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Abstract: Due to the excellent advantages of high speed, high precision, and driving force, piezo-
electric actuators nanopositioning systems have been widely used in various micro/nanomachining
fields. However, the inherent resonance dynamic of the nanopositioning system generated by the
flexure-hinge greatly deteriorates the positioning performance and limits the closed-loop bandwidth.
Even worse, the notch filter for eliminating the effect of resonance does not work due to the varying
resonant frequency resulting from the external disturbance or mass load. To this end, an adaptive
notch filter for piezo-actuated nanopositioning system via position and online estimate dual-mode
(POEDM) has been proposed in this paper, which can estimate the varying resonant frequency in
real-time and suppress the resonance to improve the closed-loop bandwidth. First, a novel variable
forgetting factor recursive least squares (VFF-RLS) algorithm for estimating resonant frequency
online is presented, which is robust to the noise and provides the performances of both fast tracking
and stability. Then, a POEDM method is proposed to achieve the online identification of the resonant
frequency in the presence of noise and disturbance. Finally, a series of validation simulations are
carried out, and the results indicate that, the frequency of input signal and the bandwidth have been
achieved up to 12.5% and 87.5% of the first resonant frequency, respectively.

Keywords: online system identification; adaptive notch filter; variable forgetting factor; recursive
least squares algorithm; piezoelectric actuator; nanopositioning

1. Introduction

Piezo-actuated (PZT) nanopositioning system refers to flexure-hinge-guided mech-
anisms driven by piezoelectric actuator, which has attracted a wide range of researchers’
interest. Compared with the traditional servo system, PZT nanopositioning system has
the advantages of high speed, high precision and driving force [1]. The atomic force mi-
croscope, developed based on PZT, makes a significant contribution in the fields such as
bionanotechnology, material science, and nanomachining [2]. To cater for the requirement
of high precision, the PZT nanopositioning tools, which achieve the degree of nanoscale
or even sub-nanoscale positioning accuracy, are widely used in positioning of wafers and
mask alignment [3,4]. Thereby, PZT nanopositioning system plays a key role in position
technology and has a wide range of applications. However, these applications pose chal-
lenges in terms of control, where one of the greatest is the vibration induced by lightly
damped resonance [5,6]. Due to the vibration, the gain margin of the system is reduced
severely, which limits the bandwidth. As a result, it is difficult to employ a high gain
feedback controller to obtain good performance of the system [7]. In practical applications,
the frequency of input signal is often restricted to between 1% and 10% of the first resonant
frequency of PZT [8,9].

Aiming at the issue of vibration, various control approaches have been proposed. An
effective method is position feedback control, which achieves the high gain controller via
feedforward compensation or inner position loop to dampen the resonance, including delay
position feedback [5], positive position feedback [8], and recursive position feedback [9].
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Besides, a Notch filter (NF) has been demonstrated as a simple and effective approach to
suppress the resonance [10,11]. The resonant component can be filtered by inverting the
resonance to improve the bandwidth. However, it is commonly impossible but desirable to
load mass in many applications, which will lead to the resonant frequency shifts [12]. If the
frequency shifts by only 1%, the system becomes unstable when the high gain controller
or NF is used. Fortunately, adaptive notch filter (ANF) can be adopted as an effective
approach for the time-varying resonant frequency, where the center frequency of ANF can
be updated in real-time [13]. ANF plays an important role in signal processing [14,15] as
well as other applications, such as launch vehicles [16], and hard disks [17]. Moreover,
there are two main problems that prevent the use of ANF in the PZT nanopositioning
system. One of the problems is that it is hard to carry out online system identification in a
closed-loop system. The available information of the closed-loop system, which is obtained
directly by measurement, is much less than that of the open-loop system. Furthermore,
due to the feedback path, the disturbance exists in the entire loop of the closed-loop system.
As a result, they generate an incorrect relationship between the input signal and itself [18],
which leads to an increase in the union error of the online estimation. Another difficulty is
that the performance of online system identification algorithms is sensitive to the noise,
whose object is to make the predict error tend to be zero via the VFF-RLS algorithm. As the
function of variable forgetting factor (VFF) is defined as being associated with the predict
error included the noise, the fluctuation of online estimation is generated, which reduces
the performance of the algorithm. In addition, the purpose of using VFF is to overcome
the data saturation phenomenon of RLS algorithm, modify the parameters of the reference
model effectively and ensure the stability [19,20]. Therefore, it is necessary to develop a
VFF that is robust to noise and easy to be implemented.

This paper aims to estimate the varying resonant frequency in real-time and improve
the closed-loop bandwidth of the PZT nanopositioning system. Herein, an ANF for
nanopositioning system via POEDM has been presented. As far as known, this work is the
first attempt to introduce online system identification via dual-mode method into the field
of PZT nanopositioning. The contributions of this work can be summarized as follows:

1. A novel VFF-RLS algorithm based on absolute mean error has been proposed. The
VFF varies according to the relative error boundary, which is robust to the noise. It is
easy to implement parameters turning and provide good performances of both fast
tracking and stability.

2. A POEDM method has been developed. The benefit of POEDM is that it combines
the open-loop system identification with closed-loop feedback control via a simple
structure. By this achievement, it is easy to utilize online estimation of PZT nanoposi-
tioning system in real-time to obtain good tracking performance.

This article is organized as follows. The modeling and problems of PZT are described
in Section 2. In Sections 3 and 4, the design and analysis of novel VFF-RLS algorithm and
POEDM method have been presented, respectively. A series of simulations in terms of
the resonant frequency online estimate and tracking performance have been carried out
in Section 5, which aims to verify the effectiveness of VFF-RLS algorithm and POEDM,
respectively. The conclusions are given in Section 6.

2. Modeling and Problem Statement
2.1. Modeling of Piezo-Actuated Nanopositioning System

First, the reference model of PZT is required to be determined for online estimation.
In terms of control, the characteristics of PZT can be divided into two behaviors. One
of them is hysteresis, the other is the dynamics consist of creep and vibration [21]. By
employing high gain controller and high-speed motion, the effect of creep and hysteresis
can be reduced, respectively [22]. However, the greatest limitation of the above approaches
is the low gain margin caused by the vibration. Therefore, when it is assumed to work in
the linear area, as well as utilizing the high gain controller and high-speed motion, PZT can
be modeled only considering the effect of vibration to study. According to the frequency
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response of PZT obtained in these papers [9,22–24], it can be noted that there is a sharp
resonant peak at the first resonant frequency. Due to the sharp peak, the gain margin of
PZT becomes low and places at−20 to−10 dB commonly. Moreover, this peak is caused by
the issue of vibration. To this end, PZT can be characterized as being closed to a unity-gain
second-order low-pass system as follows:

G(s) =
ω2

s
s2 + 2·ξ·ωs·s + ω2

s
, (1)

where ωs and ξ are the resonant frequency and damping ratio of PZT, respectively.

2.2. Description of the PZT Control Problem

To meet the requirements of high precision, fast response and high resolution, feedback
control must be employed in the PZT nanopositioning system. In order to deal with the
effects of sharp resonant peak in (1) as well as easily implement, the following methods are
often used:

1. Position feedback (PF) control, as a type of damping control, increases the damping
ratio of system to improve the gain margin via an inner position loop as shown
in Figure 1a. Thus, a high gain controller can be used to provide good tracking
performance. In addition, since only the position feedback is required, it is easy to
be utilized.

2. By using NF to eliminate the resonant component in input signal of PZT, the block
diagram is shown in Figure 1b. It is designed via inverse model, which is simple to
analyze and offers excellent closed-loop bandwidth. By employing NF, the bandwidth
is up to or even greater than the resonant frequency [10].
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Figure 1. Block diagram of: (a) position feedback control; (b) notch filter.

However, the varying resonant frequency caused by the applications of mass load
deteriorates the performances of the above approaches greatly. Because it is designed by
inversion techniques, the major problem of NF is sensitive to the frequency, which will
cause the system to become unstable. Although PF control is insensitive to the frequency, it
provides a lower bandwidth than NF when matching the resonant frequency. The above
analysis will be demonstrated in Section 5. Thereby, NF and PF control are not effective
methods to deal with the time-varying resonant frequency.
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2.3. Description of the Online Frequency Estimate Problem

As described in Section 1, ANF is an effective approach to solve the problem of varying
resonant frequency, where the central frequency can be updated in real-time via online
estimation. The transfer function of ANF is similar to NF, and can be illustrated as follows:

H(s) =
s2 + ω2

n
s2 + 2·ξn·ωn·s + ω2

n
, (2)

where ωn and ξn are the central frequency and damping ratio of ANF, respectively. The
greatest key to utilizing ANF is the implementation of central frequency update in real-
time, where the ωn is replaced by a variable ωn(t) to match the ωs. Therefore, the resonant
frequency must be estimated in real-time.

Aims at estimating the resonant frequency in real-time, online system identification
should be employed. Closed-loop online system identification refers to estimating the
parameters of closed-loop system without changing the system to open-loop, which pro-
vides better performances than open-loop. Except for the disturbances problem of online
estimation introduced in Section 1, the same output of a stable closed-loop system un-
der the input signals with different feedback effects also hinders the use of closed-loop
online system identification. These issues lead to increased union error or even unstable
online estimation [25]. According to the system identification theory, in order to ensure
the successful implementation of closed-loop online system identification, at least one of
the conditions from a1 to a3 must be satisfied. Meanwhile, the condition b also needs to
be met:

a1. The order of controller must be high enough;
a2. A nonlinear or time-varying controller is employed;
a3. A large enough delay unit exists in either the forward or feedback path.
b. The disturbance can be formed as a colored noise model.

In terms of conditions a1 and a2, the simple controller cannot be satisfied, such as
integral controller and proportional-integral (PI) controller. On the contrary, a number
of calculations and stability analyses are required, when using a complex controller to
meet a1 and a2. To condition a3, a large enough delay length is required according to
the degree of disturbance, or it is unable to obtain an accurate result. However, the
phase margin is decreased by the degree of delay, which degrades the performance of the
controller, especially in high-speed applications. Towards condition b, it is hard to model
the disturbance as a colored noise, because the disturbance of PZT is similar to white noise.
Furthermore, the disturbance is unable to be measured individually, as it is generated by
the inherent behaviors of PZT and the noise of sensors. Under these limitations, it is hard
to adopt the method of adaptive noise canceling to filter the disturbance component in the
output of the controller, where a reference signal related to disturbance must be provided.
Therefore, an approach that presents the performance of a closed-loop system and easy
implementation of online system identification is necessary. In terms of online system
identification algorithm, as described in Section 1, a novel VFF-RLS should be proposed to
reduce the effect of noise, which aims to estimate the reference model of PZT effectively
and stably.

3. Design of Variable Forgetting Factor RLS Algorithm

In order to estimate the resonant frequency of PZT, the coefficients of reference model
must be identified via system identification. According to (1), PZT nanopositioning system
can be treated as a linear system. Thus, system identification based on the least squares
principle can be adopted. Here, cost function can be defined as:

J(k) =
k

∑
i=0

e2(i) =
k

∑
i=0

[d(i)− ŷ(i)]2 =
k

∑
i=0

[d(i)− θ̂T(i)·x(i)]2, (3)
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where e(i) is predict error, ŷ(i) is predict output, d(i) is actual output, θ̂(i) is weight vector
and x(i) is data vector. The reference model of PZT can be obtained via updating the
parameters of θ̂(i) to minimize J(k). Then, estimation of PZT in real-time is required in this
article, thus online system identification must be employed, where the RLS algorithm is
widely used for this purpose. By recursively updating the parameters of θ̂(i), the process
of RLS algorithm can be described as:

θ̂(k) = θ̂(k− 1) + ∆θ̂, (4)

where ∆θ̂ is the correction. By modifying the θ̂(k) in each circle, it aims to make e(k) tend
to be zero. The detailed algorithm of RLS can be defined as:

K(k) = P(k−1)·x(k)
λ+xT ·P(k−1)·x(k)

θ̂(k) = θ̂(k− 1) + K(k)·
[
d(k)− θ̂T(k)·x(k− 1)

]
P(k) = [I−K(k)·xT(k)]·P(k−1)

λ

, (5)

where K(k) is Kalman gain, P(k) =
[
xT(k)·x(k)

]−1 is the inverse of the input signal
covariance matrix, and λ is the forgetting factor. The purpose of using λ is to overcome
the data saturation phenomenon, where the performance of modification is reduced, and
union error is increased by this phenomenon. By using λ, (3) is translated as:

J(k) = λ·J(k− 1) + e2(k), (6)

where J(k) is formed as weighted summation. In order to demonstrate the forgetting
property of (6), a memory time constant T0 is defined in [25]:

T0 =
Ts

1− λ
, (7)

where Ts is the sampling time of the system. The measure data older than T0 is weighed
by less than 36% of the newest data. Therefore, the data saturation phenomenon can be
eliminated by setting a suitable λ to reduce the effects of old data. As a result, the tracking
performance of the algorithm can be ensured.

According to [26], the predict output can be approximated as e(k) = ŷ(k) − y(k),
when setting a low value to λ. Hence, e(k) can be described as disturbances, when λ ∼= 1.
Apparently, it can be indicated that ŷ(k) ∼= y(k) is under this condition, which means the
union error is zero. Thus, a value of λ close to one should be set to achieve an accurate
result. However, for fast tracking, a low value of λ is desirable. Therefore, a constant
λ is unable to cater to the requirements of both fast tracking and accurate estimation.
In addition, the algorithm is more likely to be affected by disturbance, resulting from
decreasing the weight of the old data. Thus, VFF is proposed to meet the above demands,
where λ is replaced by a variable λ(k) in (5).

In terms of identification result, the degree of deviation can be represented by e(k).
Thus, λ(k) should vary according to e(k). A large value of λ(k) can be set to obtain stability
and tracking accurately, which means the system is well identified. On the contrary,
λ(k) can be reduced to ensure fast tracking. In addition, λ(k) is suggested to be placed
between 0.95 and 0.99 in [27]. The ideal relationship between λ(k) and e(k) is plotted in
Figure 2. λ(k) should be set close to 1, when e(k) within the boundary ±L. To achieve
fast tracking, λ(k) is close to λmin, where the λmin is the minimum of λ(k) to avoid the
algorithm becoming unstable. However, e(k) fluctuates within different ranges, caused by
the noise described as Section 2.3. Thus, a varying boundary is required to be adapted to
the e(k), when it is desired to correlate λ(k) with e(k). Furthermore, modulus and sign of
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e(k) denote the degree and direction of deviation, respectively. Therefore, λ(k) is related to
the modulus of e(k) via the above analysis. Here a varying boundary is defined as:

L(k) = E(| e(k) |) = 1
k
·

k

∑
i=0
| e(i) |, (8)

where the E(| e(k) |) is mean of | e(k) |, and L(k) is absolute mean of e(k).
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L(k) is stable within a period of time, after e(k) starts to deviate the current range.
It can be represented that the noise condition varies, when e(k) keeps on varying into
a new range. Aims at this deviation, L(k) is modified to match the new range by (8).
On the contrary, L(k) is maintained to hold the boundary. Thus, L(k) will be modified
automatically to adapt to the latest range of e(k), which means the robustness to the noise.
Furthermore, L(k) can be obtained at different holding time by using (6) and (7) to modify
(8), according to the requirements. Herein, a relative error boundary is proposed, where the
boundary is robust to the various ranges of noise. Then, an absolute deviation is defined as:

Em(k) =| e(k) | −L(k− 1). (9)

Figure 3 shows the relationship between Em(k) and | e(k) |. Apparently, the zero of
Em(k) is L(k). Em(k) is positive, when | e(k) | exceeds the boundary. This indicates that
the deviation increases, which may result in an unstable system and need fast tracking.
A negative value will be generated as | e(k) | is within the boundary, which denotes that
stability is desired. The modulus of Em(k) represents the deviation degree between | e(k) |
and L(k). Therefore, λ(k) should be varied according to Em(k). In order to correlate λ(k)
with Em(k), the function expression of λ(k) is defined as:

λ(k) = fa·acrtan[g·Em(k)] + f0, (10)

where g is the rate correction coefficient to determine the sensitivity of the algorithm to
the identification error, fa = 1−λmin

π and f0 = 1− 1−λmin
2 . Figure 4 shows the function

image of (10). Fast rate of varying will be obtained to λ(k) when in the work area. λ(k)
is reduced when Em(k) is outside the work area. The width of work area is adjusted by
g. A narrow width makes more sensitivity of λ(k) to e(k). λ(k) is close to 1, when e(k)
places within boundary. On the contrary, λ(k) is close to λmin. Herein, a novel VFF-RLS
algorithm is proposed via the above design, which provides the performances both fast
tracking and stability. It has the advantages of being insensitive to the noise and simple of
implementation because only two parameters are required to be tuned.
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4. Design of Position and Online Estimate Dual-Mode

In order to overcome the problem of implementation of closed-loop online system
identification in PZT nanopositioning system, a novel structure of online estimation should
be proposed. Since the input signal is not related to disturbance, implementation of
open-loop system identification is much easier than closed-loop. However, the control
performance of PZT is reduced due to the open-loop system. On the other hand, in
terms of working conditions, the resonant frequency usually shifts under the conditions
including pressurization and loading workpiece, etc. The motion is slow or static with
vibrations, when conducted under the above working conditions. It takes time to stabilize
the system after loading. Therefore, a frequency online estimate can be employed via
the method of switching mode, where the effects of disturbance caused by mode switch
are acceptable for the system under mass load. In order to implement the estimation,
closed-loop system is switched to open-loop system. The steady-state error resulting from
open-loop system identification can be eliminated via subsequent closed-loop feedback
control. The advantages of easy utilization of open-loop system identification and good
performances of closed-loop control can be combined by the approach of mode switch.
However, this fluctuation generated by the mode switch may be unacceptable when used
in some special applications. Generally, the fluctuation is acceptable, thus it is assumed in
this article.

As shown in Figure 5, a control method called POEDM is proposed to implement
online system identification in PZT nanopositioning system. POEDM consists of two
modes, which are open-loop system identification and closed-loop position control. By
respective observers, modes are switched and estimated the state. Reference signal tracking
is carried out by feedback controller in closed-loop mode. The sharp resonance peak is
eliminated to improve the closed-loop bandwidth by the ANF between controller and PZT.
The state value of closed-loop observer is defined as Lc(t) to compare with the closed-loop
reference Lc0. Lc(t) ≥ Lc0 indicates that the system is becoming unstable caused by the
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varying resonant frequency, when in closed-loop mode. Thus, for the implementation of
online system identification, closed-loop mode is switched to open-loop mode. In order to
achieve high accurate identification, an identification signal r2(t) is added to the reference
tracking signal r1(t) according to the degree of disturbance, when performing open-loop
system identification. The reference model, which is obtained by system identification,
is used to update the ωn of ANF. Similar to closed-loop mode, it can be determined that
the system identification is completed, when the state value of the open-loop observer
Lo(t) is larger than the open-loop reference Lo0. When Lo(t) ≥ Lo0, open-loop mode is
switched to closed-loop to track the reference signal. Additionally, feedforward controller
or compensation should be used to reduce the tracking errors of the open-loop system.
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The following matters should be discussed:

1. The form of closed-loop reference Lc0 should be set according to the input reference
signal. Under the stationary or slowly varying input signal, such as step signal, e(t)
will not mutate immediately, when the resonant frequency of PZT is varying. In this
case, Lc0 can be defined associate with r1(t), in terms of accurate tracking. Then, Lc0
can be set related to e(t), when input signal is non-stationary or fast varying signal,
such as sinusoidal signal. To make it easier to observe the error, the logarithm of e(t)
can be taken. In summary, Lc(t) can be defined as:

Lc(t) =
{

a·r1(t), stationary signal
log10 | e(k) |, non-stationary signal

, (11)

where a is the error range index and can be set from 1.05 to 1.10. Generally, the
stationary signal is adopted in applications, thus the stationary Lc(t) is assumed in
this article.

2. The form of open-loop reference Lo0 should be defined associate with λ(k). It can be
denoted that the identification is completed, when λ(k) > (1− λmin)/2 and this will
be demonstrated in Section 5.1.

3. Identification signal r2(t) for open-loop system identification is necessary. Due to the
disturbance, union error exists in the result of system identification. Aims at reducing
the error, an identification signal r2(t) is required. By using Gaussian noise in r2(t),
accurate identification result can be obtained. The mean square error of r2(t) should
be defined according to the degree of disturbance. It can be successful to implement
identification without r2(t), when the frequency components of r1(t) is enough and
the disturbances are not serious.
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4. Minimum running time of closed-loop and open-loop mode tc0 and to0 should be
defined, respectively. The state values of mode Lc(t) and Lo(t) may be within their
individual reference, caused by the fluctuation. Therefore, a long enough time is
needed to ensure that the mode operates fully, where the system will become unstable
due to frequent mode switch.

The detailed implementation steps are illustrated in Figure 6. It should be mentioned
that the step of model order determination can be carried out via the experimental ap-
proaches, including the cost function and F test. In terms of stability analysis, ANF can
be treated as non-adaptive NF, because it is modified in open-loop mode, where the ωn
is unvarying in closed-loop mode. When using the LTI controller, the system can be
characterized as being an LTI system, such as the PI controller in this article. Therefore,
the tools including Bode diagram, Nyquist curve, and Routh criterion, can be used to
analyze and design the controller according to the desired performances. If the stability of
closed-loop mode is well designed, the tracking error generated by the open-loop mode
can be eliminated by the feedback controller. According to (1), nd = 2, nm = 0 are defined
in this article. The detailed control strategy is shown in Algorithm 1.

Algorithm 1 Detailed control Strategy of POEDM.

Design Variables: nd, nm, λmin, g, a, Lc0, Lo0, tc0 and to0.

Initialization:
_
θ (0) = 01×n, P(0) = σ·In, K(0) = 01×n, λ(0) = 1, to(0) = 0, tc(0) = 0,
rs(0) = 0, L(0) = 0 and sum(0) = 0.

Nominal Values:
n = nd + nm = elements number of vector x(k),
σ ∈ (10−9, 10−6).

Main Loop:
For k = 1 : N

Lc(k) = a·r1(k)
e(k) = d(k)− xT(k)·θ̂(k− 1)
Lo(k) = λ(k)
sum(k) = sum(k− 1)+ | e(k) |
L(k) = sum(k)/k
Em(k) =| e(k) | −L(k)
If to(k) < to0

to(k) = to(k− 1) + 1
rs = 1

End If
If to(k) > to0 and Lo(k) > 1+λmin

2
rs = 0
tc(k) = tc(k− 1) + 1

End If
If tc(k) > tc0 and Lc(k) > Lc0

to(k) = 0
tc(k) = 0
rs = 1

End If
If rs = 1

K(k) = [P(k− 1)·x(k)]/[λ(k) + xT ·P(k− 1)·x(k)]
θ̂(k) = θ̂(k− 1) + K(k)·

[
d(k)− θ̂T(k)·x(k− 1)

]
P(k) = [I −K(k)·xT(k)]·P(k− 1)/λ(k)
λ(k) = (1− λmin)·arctan[g·Em(k)]/π + 1− (1− λmin)/2

End If
End For
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5. Simulation Results and Discussion

The performances of POEDM are verified via a series of simulations in Matlab and
Simulink. Since the PZT nanopositioning system is considered in the continuous-time
domain, it needs to be discretized for the implementation of online system identification.
By using bilinear z transformation, the translation function (1) is converted as follows:

G(z) =
b0 + b1·z−1 + b2·z−2

1 + a1·z−1 + a2·z−2 , (12)

where z−1 is unit delay. The coefficients of (12) are calculated as:

a1 = 2·ω2
s−2·t2

a
d

a2 = t2
a−2·ξ·ωs ·ta+ω2

s
d

b0 = ω2
s

d

b1 = 2·ω2
s

d

b2 = ω2
s

d

d = t2
a + 2·ξ·ωs·ta + ω2

s

,

where ta =
2
ts

, and ts is the sampling time of the system. According to various of applica-
tions, ts = 1× 10−4 and ξ = 0.01 are determined in this paper. As the disturbances can
be treated as n(t) located after PZT in the verification of simulations, including inherent
characteristics of PZT, noise of sensors and other factors, two structures of simulation are
employed to be carried out and shown as Figure 7.
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5.1. Variable Forgetting Factor RLS Algorithm Verification

First, the performances of proposed VFF-RLS algorithm are verified. As demonstrated
in Figure 7a, by employing the method of open-loop online system identification, signal of
u(t) = r1(t) + r2(t) is inputted to (12) via different algorithms. The input reference signal
used in applications can be described as step, sinusoid and ramp or combination of them.
Thus, r1(t) is defined as above signals with unit amplitude, respectively. The fundamental
frequency of sinusoid is 1 Hz. The step and ramp signals vary at the 1st second. r2(t)
is set as unit mean square error Gauss noise for ease of evaluation. The simulations last
6 s and the resonant frequency of PZT varies from 56 Hz to 40 Hz at the 2nd second,
which purposes to simulate the process of mass load. Various levels of Gauss noise are
added to the output to simulate disturbance, where the levels of the noise are defined as
signal-to-noise ratio (SNR). Compared with RLS and FF-RLS algorithm, the performance
of varying resonant frequency online estimate of VFF-RLS algorithm is verified, where the
forgetting factor of FF-RLS is defined as λFF = (1− λmin)/2.

Figure 8 shows the results of frequency estimation with different algorithms. Appar-
ently, due to the data saturation phenomenon, RLS is unable to track the varying frequency.
λ(k) of VFF-RLS is lower than λFF, when the frequency is starting to vary. As result, VFF-
RLS tracks the frequency faster than FF-RLS. λ(k) is larger than λFF, after the algorithm
convergences, which purposes to obtain stability. In order the analyze the results in more
detail, two indicators are defined to evaluate the performances. First, mean square error
(MSE) is described as:

MSE =

k
∑

i−0
e2(i)

k
=

k
∑

i−0
[y(i)− ŷ(i)]2

k
, (13)

where the MSE indicates the degree of overall estimate error. Then, settle time (ST, second)
is defined to describe the first time it takes to reach the reference frequency and place
within ±105% of the frequency, after it varies to 40 Hz. The detailed results are recorded
in Table 1. Compared with FF-RLS, the ST of VFF-RLS is reduced by nearly 50%, while
the RLS is unstable. In terms of overall error, the MSE of VFF-RLS is 80~90% of FF-RLS.
It demonstrates that the proposed VFF-RLS algorithm has the advantages of both fast
tracking and stability. Furthermore, discussion 2 in Section 5 can be easily proved by
Figure 8, where λ(k) > (1− λmin)/2 denotes that the estimation has been completed.
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Table 1. Comparison of different signal under different SNR.

Signal SNR (dB)
RLS FF-RLS VFF-RLS

ST (sec) MSE ST (sec) MSE ST (sec) MSE

Sinusoid
40 N/A 7.397 2.048 0.43 2.028 0.368
50 N/A 7.28 2.042 0.285 2.021 0.226
60 N/A 7.244 2.031 0.24 2.018 0.181

Step
40 N/A 7.236 2.034 0.465 2.015 0.42
50 N/A 7.156 2.032 0.27 2.014 0.237
60 N/A 7.13 2.031 0.221 2.014 0.189

Ramp
40 N/A 7.28 2.045 0.385 2.017 0.355
50 N/A 7.205 2.035 0.26 2.016 0.231
60 N/A 7.182 2.028 0.221 2.016 0.192

5.2. Position and Online Estimate Dual-Mode Verification

Herein, a series of simulations are carried out to verify the performances of POEDM,
where the structure is plotted in Figure 7b. Aiming at demonstrating the superiority of
gain margin improvement of ANF, positive position feedback (PPF) control and NF are
used as control group. The frequency of PPF and NF is defined as 56 Hz and other parame-
ters are set to obtain optimal performances. For ease of analysis, unit gain proportional
controller is employed. The Bode diagrams are plotted under the resonant frequency of
PZT nanopositioning system at 56 Hz and 40 Hz, respectively. The result of Bode diagram
is shown as Figure 9. It indicates that the gain margin improvement of NF is better than
PPF, before the resonant frequency varies. However, the gain margin of NF drops to be
negative after the frequency varies, while the decrease in PPF is acceptable. According to
the above analyses, better gain margin can be ensured by using ANF, which can track the
varying resonant frequency in real-time.

In order to verify the performance of POEDM, simulation of frequency online esti-
mate is conducted, compared with open-loop and closed-loop system identification. The
resonant frequency of PZT varies from 56 Hz to 40 Hz at the 6st second. Gauss noise is
adopted as input signal, and the SNR is 40 dB.

The result is illustrated in Figure 10. The closed-loop fails to identify, while the tracking
performance of POEDM is similar to open-loop system identification. Other conditions
including SNR = 30, 50 and 60 dB show the same result, thus they are omitted in this paper.
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To verify the tracking performance of POEDM, simulations are implemented by using
triangular trajectories with fundamental frequencies of 1, 2, 3, 5, 10 and 30 Hz. Due to the
advantages of simple implementation and robustness to modeling errors, proportional-
integral (PI) controller has been wildly used in various applications [28]. Therefore, PI
is adopted to be the feedback controller in these simulations. Compared with PF and
NF, the tracking performance of POEDM is proved, where the PI is adjusted to achieve
the optimal parameters, respectively. The resonant frequency of PZT varies from 56 Hz
to 40 Hz at the 6st second. The simulations last 20 s with a Gauss noise as disturbance,
where the mean square errors of Gauss noise is σ2

n = 10−6. Due to the linear model of
PZT nanopostitioning system, the performance of simulations is the same under different
scales. Therefore, in order to easily analyze, millimeter-scale of displacement (Disp) is
adopted in simulations, while the precision of applications is nanoscale. In terms of tracking
performances analysis, perfectly delayed tracking should be employed instead of imperfect
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timely tracking, when the delay is well known [5]. Thus, the following two indexes are
used in this work, according to [29]:

em =

max
t∈[0,T]

| y(t)− r(t− k∗·ts) |

max | r(t)−min(r(t)) | × 100%, (14)

erms =

√
1
T ·
∫ T

0 [y(t)− r(t− k∗·ts)]
2dt

max[r(t)−min(r(t))]
× 100%, (15)

where the em and erms are the maximum error and the root mean square error, respectively.
T is the fundamental frequency of reference signal. r(t) and r(t− k∗·ts) are the reference
signal and shifted reference signal, respectively. The k∗ in (14) and (15) is defined as:

k∗ = argkmin[ max
t∈[0,N·T)

| y(t)− r(t− k·ts) |], (16)

where k is a variable value defined within [0, T/Ts]. Because the error of tracking lag can
be eliminated via compensation or other control methods, this lag is not included in (14)
and (15). The approaches toward the lag are not discussed in this paper.

As shown in Figure 11, the lag of POEDM is less than others, when the input frequency
is 1 Hz. Due to the open-loop mode, the output of POEDM fluctuates at the 6st second,
which is stabilized by the closed-loop mode subsequently.
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According to (14), tracking error is defined as:

Tracking error = y(t)− r(t− k∗·ts). (17)

The performance of tracking reference signal is evaluated by (17) and its results are
plotted in Figure 12. The dot-line in blue denotes the state of the mode switch, where
the falling and rising indicate the closed-loop and open-loop, respectively. According
to Figure 12, the performance of PPF and NF decreases seriously as the input frequency
decreases, compared with POEDM. Because the closed-loop reference Lc0 is defined associ-
ated with the r1(t), the mode has changed to open-loop after the system started to become
unstable but not the resonant frequency varied. The fluctuation generated by open-loop
mode is eliminated after switching to closed-loop mode. It should be noted that enough
tc0 is necessary, or the system will become unstable due to frequent mode switch. Because
the stable system works in closed-loop mode, em−cl is defined as the max tracking error of
POEDM, where em is replaced by em−cl .
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The results of tracking error are recorded in Table 2. It can be noted that erms of
POEDM is reduced by 39.5% and 50.5%, respectively, when under 5 Hz and compared
with PPF and NF. Meanwhile, em−cl is reduced by 83.8% and 85.1%, respectively. The erms
and em−cl of POEDM are kept within 5% and 4% when the input frequency is lower than
5 Hz. It should be noted that both of them exceed 5% as the frequency is over 5 Hz. Thus,
the performance of POEDM decreases severely when the input frequency is higher than
5 Hz. According to the knowledge of signal processing, the triangular waveform can be
approximated by its fourth odd harmonics [5]. Therefore, the bandwidth of the closed-loop
system is 35 Hz when POEDM is employed. It should be concluded that the input signal
and the bandwidth are achieved up to 12.5% and 87.5% of the resonant frequency of the
PZT nanopositioning system, respectively.

Table 2. Comparison of simulation result.

Signal
(Hz)

PI with PPF PI with NF PI with POEDM

em (%) erms (%) em (%) erms (%) em (%) em-cl (%) erms (%)

1 5.5 1.5 5.8 2.1 13.3 1.5 1.1
2 10.1 3.1 10.8 4.6 28.2 1.9 2.5
5 22.2 7.6 24.1 9.3 85.2 3.6 4.6

10 34.0 14.2 35.5 15.7 143.5 23.5 11.2
30 41.5 19.2 45.8 20.5 225.0 36.0 18.2

As shown in Table 3, the minimum running time of open-loop mode and closed-loop
mode is denoted as tc0 and to0, respectively. The actual duration of them is represented as
actual tc and actual to. It can be noted that, except for the simulation of 30 Hz, the open-loop
online system identification is completed within to0.
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Table 3. Minimum running time of the simulations in Figure 12.

Signal (Hz)
PI with POEDMC

tc0 (sec) Actual tc (sec) to0 (sec) Actual to (sec)

1 2 6.68 0.05 0.05
2 2 6.08 0.05 0.05
3 2 6.1 0.05 0.05
5 2 6.11 0.05 0.05
10 3 6.09 0.05 0.05
30 3 6.14 0.1 0.76

6. Conclusions

In order to realize the varying resonant frequency online estimate and reducing the
effect of the lightly damped resonance, ANF for PZT nanopositioning system via POEDM
was proposed in this paper. Besides, a novel VFF-RLS algorithm was demonstrated
for system online identification, which has the advantages of strong robustness, easy
implementation and superior tracking performance. Furthermore, a POEDM approach
was developed to estimate the varying resonant frequency in the presence of noise and
disturbance. Finally, a series of validation simulations were successfully carried out and the
results indicate that the proposed VFF-RLS algorithm is nearly 50% fast than FF-RLS in the
frequency tracking and has good stability, under various conditions. The performance of
POEDM online estimation is similar to open-loop system online identification, while closed-
loop failed to identify. The max error and root mean error of POEDM can be kept within 5%
under the input frequency below 5 Hz, while PPF and NF decrease severely as the input
frequency increases. In summary, by employing the control method of PI with POEDM,
the input signal frequency and closed-loop bandwidth are increased to 12.5% and 87.5%
of the resonant frequency, respectively. However, this work is considered that PZT works
within the linear area, while the nonlinear behaviors limit the performances in applications.
About 10% of the bandwidth is within the nonlinear area, which will deteriorate. In order
to present higher performances, future work should focus on overcoming the effect of
nonlinear characteristics.
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