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Abstract: It is essential to develop pattern-related process windows on substrate surface for re-
ducing the dislocation density of wide bandgap semiconductor film growth. For extremely high
instantaneous intensity and excellent photon absorption rate, femtosecond lasers are currently being
increasingly adopted. However, the mechanism of the femtosecond laser developing pattern-related
process windows on the substrate remains to be further revealed. In this paper, a model is established
based on the Fokker–Planck equation and the two-temperature model (TTM) equation to simulate
the ablation of a sapphire substrate under the action of a femtosecond laser. The transient nonlinear
evolutions such as free electron density, absorption coefficient, and electron–lattice temperature are
obtained. This paper focuses on simulating the multiphoton absorption of sapphire under femtosec-
ond lasers of different wavelengths. The results show that within the range of 400 to 1030 nm, when
the wavelength is large, the number of multiphoton required for ionization is larger, and wider and
shallower ablation pits can be obtained. When the wavelength is smaller, the number of multiphoton
is smaller, narrower and deeper ablation pits can be obtained. Under the simulation conditions
presented in this paper, the minimum ablation pit depth can reach 0.11 µm and the minimum radius
can reach 0.6 µm. In the range of 400 to 1030 nm, selecting a laser with a shorter wavelength can
achieve pattern-related process windows with a smaller diameter, which is beneficial to increase the
density of pattern-related process windows on the substrate surface. The simulation is consistent with
existing theories and experimental results, and further reveals the transient nonlinear mechanism of
the femtosecond laser developing the pattern-related process windows on the sapphire substrate.

Keywords: femtosecond laser; sapphire; multiphoton absorption; transient nonlinearity

1. Introduction

The development of microwave and optoelectronic devices has led to stricter require-
ments for semiconductor materials. The third-generation wide-bandgap semiconductors
represented by GaN, SiC, and diamond can meet the requirements of harsh environments,
and therefore, they have received increased attention [1–3]. However, the dislocation
density of wide-bandgap semiconductors can be as high as 108–1010 cm−2 with a signif-
icant impact on electronic mobility and other properties, which seriously hinders their
application and development [4,5]. Therefore, it is particularly important to reduce the
dislocation density to improve the growth quality of the wide bandgap semiconductor
film. Taking GaN as an example, numerous studies have shown that sapphire is one of
the suitable substrates for film growing, and lateral epitaxy is the most effective method
to reduce its dislocation density. When utilizing lateral epitaxial growth, it is necessary to
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develop pattern-related process windows on a sapphire substrate. Most of the dislocations
will be truncated and disappear after a 90◦ lateral bending [6–9].

In lateral epitaxial growth technology, researchers generally use mask photolithogra-
phy or chemical etching to process the surface structure on the sapphire substrate. Due to
the short pulse time, extremely high peak fluence, and high absorptivity compared with
the nanosecond and picosecond laser, the femtosecond laser has been increasingly applied
in the processing of substrate patterns.

However, the transient nonlinear process of materials under the action of the fem-
tosecond laser is complex, which is affected by the wavelength, pulse width, spot size,
intensity, and other laser parameters. In addition, it is closely related to the material’s
dielectric constant, photon absorption coefficient, reflectivity, lattice-specific heat, and
other characteristics. Existing studies have shown that the free electron density on the
crystal surface is the principal physical feature of the early transient evolution, which has a
non-negligible effect on the processes [10,11]. In addition, the threshold concentration of
free electrons for ablation simulations can obtain consistent results with traditional thermal
ablation [12–14]. Stuart et al. studied the laser processes with different parameters acting
on insulators and proposed a free electron theory [15]. For the processes of ultrashort pulses
acting on the insulator, Shirk et al. conducted a more systematic study: (1) A two-step heat
transfer model was proposed and simulated by molecular dynamics; (2) taking the laser
intensity and absorption rate into consideration, the electronic heat distribution was pre-
dicted within a picosecond; (3) the ablation threshold electron temperature and equilibrium
temperature was predicted; (4) the ablation volume and size of the heat-affected zone in
the material were predicted [16]. L. Jiang et al. studied the ablation depth of femtosecond
lasers acting on molybdenum disulfide, which also improved the two-temperature model
(TTM) that simulates the evolution of electron–lattice temperature [17,18]. W. Hu, H.R.
Wang, N.M. Bulgakova established a laser–plasma nonlinear transient coupling model.
The transient process of free electron density under the action of the femtosecond laser
was studied to reveal the influence of the femtosecond laser on the optical properties of
the diamond surface [19–21]. Maolu Wang et al. simulated and analyzed the ultrafast
process of sapphire crystals under the action of the femtosecond laser based on the free
electron density theory and conducted experimental verification [22,23]. Existing studies
have shown that changes in laser parameters will change the material’s physical prop-
erties, such as the multiphoton absorption coefficient, avalanche ionization coefficient,
and ablation threshold concentration [24,25]. However, there is still a lack of research on
the multiphoton absorption process of sapphire crystals under the action of femtosecond
lasers of different wavelengths. This involves the dynamic evolution of free electrons,
photon–electron–lattice energy transfer, and transient nonlinear processes of ablation on
the picosecond to femtosecond scale. Moreover, there are still difficulties in experimentally
revealing the underlying mechanism adequately. In particular, the transient nonlinear
processes of multiphoton absorption at different wavelengths need to be further revealed.

Based on the above research, the Fokker–Planck equation was adopted to simulate
the process of femtosecond laser-induced generation of free electrons. Simultaneously, the
TTM equation was used to simulate the heat transfer process between the electrons and
the lattice. The distributions of the free electron density, absorption coefficient, electron,
and lattice temperature were obtained. The ablation process of sapphire material under the
action of the femtosecond laser was studied. In addition, the transient nonlinear process of
multiphoton absorption under different femtosecond laser wavelengths was simulated,
which provides a theoretical basis for developing higher density pattern-related process
windows for improving the growth quality of wide-bandgap semiconductor films.

2. Methods
2.1. The Fokker–Planck Equation for Solving Free Electron Density

The free electron density inside the crystal is not only related to the initial incident
laser, such as intensity, pulse width, spot size, peak power, peak power reaching time,



Micromachines 2021, 12, 1571 3 of 12

and other parameters, but also related to the reflectivity and absorption coefficient of the
material [22,26].

Because in the range of investigated wavelengths the sapphire crystal is almost trans-
parent and has a wide bandgap, the energy of a single photon is inadequate to excite free
electrons. While the peak power of femtosecond lasers is extremely high, the number
of photons incident on the material instantaneously is significantly large. The electrons
in the crystal can absorb the energy of multiple photons and jump up to the conduction
band. When absorbing the photon energy, the electrons are excited to a higher energy level
on the same conduction band. The electrons—at higher energy levels—will return to the
bottom of the conduction band through in-band transition, which stimulates the electrons
in the valence band to jump up to the conduction band. This forms an avalanche reaction,
which causes the electron concentration to rise exponentially. The avalanche ionization in
the conduction band occurs on the order of femtoseconds. When the laser pulse width is
greater than 50 fs, the avalanche ionization cannot be ignored [27,28]. According to the
Fokker–Planck equation, the free electron density of the crystal can be given as:

∂ne

∂t
= αi I + δm Im − ne/τ (1)

where ne is the free electron concentration; t is time; αi is the avalanche ionization coefficient;
I is the femtosecond laser intensity; δm is the multiphoton absorption coefficient; m is the
multiphoton number; τ is the electron decay time.

In Equation (1), avalanche ionization, multiphoton absorption, and free electron decay
are mainly considered. The multiphoton absorption coefficient is mainly determined by the
laser frequency, the number of absorbed photons required for ionization, and the multipho-
ton absorption cross-section coefficient. Avalanche ionization is mainly determined by the
material’s avalanche ionization cross-section coefficient and refractive index. The inelastic
collision loss is related to the material properties. The electron decay time of sapphire is
150 ps, which does not vary with laser parameters [22].

2.2. The TTM Equation for Solving the Electron and Lattice Temperature

Since the width of the laser is on the order of femtoseconds and the electroacoustic
coupling time is on the order of picoseconds, the laser energy is first transferred to the elec-
trons. The electrons heat up and energy is transmitted to the lattice through electroacoustic
coupling. The electron–lattice two-temperature model is used to represent the heat transfer
process [17,29].

ce
∂Te

∂t
= ∇(κe∇Te)− g(Te − T1) + S (2)

c1
∂T1

∂t
= ∇(κ1∇T1) + g(Te − T1) (3)

where ce is the electron specific heat; c1 is the lattice specific heat; Te is the electron temper-
ature; T1 is the lattice temperature; κe is the electronic thermal conductivity; κ1 is the lattice
thermal conductivity; g is the electron lattice coupling coefficient; S is the laser thermal
fluence. The laser thermal fluence has been defined as the energy source through electron
heating and determined by S = αi ·I

ne
. The TTM equation couples the temperatures of the

electron and the lattice. Temperature and laser energy are linked by laser thermal density
S. Combined with the Fokker–Planck equation in Section 2.1, the laser thermal density is
mainly affected by the free electron density.

2.3. Ablation Judgment for Nonthermal Melting

As the free electron density increases, the absorption coefficient of the laser inside the
crystal also increases. When the free electron density reaches the ablation threshold, the
laser energy is rapidly deposited. The chemical bonds between atoms are broken and the
crystal lattice is irreversibly damaged. Then, nonthermal ablation occurs. The threshold
concentration of free electrons is given by the following formula [30,31]:
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Ncr =
ω2 ∗ ε ∗me

e2 (4)

where ω is the frequency of femtosecond laser; ε is the dielectric constant; me is the electron
mass; e is the electronic charge.

The existing theory has proved that the results of using the threshold concentration
of free electrons as the ablation standard and the traditional melting temperature as the
standard are similar [31].

3. Simulation

Based on the above theory, we have established a simulation model of the multiphoton
absorption of the femtosecond laser acting on sapphire. Since the femtosecond laser
is a three dimensional (3D) axisymmetric Gaussian beam, it is considered on the two
dimensional (2D) r-z plane for simplicity. The surface structure of the substrate material
is generally on the order of nanometers. Therefore, the simulation area is set to be in a
cylinder, as shown in Figure 1a. Considering the accuracy and efficiency of the calculation,
the mesh type is set as a free quadrilateral mesh controlled by the user, and the calibration
is a refined semiconductor. The analysis domain is refined into a rectangular mesh to
discretize, and the temperature field is calculated at the unit node. Except for the symmetry
axis without setting boundary conditions, the remaining three edges are set to zero flux
boundary conditions, as shown in Figure 1b. The ambient temperature is 300 K. The
femtosecond laser has a pulse width of 100 fs, wavelength of 800 nm, and fluence of
4 J/cm2. The time step is 1 fs, and the total calculation time is 10 ps.

Figure 1. Simulation model. (a) Grid Division; (b) boundary condition.

The finite element method is used to perform numerical calculations on the model.
First of all, the main parameters in our simulation are determined according to the mech-
anism of femtosecond laser and sapphire, as shown in Table 1. Afterward, the coupling
equations are solved to obtain the free electron density, laser power, reflectivity, absorp-
tivity, electron temperature, lattice temperature, and other physical quantities in the r-z
2D plane. Moreover, the ablation morphology is judged by the threshold concentration of
free electrons.

In the equations, the electron temperature and lattice temperature are described by
the two-temperature model. The two-temperature model was originally used to reveal the
femtosecond-scale thermal transfer mechanism when the femtosecond laser acts on metal.
As the mechanism of femtosecond laser action has been continuously and deeply studied,
the two-temperature model has been extended to the process of the femtosecond laser
acting on insulators and semiconductors. Compared with metals, when the femtosecond
laser acts on sapphire, the laser energy will not only heat electrons but also generate free
electrons, which mainly involves multiphoton absorption and avalanche ionization. The
energy coupling of the femtosecond laser acting on sapphire is shown in Figure 2.
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Table 1. Main parameters and initial values.

Main Parameters Initial Values

Decay time constant of electron τ 150 ps
Required photon number for multiphoton
ionization m 6

Femtosecond laser intensity I0 4× 1013 W/cm2

Sapphire band gap Eg 8.8 eV
Sapphire refraction index n 1.75
Electron collision time τc 4 fs
Avalanche ionization cross-section coefficient σ 2.39× 1017 cm2

Figure 2. Energy coupling of femtosecond laser acting on sapphire.

Our simulation process comprises the following steps: (1) calculate the free electron
density, the absorption coefficient, and reflectivity according to the Fokker–Planck equation;
(2) calculate the temperatures of the electrons and the lattice according to the TTM equation;
(3) determine the ablation morphology according to the threshold concentration of free
electrons; (4) adjust the laser wavelength, calculate the number of multiphoton needed for
ionization, and correct the absorption coefficient for further simulation.

4. Results and Discussion

The change in electrical and optical properties of materials under the action of the
femtosecond laser is caused by the absorption of photon energy. When the femtosecond
laser acts on the crystal surface, since the electroacoustic coupling time is usually on the
order of picoseconds, the photon energy is first transferred to the electrons. The nonfree
electrons inside the crystal ionize after absorbing the energy of the photons. With a 4 J/cm2

laser intensity, the evolution of the free electron density at different depths in the sapphire is
shown in Figure 3. Before 200 fs, the free electron density is extremely low. After 200 fs, the
free electron density rises sharply with a continual occurrence of multiphoton absorption
and avalanche ionization. The free electron density on the outermost surface (z = 0) reaches
the threshold first. As the depth increases, the free electron density gradually decreases.
When the free electron density exceeds the threshold, the material is determined to be
ablated. The spatial distribution of free electron density at 300 fs is shown in Figure 4. We
observe that the farther away from the laser center, the lower the free electron density,
and the distribution is roughly Gaussian. At 300 fs, the free electron density at r = 0, z = 0
reaches 4.3× 1026 m−3, which is highly consistent with the results in Figure 3.

The intensity of the initial incident laser is related to the pulse width, spot size, pulse
loading time, and peak power. The laser intensity inside the material not only depends
on the parameters of the incident laser but is also related to the absorption coefficient and
the reflectivity. The evolution of the laser intensity is shown in Figure 5. Combined with
the evolution of the free electron density in Figure 3, the free electron density generated by
multiphoton absorption is extremely low before 200 fs. The pulse duration here refers to the
full width at half maximum (FWTH). For Gaussian distribution, FWTH is approximately
2.355 times the standard deviation. At this time, the reflectance and absorption coefficients
of the material are very small, and the crystal can be regarded as transparent. Therefore,
the influence of laser intensity by depth can be ignored, and it is consistent with the initial
incident laser. The laser power reaches the peak at 200 fs. Then, as the free electron
density increases sharply, the optical properties gradually approach as metal [32]. While
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the reflectivity increases rapidly, the laser intensity on the surface and inside of the sapphire
drops to nearly zero. Figure 6 shows the evolution of the absorption coefficient inside
the material. Combined with the analysis in Figure 3, the absorption coefficient is closely
related to the rate of change of the free electron density. At 240 fs, the absorption coefficient
at different depths inside the crystal drops to nearly zero. The corresponding free electron
density reaches the maximum and lasts for picoseconds. This is because of the long decay
time of free electrons in sapphire crystals, which is negligible in the femtosecond time scale.

Figure 3. Variation of free electron density with time at different depths at r = 0.

Figure 4. Spatial distribution of free electron density at t = 300 fs.
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Figure 5. Distribution of femtosecond laser intensity in time domain at r = 0.

Figure 6. Variation of absorption coefficient.

Since the pulse width of the femtosecond laser is smaller than the electroacoustic
coupling time, the laser energy is first absorbed by electrons, then transferred to the
crystal lattice by energy coupling between the electron and the lattice [31]. Figure 7
shows the evolution of electrons and lattice temperature. Analyzing the evolution of free
electron density in Figure 3, in the initial stage, due to the lower free electron density,
the rising temperature of the electron and lattice is not obvious. After 200 fs, due to the
substantial occurrence of avalanche ionization, the free electron density rises sharply, and
the temperature of the electrons rises to as high as 3800 K. At this moment, the change
in the lattice temperature is relatively slow since that the electroacoustic coupling time is
usually on the order of picoseconds. This tremendous difference creates the temperatures
of the electron and lattice in two different temperature systems in the initial picoseconds.
With the end of the laser action and the generation of electroacoustic coupling, the electron
temperature is continuously reduced to be consistent with the lattice temperature.
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Figure 7. Temperature of electron and lattice.

Figure 8 shows the lattice temperature at different times in space. We observe that the
lattice temperature always presents a Gaussian distribution in space, which is due to the
energy of the femtosecond laser being Gaussian in time and space. Moreover the heat con-
duction between the lattices—due to the temperature difference within picoseconds—can
be neglected.

Figure 8. Lattice temperature at different times. (a) 0.2 ps (b) 0.3 ps (c) 0.4 ps (d) 1 ps (e) 2 ps (f) 3 ps.

The electron heating is in the femtosecond time scale, and the lattice heating is in
the picosecond time scale, while the heat conduction in the lattice is generally in the
nanosecond time scale. As shown in Figure 7, when the femtosecond laser is acting on
the sapphire crystal, the free electron density on the surface of the material reaches the
ablation threshold at 300 fs and the electron temperature could be as high as 3800 K. At
this moment, the energy has not yet been transferred to the lattice. However, the high-
density and high-energy free electrons break the chemical bonds in the lattice due to the
Coulomb force, and the crystal surface explodes into particle plasma. Distinct from the
thermal ablation, the Coulomb explosion already occurs when the heat is transferred to the
lattice. The ultrafast process occurs on a sub-picosecond time scale and does not involve
electroacoustic coupling and lattice heat conduction, so it is called a “nonthermal” process.

However, the mechanism of femtosecond laser ablation is very complicated, and not
only involves the nonthermal process but also the thermal process. The thermal process
includes nonthermal equilibrium vaporization and melting, while the nonthermal process
includes Coulomb explosion and electrostatic ablation. These processes either coexist
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or vary according to changes in processing conditions. Currently, researchers have not
reached a consensus on the mechanism. In this paper, the threshold concentration of free
electrons theory is used to determine the ablation of sapphire.

When the free electron density increases to the ablation threshold, pits will appear
on the crystal surface [33]. According to Formula (4), the threshold concentration of
free electrons of sapphire is 3.9× 1026 m−3 under the 800 nm wavelength femtosecond
laser. According to the threshold concentration of free electrons theory, the morphology
of ablation pits can be calculated, as shown in Figure 9. At 225 fs, the ablation has just
occurred, and the ablation area is concentrated near the light spot and roughly has a
Gaussian distribution. At 230 fs, the ablation area is obviously larger and the bottom is
close to Gaussian distribution. At 235 fs, the bottom of the ablation pit is relatively flat
and no longer presents a Gaussian distribution. At 240 fs, the bottom of the ablation pit is
flatter and the ablation pit does not increase significantly. The final ablation pit has a depth
of 0.34 µm and a radius of 0.8 µm.

Figure 9. Morphology evolution of ablation pit based on threshold concentration of free electrons.
(a) 225 fs femtosecond laser exposure (b) 230 fs femtosecond laser exposure (c) 235 fs femtosecond
laser exposure (d) 240 fs femtosecond laser exposure

In order to further explore the influence of femtosecond laser parameters on the abla-
tion pits of sapphire, we chose femtosecond lasers with four wavelengths: 1030, 800, 515,
and 400 nm for simulation, corresponding to eight, six, five, and four-photon absorption.
Table 2 lists the diameter and depth of the sapphire pits formed by multiphoton absorption
at four wavelengths. The depth of the ablation pit during eight-photon absorption was
0.10 µm and the diameter was 1 µm. The depth of the ablation pit during six-photon
absorption was 0.34 µm and the diameter was 0.8 µm. The depth of the ablation pit during
four-photon absorption was greater than 1 µm and the diameter was 0.7 µm. The depth of
the ablation pit during three-photon absorption was greater than 1 µm and the diameter
was 0.6 µm. The morphology of the ablation pit is shown in Figure 10. Inside the material,
black means not ablated, and white means ablated. The results show that the larger the
laser wavelength, the corresponding increase in the number of photons required for ioniza-
tion, the larger the radius of the ablation pit obtained, and the smaller the depth. This trend
is more obvious at wavelengths above 500 nm. When the wavelength is below 500 nm, the
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ablation is deeper. This is mainly because as the laser wavelength decreases, the number of
multiphoton required for ionization decreases and the ablation becomes easier.

Table 2. Sapphire ablation under multiphoton absorption.

Femtosecond Laser
Wavelength (nm)

Multiphoton
Number

Ablation Depth
(µm)

Ablation Radius
(µm)

1030 8 0.10 1.0
800 6 0.34 0.8
515 4 >1 0.7
400 3 >1 0.6

Figure 10. Ablation pit shape based on threshold concentration of free electrons under different
number of absorbed photons. (a) 1030 nm laser wavelength, 8 photons required (b) 800 nm laser
wavelength, 6 photons required (c) 515 nm laser wavelength, 4 photons required (d) 400 nm laser
wavelength, 3 photons required.

In our simulation, using a 1030 nm laser wavelength, 100 fs pulse width and 4 J/cm2

laser power, the ablation depth was 0.10 µm and its radius was 1 µm. In existing theories
and experiments, when the other conditions are the same, with laser wavelength of 1030 nm,
pulse width of 255 fs and laser power of 6 J/cm2, the ablation depth is 0.14 µm and its
radius is 1 µm [22]. As shown in Table 3, the 0.04 µm difference in ablation depth was
mainly caused by different laser power and pulse width [22]. This result is highly consistent
with existing theories and experiments. Therefore, our results of multiphoton absorption
at different wavelengths show good accuracy and credibility.

Table 3. Comparison of simulation and experimental results Data from [22].

Laser Parameters Wavelength (nm ) Pulse Width (fs) Power (J/cm2) Ablation Depth (µm) Ablation Radius (µm)

Simulation 1030 100 6 0.14 1.0
Experiment 1030 255 4 0.10 1.0

5. Conclusions

By solving the Fokker–Planck partial differential equation and the TTM gradient
coupling equation, the distribution or evolution of physical quantities such as the free
electron density, absorption coefficient, and electron–lattice temperature in sapphire is
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obtained. The ablation of sapphire under the action of femtosecond laser was studied.
We emphatically simulated the transient nonlinear process of multiphoton absorption of
sapphire under the action of femtosecond lasers of different wavelengths. The results show
that within the action time of hundreds of femtoseconds, the free electron density rose
to 4.2× 1026 m−3, the laser intensity rose to 4× 107 W·m−2 and then dropped to nearly
zero, and the absorption coefficient increased to 1.3× 106 m−1. Within several picoseconds,
the electron temperature first rose to 3800 K and then dropped to 500 K, while the lattice
temperature rose from 300 K to be the same as the electron temperature. Within the range
from 400 to 1030 nm, the larger the wavelength, the larger the number of multiphoton
required for ionization, and wider and shallower ablation pits could be obtained. The
smaller the wavelength, the smaller the number of multiphoton, and narrower and deeper
ablation pits could be obtained. This is consistent with existing theoretical and experimental
results. Under the simulation conditions presented in this paper, the minimum ablation pit
depth can reach 0.11 µm, and the minimum radius can reach 0.6 µm.

The simulation further reveals the transient nonlinear processes of the electron–lattice
when the femtosecond laser acts on the sapphire substrate. In the range of 400 to 1030 nm,
selecting a laser with a shorter wavelength can obtain pattern-related process windows with
a smaller diameter, which is beneficial for increasing the density of pattern windows on
the substrate surface, and has theoretical guiding significance for reducing the dislocation
density of GaN film growth.
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