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Abstract: Cardiovascular disease is the leading cause of death worldwide. Traditional autologous
transplantation has become a severe issue due to insufficient donors. Artificial blood vessel is an
effective method for the treatment of major vascular diseases, such as heart and peripheral blood
vessel diseases. However, the traditional single-material printing technology has been unable to
meet the users’ demand for product functional complexity, which is not only reflected in the field
of industrial manufacturing, but also in the field of functional vessel-like structure regeneration. In
order to achieve the printing and forming of multi-layer vessel-like structures, this paper carries
out theoretical and experimental research on the printing and forming of a multi-layer vessel-like
structure based on multi-material 3D bioprinting technology. Firstly, theoretical analysis has been
explored to research the relationship among the different parameters in the process of vessel forming,
and further confirm the synchronous relationship among the extrusion rate of material, the tangential
speed of the rotating rod, and the movement speed of the platform. Secondly, sodium alginate and
gelatin have been used as the experimental materials to manufacture the vessel-like structure, and the
corrected parameter of the theoretical analysis is further verified. Finally, the cell-loaded materials
have been printed and analyzed, and cell viability is more than 90%, which provides support for the
research of multi-layer vessel-like structure printing.

Keywords: vessel-like; 3D bioprinting; synchronous relationship; multi-material

1. Introduction

According to relevant reports [1], the organ donation rate in China has reached
2/million, and the shortage of organ transplant donors is serious. With the development of
3D bio-printing technology, in vitro tissue or organ reconstruction has become an effective
means to solve the shortage of donors, and is also an important direction in the field
of tissue engineering [2]. In recent years, important achievements have been made in
the regeneration of blood vessels, cartilage, heart, and other organs. Angiogenesis [3]
or manufacturing technology [4–6] is an important means of interventional therapy for
vascular diseases, which has a broad application prospect in the treatment of vascular
diseases due to its advantages of biological adaptability and immunity. Due to the diversity
of vascular structures, traditional single-material printing technology [7] has been unable
to satisfy the demand of vessel-like printing. Therefore, an effective printing method
is urgently needed to realize the forming and manufacturing of multi-layer vessel-like
structures [8].

The relevant research results show that controlling biomaterials or cells to be dis-
tributed and printed on demand with sufficient precision is the key point to achieve
high-precision vessel-like structure regeneration manufacturing [9]. The traditional vessel-
like structure manufacturing and forming technology usually inoculates cells on the surface
of biomaterials to achieve the formation of a vessel-like structure. The forming process is
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relatively simple, but due to the influence of human factors or manual manipulation, the
precision of inoculation is not easy to control [10]. Therefore, there is an urgent need for
effective angioplasty methods to achieve the regeneration of the vascular structure.

At present, the main methods used for vessel-like structure formation are the mold
method and the 3D bioprinting method. The mold method involves adopting the mold
obtained by assembling fixed parts and realizing the formation of a vessel-like structure by
adding biological materials into the cavity. The mold-forming method has been adopted by
Lee et al. [11] to achieve the effective forming of the cell microsphere. Then, Xu et al. [12]
used the mold-forming method to fabricate a multi-layer vessel-like structure. In order to
achieve the printing and molding of vessel structures with higher accuracy, 3D printing
molding with the function of on-demand printing has been widely applied in the fields of
tissue engineering and organ regeneration. Delrot et al. [13] used inkjet 3D bioprinting to
achieve the forming mechanism of microspheres and the distribution of cell microspheres
on demand, and Tan et al. [14] have employed this approach to manufacture a micro-
vessel-like structure. Laser-assisted 3D bioprinting was used by Xiong et al. [15], which
has realized the formation of vessel-like structures. Coaxial focused wrapping technology
has also been applied in the 3D printing of extrusion molding for the forming and man-
ufacturing of vascular structures. The extrusion molding 3D printing methods all adopt
coaxial focusing printing methods, such as “dual-material synchronous extrusion” [16,17]
and “micro-channel extrusion” [18,19], to realize the printing and molding of the vessel
structure. However, because the density and uniformity of cells in the vessel-like structure
are mainly determined by the density and uniformity of cells in the biological materials, it
is not easy to meet the requirements of cell microsphere shaping and printing-on-demand.

In summary, 3D bioprinting technology is an effective method for vascular structure
manufacturing, and on-demand printing technology is a key technology for high-precision
cell microsphere distribution and vessel-like molding. However, the existing 3D bio-
printing technology with the function of on-demand printing has seldom been studied on
the forming process of vascular structures under the action of multi-parameter coupling,
and even less so on the on-demand printing process of cell microspheres in extrusion
3D printing, which has affected the distribution accuracy of cell microspheres and the
regeneration of high-precision vessel-like structures.

2. Theory, Fabrication Methods, and Materials
2.1. Theory

Blood vessels are composed of multiple layers of different cells, as shown in Figure 1.
Different layers and different cells need to be distributed and printed to form a simi-
lar vessel-like structure. However, theoretical research on the formation of single-layer
vessel-like structures has certain limitations, so it is necessary to carry out theoretical and
experimental research on the printing of multi-layer vessel-like structures.

Based on the preliminary analysis and experimental research on the theoretical re-
search of single-layer printing synchronization [20], in order to carry out the printing
molding of a multi-layer vessel-like structure, this paper conducted further research on
multi-material printing in vessel-like molding through theoretical analysis. As shown in
Figure 1, the multi-layer vessel-like structure is divided into endometrial, tunica media, and
tunica extema layers. In order to successfully print vessel-like structures, three different
types of cells are extruded to achieve the construction of vessel-like structures.

The outer diameter of the single-layer vessel-like structure is considered as:

H = α

(√
(WL/2U)2 − L2 − R

)
H = α

(√
(WC/2V)2 − L2 − R

)
 (1)

where U is the moving speed of the nozzle, V is the rotating speed of the motor, W is the
extrusion speed of the material, and R is the diameter of the rotating rod.
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Figure 1. Vascular structure and multi-material vascular structure forming process.

When the number of printing layers exceeds two layers (≥2), as shown in Figure 2,
the theoretical formula is:

Hn = ∑
n=1

αn

(√
(WnL/2Un)

2 − L2 − Rn

)
Hn = ∑

n=1
αn

(√
(WnC/2Vn)

2 − L2 − Rn

)
(n = 1, 2, 3, 4 . . .) (2)

where Un is the movement speed of the nozzle, Vn is the rotation speed of the motor, Wn
is the extrusion speed of the material, and Rn is the sum of the rotating rod diameter and
the single-layer vessel-like structure thickness when the number of printing layers exceeds
two layers (≥2).
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Figure 2. Schematic diagram of multi-layer vessel-like structure construction.

The control of film thickness has been treated as an important parameter to evaluate
the molding quality of the vessel-like structure. The film thickness of each layer should be
kept constant (Rn − Rn−1 = ∆h) under the ideal vessel-like structure test. When printing
the second vessel-like structure, the extrusion speed of the material and the tangential
speed of the rotating rod should be controlled to remain unchanged (W1 = W ′1, V = V′).
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Based on v = wR1, if the extrusion speed of the material and the rotation tangential speed
of the rotating rod remain unchanged, the rotation speed of the rotating rod should be
controlled. It can be seen that the rotation speed of the rotating rod decreases with the
increase of the number of printing layers, as follows:

w′n =
w1R1

R1 + (n− 1) ∗ ∆h
n = 1, 2, 3 . . . (3)

The moving speed of the nozzle decreases with the increase of the outer diameter, as
shown in Equation (4):

Un =
w1 ∗ R1 ∗ R

π[R1 + (n− 1) ∗ ∆h]
n = 1, 2, 3 . . . (4)

where R1 is the radius of the rotating rod, R is the radius of the nozzle, ∆h is the layer
thickness of the printing layer, and Un is the moving speed of the nozzle after nth layers
of printing.

2.2. Fabrication Methods

In the process of constructing a vessel-like structure with 3D biological vessel-like
printing technology (Figure 3), the different layers’ definition of the blood vessel is of great
significance to the construction of the vessel-like structure. The construction process of the
vessel-like structure model is shown in Figure 4a. According to the relevant requirements of
customers, CAD/CAM software was used for entity modeling, and then the STL file of the
3D CAD model was obtained according to the actual vessel-like or tissue structure model.
Secondly, the three-dimensional model is divided into different regions, and then the
different areas are processed with different materials by slicing software. The inner layer is
defined as material A, the middle layer is material B, and the outer layer is material C, as
shown in Figure 4b. Finally, the vessel-like structure was sliced to form the corresponding
G code. The vessel-like model designed by CAD/CAM has been formed by stacking and
distributing the materials orderly, with multi-material 3D vessel-like bioprinting.
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Figure 4. Vascular structure construction. (a) Model building process; (b) Material distribution in
different areas of the vessel-like structure.

2.3. Materials

In order to construct the multi-layer vessel-like structure, sodium alginate (purchased
from Longood Medicine Co., Ltd., Beijing, China) and gelatin materials (purchased from
Longood Medicine Co., Ltd., Beijing, China), which are natural materials, harmless to cells,
were used as experimental materials. The vessel-like structure printing test was carried
out with sodium alginate concentrations of 1, 1.5, 2, 2.5, 3, 3.5, and 4 wt.%, and gelatin
concentrations of 2, 4, 6, 8, and 10 wt.%. The diameters of the rotary rod selected in the test
were 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, and 7 mm. The vascular structure was constructed
at 4 ◦C. Gelatin is a temperature-sensitive gel, which can greatly improve the stability of
vascular structure when mixed with sodium alginate. At the end of printing, the mixed
materials (mass ratio 1:1) are chemically crosslinked with calcium ions.

3. Results
3.1. Multi-Layer Printing Path Planning

Traditional 3D printing technology has adopted the stacking printing molding method
to manufacture vessel-like structures, which has the characteristics of a wide printing space
without hindrance. However, the new multi-material vessel-like 3D bioprinting has a
perfect rotating printing molding area, the printing molding range is relatively small, and
the printing process is hindered. Therefore, it is necessary to plan the printing path so as
to overcome the obstacles in the printing process and realize the accurate positioning of
the needle position under the minimum moving path, which has laid a foundation for the
printing of vessel-like structures.

Before the printing process begins, all the motion axes should be returned to zero,
the absolute spatial position of the rotating rod should be determined, the corresponding
G code should be generated, and the generated G code can be written. Based on the
requirement of multi-layer printing, after the printing of the first layer is fabricated, the
height of the Z-axis (equal to the extrusion diameter of the material) should be raised
according to the actual printing requirements, and then the printing experiment of the
second layer should be carried out. Under the condition of keeping the output diameter of
the sprinkler head unchanged, during the printing process, every layer of the printhead
is increased and kept unchanged, thus realizing the formation of a double-layer vascular
structure, as shown in Figure 5.
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3.2. Multi-Layer Vessel-like Structure Printing Experiment

In the process of the multi-layer vascular structure printing molding experiment, the
control relationship of the parameters will affect the extrusion morphology of the material,
as shown in Figure 6. When the extrusion speed of the material is less than the moving
speed of the nozzle, the material will show an obvious “stretching” phenomenon and the
forming diameter of the material will be less than the extrusion diameter (Figure 6a). When
the extrusion speed of the material is matched with the moving speed of the nozzle, the
forming diameter of the material will be approximately equal to the extrusion diameter
(Figure 6b). When the extrusion speed of the material is greater than the moving speed of
the nozzle, the material will show an obvious “heel” phenomenon (Figure 6c), which will
affect the extrusion accuracy of the material. Therefore, the phenomena of “stretching” and
“heel” should be avoided in the experiment.
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The construction of the vascular structure is a relatively complicated process, which
includes many key forming parameters, such as multi-parameter coordinated control, tem-
perature maintenance, and environmental factors. In order to realize the multi-parameter
coordinated control, we have analyzed the multi-parameter theoretical relationships.

In the experiment, we adopted different diameters of the rotation rod to construct
the vessel-like structure (Figure 7). Figure 8 shows the relationship between the nozzle
extrusion speed, the rotating speed of the rotary motor, and the motion speed of the linear
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motor. With the increase of the nozzle velocity, U, the rotational speed, V, of the rotating
motor and the extrusion speed, W, of the material both show a significant increasing trend;
therefore, there is a fixed matching relationship between different printing parameters.
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Based on the above theoretical analysis results, we have used 6% gelatin and 3%
sodium alginate as experimental material to observe the relationship among linear motor
speed, motor rotation speed, and material extrusion speed. When the rotation of the rod
diameter is 7 mm, the rotating rod optional speed is 1.4 r/s, the nozzle move speed is
1 mm/s, and the material extrusion speed is 5 mm/s. The layer thickness has been analyzed
under the different rotation rod diameters, and the analysis results are shown in Figure 9. It
can be seen that the film thickness decreases with the increase of the diameter of the rotating
rod. When the rotating rod diameter is less than 4 mm, the material extrusion velocity
is much greater than the tangential velocity of the rotating rod, which has easily caused
the phenomenon of vessel-like structure accumulation. When the rotating rod diameter
exceeds 7 mm, the extrusion material will be separated, and the vessel-like structure will
not be formed. According to the formula v = wR, the reason why the vessel-like structure
cannot be formed is that the tangential velocity of the rotating rod increases with the
increase of the diameter of the rotating rod under the condition that the rotating motor
speed w remains unchanged; thus, the vessel-like structure cannot be formed.

Based on the above analysis results, the multi-material 3D vessel-like bioprinting has
been used to fabricate the vessel-like structure, as shown in Figure 10. When the nozzle
moving speed and motor rotating speed are 1 mm/s and 1.4 r/s respectively, the deforming
effect of the three-layer vessel-like structure is as shown in Figure 10c, where it can be
seen that the different layers have different thicknesses. When the nozzle moving speed
and motor rotating speed are 1 mm/s and 1.4 r/s respectively, the material extrusion
speed increases with the external diameter of the vessel-like structure, and the different
layers have similar layer thicknesses, as seen in Figure 10d. It can be seen that keeping the
synchronization relationship can control the consistency of layer thickness.

According to the operation flow of cell printing, the single-layer vascular structure
printing test was carried out on the biomaterial-containing cells. Firstly, the mixed material
of 2% sodium alginate and 6% gelatin was prepared as the test material, and the material
was filtered to remove impurities and bacteria. Secondly, the renal epithelial cell line
(293) was selected as the cell material for the vascular structure printing test. The number
of differentiated cell particles was mixed with 2% sodium alginate and 6% gelatin in
proportion to make the concentration of cell particles reach 1 × 107/mL. Then, the cell
printing test was carried out. During the printing process, the printing environment was
controlled to prevent the phenomenon of biomaterial blocking the nozzle. The forming
effect of the printed vascular vessel-like structure was relatively good, and the surface
uniformity was high. The cells in the printed vessel-like structure were observed through
an optical microscope (primotech), as shown in Figure 11. The printed cells were evenly
distributed in the vascular structure. The vessel-like structure has been degraded by citric
acid, and then the cells have been stained with Trypan blue, whereby the dead cells will
turn blue (Figure 11b), and the cell survival rate was statistically analyzed by Image Pro
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Plus image analysis software. We can draw a conclusion that the printed cells’ survival
rate can reach 90%.
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4. Conclusions

In this paper, 3D bioprinting technologies have been applied to the fabrication of a
vessel-like structure embedded with cells. We can draw conclusions that: (a) both theory
and the experiment proved that the material extrusion rate, the rotating shaft tangential
velocity, and the platform movement speed have an obvious synchronous relationship,
and (b) the cell survival rate was statistically analyzed, showing that the printed cell
survival rate can reach 90%, which not only provides valid proof for the application of
3D bioprinting in the field of blood vessels, but also promotes the development of tissue
engineering and regenerative medicine.
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