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Abstract: Luminescent copper(I) complexes showing thermally activated delayed fluorescence
(TADF) have developed to attractive emitter materials for organic light emitting diodes (OLEDs).
Here, we study the brightly luminescent dimer Cu2Cl2(P∩N)2 (P∩N = diphenylphosphanyl-6-
methyl-pyridine), which shows both TADF and phosphorescence at ambient temperature. A
solution-processed OLED with a device structure ITO/PEDOT:PSS/PYD2: Cu2Cl2(P∩N)2/DPEPO
(10 nm)/TPBi (40 nm)/LiF (1.2 nm)/Al (100 nm) shows warm white emission with moderate external
quantum efficiency (EQE). Methods for EQE increase strategies are discussed.

Keywords: dimeric copper(I) complexes; P∩N phosphine ligands; combined thermally activated
delayed fluorescence and phosphorescence; thermally activated delayed fluorescence (TADF); com-
bined singlet and triplet harvesting; organic light emitting diodes (OLEDs); white emission; white
light emitting OLED (WOLED)

1. Introduction

Emerging new display and lighting technologies have considerably stimulated re-
search efforts in the development of new luminescent materials. Organic light emitting
diodes (OLEDs) use tailored emitter molecules, which efficiently harvest both singlet and
triplet excitons formed in the emission layer at a ratio of 1:3 due to simple spin statistic
considerations [1]. It was recognized early that phosphorescent heavy/noble metal com-
plexes can fulfill this requirement because of efficient intersystem crossing (ISC) processes
facilitated by the high spin-orbit coupling (SOC) induced by the metal center. This well-
established strategy is known as triplet harvesting, because the emission stems from the
lowest triplet state T1. It has been shown that OLEDs using such complexes can exploit
up to 100% of all formed excitons leading to 100% internal quantum efficiency (IQE) [2–6].
Nevertheless, this concept comes with the prize of using expensive and rare noble metals
like iridium or platinum. As only a very small amount of these noble metals per m2 display
area are needed for modern OLEDs, the price per one display unit is unimportant and
therefore, use of these metals seems to be acceptable. However, just because of the low
noble metal content, recycling of the metal is either not possible or economically not viable.
Therefore, one must assume that these metals are irretrievably lost and will be evenly dis-
tributed among the Earth’s ecosystem as with many other valuable (or persistent) materials
of widely used consumer products. As soon as the OLED technology will dominate the
display and lighting area, even such small amounts will sum up to a considerable consump-
tion of these precious metals, which thus would be lost for other important applications,
such as catalytic processes in the chemical industry [7].
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Therefore, similar to the trend in catalysis, increasing research activities are focused
on the replacement of noble metals by non-precious and abundant metals or even by
purely organic compounds while still maintaining a high efficiency of the OLEDs [8].
The related exciton issue is addressed by designing emitter molecules with small singlet-
triplet splittings ∆E(S1 − T1), being one essential condition for fast and efficient reverse
intersystem crossing (rISC) T1 → S1 from the triplet state T1 to the excited singlet state S1
which ideally shows efficient S1 → S0 fluorescence. Although long known as thermally
activated delayed fluorescence (TADF) or E-type fluorescence [9], use of this process for
OLEDs was proposed only in 2006/2008 by Yersin et al. [10] and was designated as singlet
harvesting, because the luminescence of the TADF emitters stems from the lowest excited
singlet state. For the first time, this mechanism was exploited for OLED application in
2010 [11]. Besides other metals, particularly copper(I) complexes have proven to feature
efficient TADF due to the distinct metal-to-ligand charge transfer (MLCT) character of
their emissive states [12–32]. Additionally, a large number of purely organic compounds
have been investigated, especially, by the Adachi group [33–38]. These molecules feature
required photophysical properties, such as high emission quantum yields and relatively
fast emission decay times lying in the range of a few µs and can lead to high external
quantum efficiencies (EQE) in OLEDs [39–44]. Very recently, almost “zero-gap compounds”
have been presented that also allow for 100% exciton use, based on a mechanism that is
designated as direct singlet harvesting [45,46]. Using this mechanism, that is, applying the
specifically designed molecules as OLED emitters, sub-micro second decay times can easily
be achieved [45].

It has been shown that emissive copper(I) complexes sometimes do not only emit via
the TADF process, but additionally feature phosphorescence [25,47–62]. The Cu(I) materials
applied for many of these investigations are based on a patent filed almost one decade
ago [63]. This combination of singlet and triplet emission shortens the emission decay
time. These complexes can be regarded as both singlet and triplet harvesting materials,
and thus are interesting for application in OLEDs. Indeed, corresponding device studies
have already been reported [64,65].

In recent studies, we have presented a series of di-nuclear copper(I) complexes with
bridging P∩N phosphane ligands (whereas the nitrogen atom is part of a pyridine-type
moiety) and discussed their photophysical properties in detail [47–50]. One of these
materials, Cu2Cl2(P∩N)2 (Figure 1), shows remarkably high emission quantum yield at
a moderate emission decay time (ϕPL = 92%, τ = 8.3 µs) even at ambient temperature
as powder material. This compound was not yet investigated in opto-electronic devices.
Accordingly, it is the subject of this investigation to study the compound’s properties in
solution-processed OLEDs, and also to contribute to a better understanding of such Cu(I)
based devices. Interestingly, its broad emission spectrum enables us to fabricate white light
emitting OLEDs (WOLEDs) by using Cu2Cl2(P∩N)2 as a single emitter. Compared to those
manufactured with multiple emitters, WOLEDs with a single emitter have the merits of
easy fabrication, low cost, and, more importantly, of avoiding the issue of color aging [66].
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2. Photophysical Background of Cu2Cl2(P∩N)2

Cu2Cl2(P∩N)2 was synthesized as described in ref. [48]. It represents one of the first
compounds for which an ambient temperature emission has been reported that consists of
combined phosphorescence and TADF [48]. In particular, the material shows ≈20% direct
T1→ S0 phosphorescence and≈80% delayed S1→ S0 fluorescence. This is a consequence of
the relatively high spin-orbit coupling (SOC) experienced by the T1 state. The efficiency of
SOC is also displayed in a large zero-field splitting of this triplet state [48, and compare [67].
Both states, T1 and S1, stem from the HOMO→ LUMO transition of metal-to-ligand charge
transfer (MLCT) character. Hence, the states represent 1MLCT(S1) and 3MLCT(T1) states.
Both are in fast thermal equilibrium at ambient temperature. Due to the occurrence of
two separate decay paths with decay rates of k(T1 → S0, phosphorescence) = 2.4 × 104 s−1

(formally 42 µs) and k(S1 → S0, TADF) = 9.1 × 104 s−1 (formally 11 µs), the overall decay
time is reduced from the TADF-only decay time of 11 to 8.3 µs [48].

As neat powder, the material shows an emission quantum yield of ΦPL = 92% with
an emission peak maximum at λmax = 485 nm. However, if doped with 8 wt % in
di(9H-carbazol-9-yl)pyridine (PYD2) (see next section), ΦPL decreases to 27% (in PMMA
(poly(methyl methacrylate)) to ≈8%) and the peak maximum red-shifts to 544 nm (Table 1).
Such a behavior is frequently found for Cu(I) complexes and is ascribed to a flattening
distortion in the excited MLCT state [68–70]. This process is connected with an energy
stabilization of the excited states. Accordingly, the emission is red shifted. Besides, a
polarity change of the emitter environment might also play a role [45,71]. It has been
shown that the flattening processes are less distinct in rigid crystalline environments than
in softer matrices, such as many polymers or PYD2 [14,51]. Moreover, the geometry dis-
tortion in the excited states usually results in larger Franck-Condon (FC) factors between
the lower energy vibrational wavefunctions of the involved excited state with higher en-
ergy vibrational wavefunctions of the ground state. These FC factors strongly govern the
non-radiative decay. Hence, their increase induces a reduction of the emission quantum
yield [72]. Indeed, ΦPL decreases from 92% in crystalline environment to 27% in the less
rigid PYD2 matrix (Table 1). Nevertheless, it is attractive to study this emitter material,
giving white light luminescence, in a solution-processed OLED.

Table 1. Photophysical data of Cu2Cl2(P∩N)2 measured at 300 K.

Photophys.
Data

Neat
Powder (a)

Doped in
PYD2 (b)

Doped in
mCP (b),(c)

Doped in
PVK (b),(c)

Doped in
TCTA (b),(c)

Doped in
CBP (b),(c)

λmax
(d) 485 nm 544 nm 535 nm 545 nm 542 nm 537 nm

ϕPL
(e) 92% 27% 20% 11% 10% 13%

τ (e) 8.3 µs 3.1 µs 5.5 µs 3.2 µs 4.3 µs 2.8 µs

∆(S1 − T1) (f) 930 cm−1

(115 meV)
(a) Data from ref. [48]. (b) This work, doping concentration 8 wt %. (c) The various host materials are specified in the Appendix A.
(d) Emission maxima. (e) Photoluminescence quantum yield and emission decay time, respectively. (f) TADF activation energy.

3. Solution-Processed WOLEDs with Cu2Cl2(P∩N)2 as a Single Emitter

Photoluminescence quantum yield (PLQY) and emission decay time of Cu2Cl2(P∩N)2
in various thin films were measured and the results are summarized in Table 1. PLQY
of 27% in PYD2 is the highest yield among the hosts that are frequently applied in
solution-processed OLEDs. In fact, PYD2 has been proved as a suitable host for Cu
complexes in solution-processed OLEDs [72,73]. Based on this result, solution processed
WOLEDs were fabricated using Cu2Cl2(P∩N)2 as a single emitter and PYD2 as host
material for the emissive layer (EML). As shown in Figure 2, the device structure was
ITO/PEDOT:PSS (50 nm)/PYD2: Cu2Cl2(P∩N)2 (60 nm)/DPEPO (10 nm)/TPBi (40 nm)/LiF
(1.2 nm)/Al (100 nm). The layer of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate
(PEDOT:PSS) was used between the ITO anode and the EML as a hole-injection layer. The
layers bis[2-(diphenylphosphino)phenyl]ether oxide (DPEPO) and 1,3,5-tris(1-phenyl-1H-
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benzo[d]imidazol-2-yl)benzene (TPBi) function as hole/exciton blocking and electron
transporting materials, respectively. As shown in Figure 2, the low-lying LUMO of TPBi
facilitates the electron-transporting while the wide band gap of DPEPO can effectively
confine excitons inside the EML. Cu2Cl2(P∩N)2 was used as a single emitting dopant in
the EML with various concentrations ranging from 2 to 8 wt %. Device performances are
depicted in Figure 3, and key data are summarized in Table 2. At a lower concentration
of 2 wt %, distinct emission from the PYD2 host peaking at ≈400 nm (Figure 3a) suggests
insufficient energy transfer from the host to the emitter, leading to relatively low efficiency,
as displayed in Figure 3b. With increasing dopant concentration, the host emission grad-
ually vanishes, and accordingly the efficiency is improved. In addition, as depicted in
Figure 3c,d, both current density and luminance significantly decrease with increasing
dopant concentration at a given driving voltage, suggesting that charge-trapping could
play an important role in these OLEDs [74]. As shown in Figure 2, the high-lying HOMO
of Cu2Cl2(P∩N)2 could effectively trap holes injected from the PEDOT:PSS layer. The
efficiency of Cu2Cl2(P∩N)2-based devices is limited by the relatively low PLQY of thin
films, which is slightly dependent on the dopant concentration. With concentration increase
from 4 to 8 wt %, PLQY increases from 19% to 27% (at λexc = 360 nm), probably because the
increased doping concentration leads to an increase of the environment rigidity. Nonethe-
less, the simple device structure and the ultra-broad electro-luminescence (EL) spectra with
full width at half maximum (FWHM) of 153 nm make these studies attractive. One obtains
a yellowish white emission with CIE coordinates of (0.38, 0.49) and a color rendering index
(CRI) of 64 in the device with 8 wt % of Cu2Cl2(P∩N)2. With the participation of the host
emission, the device with 2 wt % Cu2Cl2(P∩N)2 gives an improved white color with CIE
coordinates of (0.38, 0.45) and CRI of 72. By improving the PLQY of the films and by further
optimizing the device structure, dimeric copper(I) emitters featuring combined TADF and
phosphorescence may find wide application in future low-cost WOLEDs.
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extracted from the literature [72,73,75–77].



Micromachines 2021, 12, 1500 5 of 10

Micromachines 2021, 12, x 5 of 10 
 

 

Table 2. Key performances of OLEDs with Cu2Cl2(P∩N)2. 

Concentration 
(wt %) 

L (a) 
(cd m−2) 

CE (b)  
(cd A−1) 

PE (c) 
(lm W−1) 

EQE (d) 
(%) 

CIE (e)  
(x, y) 

FWHM (f) 
(nm) 

CRI (g) 

Max at 1000 
cd m−2 

Max at 1000  
cd m−2 

Max at 1000 
cd m−2 

   

2 1160 6.48 3.54 3.39 1.48 2.61 1.42 0.38, 0.45 162 72 
4 1880 8.39 6.24 4.01 2.71 3.14 2.31 0.38, 0.48 159 69 
8 2500 10.5 8.15 4.25 3.20 3.80 2.95 0.38, 0.49 153 64 

(a) Maximum luminance; (b) current efficiency; (c) power efficiency; (d) external quantum efficiency; (e) CIE coordinates at 1000 
cd m−2; (f) full width at half maximum at 1000 cd m−2; (g) color rendering index at 1000 cd m−2. 

400 500 600 700 800

 2 wt%
 4 wt%
 8 wt%
 

N
or

m
al

iz
ed

 E
L

Wavelength (nm)

a

 

10-1 100 101 102 103
10-1

100

101

 2 wt%
 4 wt%
 8 wt%
 

EQ
E 

(%
)

Luminance (cd m-2)

b

 

5 6 7 8 9 10
0

20

40

60

C
ur

re
nt

 d
en

si
ty

 (m
A 

cm
-2

)

Voltage (V)

 2 wt%
 4 wt%
 8 wt%
 

c

 

5 6 7 8 9 10
0

500

1000

1500

2000

2500

3000
Lu

m
in

an
ce

 (c
d 

m
-2
)

Voltage (V)

 2 wt%
 4 wt%
 8 wt%
 

d

 
Figure 3. Characteristics of solution-processed devices according to Figure 2 based on Cu2Cl2(P∩N)2 luminescent com-
pounds with concentrations of 2, 4, and 8 wt % in PYD2 host films. (a) Normalized EL spectra at 1000 cd m−2, (b) EQE vs. 
luminance (c) current density vs. voltage, and (d) luminance vs. voltage characteristics. 
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pounds with concentrations of 2, 4, and 8 wt % in PYD2 host films. (a) Normalized EL spectra at 1000 cd m−2, (b) EQE vs.
luminance (c) current density vs. voltage, and (d) luminance vs. voltage characteristics.

Table 2. Key performances of OLEDs with Cu2Cl2(P∩N)2.

Concentration
(wt %)

L (a)

(cd m−2)

CE (b)

(cd A−1)
PE (c)

(lm W−1)
EQE (d)

(%)
CIE (e)

(x, y)
FWHM (f)

(nm) CRI (g)

Max at 1000 cd
m−2 Max at 1000

cd m−2 Max at 1000 cd
m−2

2 1160 6.48 3.54 3.39 1.48 2.61 1.42 0.38, 0.45 162 72
4 1880 8.39 6.24 4.01 2.71 3.14 2.31 0.38, 0.48 159 69
8 2500 10.5 8.15 4.25 3.20 3.80 2.95 0.38, 0.49 153 64

(a) Maximum luminance; (b) current efficiency; (c) power efficiency; (d) external quantum efficiency; (e) CIE coordinates at 1000 cd m−2; (f)

full width at half maximum at 1000 cd m−2; (g) color rendering index at 1000 cd m−2.

4. Conclusions

In this study, we report on OLED characteristics of the Cu(I) dimer Cu2Cl2(P∩N)2 that
features both phosphorescence and TADF at ambient temperature. With the device struc-
ture described in Figure 2, we determined an external quantum efficiency of EQE = 3.80
showing warm white emission (CIE coordinates (0.38, 0.49)). This EQE value is lower than
expected from the high photoluminescence quantum yield of 92% found for the powder
material. However, doping Cu2Cl2(P∩N)2 in the less rigid PYD2 host material allows for
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more distinct geometry reorganization upon excitation than for the complex in the powder
environment. As a consequence, the host with 8 wt % doping concentration exhibits only
ϕPL = 27% photoluminescence. If we formally normalize EQE to ϕPL = 100%, we find
EQE(normalized) = 14%. This shows that more efficient devices based on Cu(I) emitters can
be obtained, if the emitter’s molecular structure and the host environment can be designed
distinctly more rigidly (compare ref. [51]).

5. Patents

Parts of this work are related to (i) Yersin, H.; Monkowius, U. Komplexe mit kleinen
Singulett-Triplett-Energie-Abständen zur Verwendung in opto-elektronischen Bauteilen
(Singulett-Harvesting-Effekt). German Patent DE102008033563 A1, 2008, and (ii) Monkow-
ius, U.; Hofbeck, T.; Yersin, H. Singulett-Harvesting mit zweikernigen Kupfer(I)-Komplexen
für opto-elektronische Vorrichtungen. German Patent DE102011080240 A1, 2013.
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Appendix A

Materials: Cu2Cl2(P∩N)2 was synthesized as described in ref. [48]. PEDOT:PSS
[poly(3,4-ethylenedioxythiophene):poly(styrene sulfonic acid)] (Clevios P AI 4083) was pur-
chased from Heraeus; PYD2, DPEPO, TPBi, poly(9-vinylcarbazole) (PVK), 1,3-Bis(carbazol-
9-yl)benzene (mCP), 4,4′,4-Tris(carbazol-9-yl)triphenylamine (TCTA), 4,4′-Bis(carbazol-9-
yl)biphenyl (CBP), and LiF from Luminescence Technology Corp; Aluminum pellets from
Kurt J. Lesker. All materials were used as received.

Photophysical measurement (see Table A1): Thin-film samples of Cu2Cl2(P∩N)2
doped in PYD2, mCP, PVK, TCTA, and CBP, respectively, were prepared by drop-cast
from a chlorobenzene solution containing Cu2Cl2(P∩N)2 (8 wt %). The solvent was evap-
orated at 80 ◦C and translucent films were obtained. PLQYs of these thin-film samples
were measured with the Hamamatsu C11347 Quantaurus-QY absolute PL quantum yield
measurement system. Emission lifetime measurements were performed on a Quanta Ray
GCR 150-10 pulsed Nd:YAG laser system.

Table A1. Electrochemical properties of Cu2Cl2(P∩N)2.

Eox and Ered (V) (a) EHOMO and ELUMO (eV) (b)

Cu2Cl2(P∩N)2 0.504; −2.488 −4.91; −1.42
(a) Values obtained from differential pulse voltammetry measurements which were carried out in acetonitrile
with 0.1 mol·dm−3 [nBu4N]PF6 as supporting electrolyte and saturated calomel electrode (SCE) as the reference
electrode with a scan rate of 100 mV·s−1. Potentials reported here versus SCE. (b) The HOMO and LUMO energy
levels were estimated based on the equations of EHOMO = −(1.15 × Eox + 4.79) eV, ELUMO = −(1.18 × Ered + 4.83)
eV [19,78]; the potential Eox of ferrocene is 0.40 V.

Fabrication process of solution-processed OLEDs: An aqueous solution of PEDOT:PSS
was spin-coated onto the cleaned ITO coated glass substrate and baked at 120 ◦C for 20 min
to remove the residual water solvent in a clean room. Afterwards, the mixture of PYD2 and
the emitting dopant in chlorobenzene was spin-coated atop the PEDOT:PSS layer inside the
glove box. After annealing at 70 ◦C for 30 min, all devices were subsequently transferred
into a Kurt J. Lesker SPECTROS vacuum deposition system without exposing to air. In
the vacuum chamber, organic materials of DPEPO and TPBi were thermally deposited in
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sequence at a rate of ~0.5 nm s−1. Finally, LiF (1.2 nm) and Al (100 nm) were thermally
deposited at rates of 0.03 and 0.2 nm s−1, respectively.

Characterization of OLEDs: Current density-brightness-voltage characteristics, EL spectra,
and EQE of EL device were obtained by using a Keithley 2400 source-meter and an absolute
external quantum efficiency measurement system (C9920-12, Hamamatsu Photonics).
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78. Sworakowski, J.; Lipiński, J.; Janus, K. On the reliability of determination of energies of HOMO and LUMO levels in organic
semiconductors from electrochemical measurements. A simple picture based on the electrostatic model. Org. Electron. 2016, 33,
300–310. [CrossRef]

http://doi.org/10.1021/acs.chemmater.0c02683
http://doi.org/10.1021/cm8004985
http://doi.org/10.1063/1.1586999
http://doi.org/10.1016/j.ijleo.2020.165572
http://doi.org/10.1016/j.orgel.2016.03.031

	Introduction 
	Photophysical Background of Cu2Cl2(PN)2 
	Solution-Processed WOLEDs with Cu2Cl2(PN)2 as a Single Emitter 
	Conclusions 
	Patents 
	
	References

