voltage drop at the liq-
uid/TMD interface, which is responsible for the gating effect.

2.4. Nonmonotonic Behavior in Transfer Characteristics and Estimation of Semiconductor
Band Gap

Figure 3 shows the transfer characteristic of a WSe2 ILG transistor, measured at 240 K
(see Section S2 for measurements at other temperatures). As mentioned in the previous
section, when the drain-source current is plotted against the gate voltage, VG (Figure 3a),
a large hysteresis appears because of the slow process of ion diffusion in the ionic liquid.
However, this hysteresis largely decreases when Ids is represented as a function of Vref
(Figure 3b).

The large shifts in the Fermi energy that can be achieved in ILG transistors allow us to
observe ambipolar conduction in the transfer characteristic even while applying moderate
gate voltages. A large source-drain current, Ids, is measured for both high negative and
positive Vg. When the Fermi level is in the WSe2 band gap (OFF state), the measured
current is just 10 pA, indicating there is almost no hopping conductivity because of intragap
states or unintentional dopants in the material [41] and confirming the high quality of the
WSe2 flake.
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For positive gate voltages (Vg > 0), the transfer curve shows a nonmonotonic behavior,
also described in the literature using different ionic liquids [50]. This has been found to
be related to a nonlinearity that is present in the electron density because of intervalley
scattering processes. This intervalley scattering becomes possible when the chemical
potential is shifted into a higher energy valley. WSe2 bilayers exhibit an indirect band gap
between the conduction band minimum at Γ and the valence band maximum at K in the
first Brillouin zone (BZ) [51]. Upon adding electrons, the K valley is filled first to above a
certain value (denoted by (4) in the inset of Figure 3b), and the Q valley also starts to be
filled. This inflection point enabled the quantitative determination of the energy difference
between the K and Q valleys of monolayer WSe2 in the literature, EQ − EK = 108 meV [50].
We estimated the energy difference between the K and Q valleys for bilayer WSe2, EQ − EK
= 40 meV (see Section S3), to be in agreement with the value obtained in the literature [51].
For negative gate voltages (Vg < 0), this nonmonotonic behavior is not observed. In this
case, the second valley to be depleted of electrons would be the valley centered at K.
However, the required hole density to reach this second valley is above the values achieved
in our measurements.

2.5. ILG: A Spectroscopy Technique to Estimate the Semiconductor Band Gap

Currently, determining the band gap of two-dimensional semiconductors is usu-
ally undertaken using optical techniques [52–54] or by scanning tunneling spectroscopy
(STS) [55,56], although complex techniques, such as angle-resolved photoemission spec-
troscopy (ARPES) [57,58], have also been used. However, these first two commonly used
techniques require modeling of the measured data to extract a quantitative value for the
gap. In optical techniques, an analysis of excited exciton states is required, this being a hard
approach for indirect band gap semiconductors. In the case of the STS, the measured differ-
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ential conductance must be modeled because the tip acts as a local gate, shifting the energy
of the band edge and modifying the probability of electrons tunneling through vacuum.

As recently proved by Morpurgo et al. [53], IL gating can be used as a spectroscopy
technique to precisely determine the band gap of a semiconductor from simple transport
measurements. Because of the close proximity of the ionic liquid to the semiconductor
channel, donor or acceptor impurities are negligible at the interface. Thus, a change in the
gate voltage (or more precisely in the reference potential, ∆Vref) is directly related to a shift
in chemical potential, and the difference between Ve

th and Vh
th is a direct measurement of

the semiconductor band gap.
A change in reference voltage induces a change in both the chemical potential, ∆µ,

and the electrostatic potential, ∆ϕ:

e∆Vref = ∆µ + e∆ϕ. (4)

The electrostatic potential in a parallel-plate capacitor can be defined as:

∆ϕ =
e∆n
CG

, (5)

where ∆n is the density of accumulated charge carriers at the capacitor plate and CG is the
geometric capacitance.

For Fermi energies within the TMD band gap, ∆n is small because, ideally, there are
no available states to be occupied by charge carriers, and the term ∆ϕ in Equation (4)
can be disregarded. In this situation, a shift in gate voltage induces an identical shift in
chemical potential:

e∆Vref = ∆µ. (6)

Therefore, the band gap of the semiconductor channel, Egap, can then be determined as:

Egap = e
(

Ve
th −Vh

th

)
, (7)

since Ve
th and Vh

th correspond to having µ located, respectively, at the conduction and
valence band edges.

Figure 4 shows the transfer characteristics of the WSe2 device measured at different
positive (Figure 4a) and negative (Figure 4b) drain-source voltages, Vds. The threshold
voltage values for electrons, Ve

th, and holes, Vh
th, were obtained by linearly extrapolating

to zero the Ids −Vref characteristics, (see black dashed lines in Figure 3b). To perform the
extrapolation properly, it is important to identify a sufficiently large range of Vref in the
linear regime, out of the sub-threshold region, in which Ids increases exponentially on
Vref [59].

The band gap is estimated by extrapolating to Vds = 0 V. We obtain:

EWSe2 = e
(

Ve
th −Vh

th

)
= 1.3 eV,

with an ∼±5% experimental error that originated from the extrapolation procedure. This value
agrees with the band gap measured with experimental techniques (1.5−1.6 eV) [51,59–62],
as well as with the value estimated theoretically for bilayer WSe2 (1.1 eV) [45]. At high
Vds, linear shifts in the threshold voltage appear. This threshold voltage was previously
associated in WS2 with uncertainties in the measurements [41] and here we relate it to
the position dependence of the reference electrode, its geometry and area indicating the
need to measure with low Vds because of the strong dependence on the localization of
the reference electrode. The leakage current was also measured during the experiment,
keeping the values below 0.05 nA (see Section S4 for more information).
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WSe2 energy band gap was estimated by extrapolating Vds to zero.

3. Conclusions

In this work, we described and demonstrated the operation principles of ionic liquid
gating in TMD-based transistors. We produced an ambipolar field-effect transistor with
bilayer WSe2 flake crystals, explaining the importance of the reference voltage, Vref, for
obtaining hysteresis-free transfer characteristics. ILG allowed us to obtain steep subthresh-
old slopes for both electrons and holes and extremely low OFF-state currents. We obtained
evidence of the potential spectroscopic capabilities of ionic-liquid-gated transistors by
acquiring the band gap of bilayer WSe2 directly from those measurements.

The possibility of quantitatively determining the band gaps and band offsets directly
from simple transfer characteristics makes the IL gating a promising new technique, ideal
for characterizing 2D semiconductor materials and their heterostructures.

Supplementary Materials: Supplementary material is available online at https://www.mdpi.com/
article/10.3390/mi12121576/s1, S1: Deposition of the ionic liquid DEME-TFSI, S2: Transfer curves
at different temperatures, Figure S1: Transfer characteristics of the bilayer WSe2 ionic liquid-gated
transistor, S3: Estimation of the energy splitting between valleys Q-K in bilayer WSe2, S4: Measuring
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IG, measured between the gate electrode and the device as function of the reference voltage, Vref
while sweeping the gate voltage, Vg, at 1 mV/s.
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