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Abstract: The wide range of industrial applications of flow across moving or static solid surfaces
has aroused the curiosity of researchers. In order to generate a more exact estimate of flow and
heat transfer properties, three-dimensional modelling must be addressed. This plays a vital role
in metalworking operations, producing plastic and rubber films, and the continuous cooling of
fibre. In view of the above scope, an incompressible, laminar three-dimensional flow of a Casson
nanoliquid in the occurrence of thermophoretic particle deposition over a non-linearly extending
sheet is examined. To convert the collection of partial differential equations into ordinary differential
equations, the governing equations are framed with sufficient assumptions, and appropriate similarity
transformations are employed. The reduced equations are solved by implementing Runge Kutta
Fehlberg 4th 5th order technique with the aid of a shooting scheme. The numerical results are
obtained for linear and non-linear cases, and graphs are drawn for various dimensionless constraints.
The present study shows that improvement in the Casson parameter values will diminish the axial
velocities, but improvement is seen in thermal distribution. The escalation in the thermophoretic
parameter will decline the concentration profiles. The rate of mass transfer, surface drag force will
reduce with the improved values of the power law index. The non-linear stretching case shows
greater impact in all of the profiles compared to the linear stretching case.

Keywords: non-linear stretching sheet; Casson fluid: nanofluid; thermophoretic particle deposition

1. Introduction

The vast range of technological applications of flow across moving or static solid
surfaces has aroused the curiosity of researchers. The vaporisation of liquid coatings,
the pulling of filaments through a static liquid, crystallization process techniques, the
production of rubber and plastic films, and the nonstop cooling of fibre use these concepts.
The research community has been studying various elements of such flows since the
emergence of boundary layer models. Vajravelu [1] introduced the classical problem of
two-dimensional motion caused by a non-linearly extending surface. Three-dimensional
(3D) modelling must be considered to obtain a more precise estimation of flow and thermal
transfer characteristics. As a result, many researchers have focused their efforts on studying
three-dimensional flows. Recently, Gireesha and Umeshaih [2] examined the consequence
of non-linear thermal radiation on a magnetohydrodynamic (MHD) 3D flow of Jeffery
nanoliquid flow over a non-linearly porous extending sheet. The statistical analysis of a
three-dimensional MHD convective Carreau nanofluid flow caused by a bidirectional non-
linear stretching sheet with a heat source and zero mass flux was swotted by Sabu et al. [3].
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Puneeth et al. [4] utilized the revised Buongiorno’s model features to inspect the 3D
mixed convection flow of hybrid Casson nanoliquid via a non-linear extending surface.
Khan et al. [5] investigated the solar energy applications in a 3D flow in a non-linear
extending surface in the presence of nano liquid.

Non-Newtonian liquids are those that do not follow Newton’s viscosity rule. Sham-
poos, sauces, pastes, acrylics, colloidal solutions, and ketchup are just a few examples.
Because of its rheological uses in chemical and mechanical engineering processes, most
fluid mechanics researchers currently focus on this type of fluid. Casson liquid is one
of the best non-Newtonian liquids because of its numerous applications in metallurgy,
food dispensing, bioengineering, and penetrating activities. Casson liquid is classified
as a shear depleting liquid with an indeterminable thickness at zero shear rate. Recently,
Gowda et al. [6] examined the heat and mass transfer of the Marangoni driven boundary
layer flow of a non-Newtonian nanofluid by considering the effects of binary chemical
reactions and activation energy. Dahab et al. [7] investigated the MHD Casson nanofluid
movement over a non-linearly warmed porous medium with suction/injection in the
presence of an expanding surface effect. Madhukesh et al. [8] considered the Casson
nanoliquid bio-Marangoni convection motion through a porous medium in the presence
of chemically reactive activation energy. Kumar et al. [9] scrutinized the consequence of
particle deposition on heat and mass transmission in Casson fluid motion over a moving
thin needle. Jamshed et al. [10] deliberated the unsteady Casson nanoliquid flow on a
stretching sheet in the presence of solar thermal radiation.

One of the most challenging difficulties that engineers and companies face is thermal
management. The heat is transferred via base liquids. Heat distribution is a problem
with these basic liquids. Researchers will add nanoparticles to these common base liquids
to increase thermal dispersion and thermal distribution, and obtained fluids are called
as nanoliquid. Nanoparticles often comprise oxides, metals, and carbon nanotubes with
diameters ranging from 1 to 100 nm. Due to the augmentation in the rate of heat transfer,
researchers will pay attention to nanofluids. Recently, Kumar et al. [11] examined the single-
walled carbon nanotube (SWCNT)/multi-walled carbon nanotube (MWCNT) in a Maxwell
nanofluid over a stretching surface in the presence of a magnetic dipole. Using a meta-
heuristic technique, Prasannakumara [12] conferred the investigation of nanofluid flow in a
porous medium by considering local thermal non-equilibrium condition. Kumar et al. [13]
studied the convective thermal distribution by utilizing the Koo–Kleinstreuer–Li (KKL)
model for nanofluid flow over a coiled sheet. Karvelas et al. [14] pondered the computa-
tional analysis of paramagnetic spherical iron-oxide nanosized particles in the presence
of permanent magnetic fields. Ramesh et al. [15] elaborated the importance of aluminium
alloy particles suspension on fluid flow past parallel plates.

Thermophoresis is a phenomenon that happens when particles separated in vapor
are subjected to a thermal gradient and migrate from the hot to the cold zone of the
gas. Thermophoresis particles are used in a wide range of engineering and manufacturing
purposes, including nuclear reactor safety, thermal precipitation design, and physical vapor
confession. Chen et al. [16] studied the thermophoretic particle deposition (TPD) in a dual
stratified Casson fluid in the presence of magnetic dipole. Alhadhrami et al. [17] swotted
the influence of TPD in the presence of nano liquid flow over a wall jet by considering slip
effects. Hafeez et al. [18] conferred the TPD and Soret-Dufour effects on a flow of liquid past
a rotating disk. Ashraf et al. [19] scrutinized the numerical simulation of variable thermal
conductivity and particle deposition effects on free convection over a sphere surface.

Based on the above served literature, the primary aim of the present article is to
numerically analyze the thermal and mass distribution of a three-dimensional non-linear
extending surface with aluminum oxide based Casson nanofluid in the presence of ther-
mophoretic particle deposition, which has not yet been studied to the best of the authors’
knowledge. Thermophoretic particle deposition facilitates the investigation of differences
in mass transfer performance due to modest aluminum oxide percentage changes. The
present study is useful in various engineering applications. The governing equations that
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represent the flow and thermal characteristics with appropriate boundary conditions are
formulated. These equations are reduced with suitable similarity variables and numerically
solved by using an apt numerical method. Since many analytical and semi-analytical
procedures exist to solve these kinds of equations, we used the RKF-45 method to fulfill
this gap. The parameters that influence the flow characters are analyzed with respective
profiles, and detailed discussions are made for both linear and non-linear cases. The
essential engineering aspects are discussed.

2. Mathematical Model

Consider an incompressible, laminar 3D flow of a Casson nanoliquid in the presence
of TPD over a non-linearly stretching sheet. The sheet is moving with uniform velocity
uw = vw = (x + y)na in x&y directions, respectively, with a, n > 0. Tw and Cw representing
the wall temperature, and concentration as well as T∞ and C∞ denoting ambient temper-
ature and concentration. Both Tw and Cw are assumed to be constant on the stretching
surface. The ambient values temperature and concentration are denoted by T∞ and C∞ as
the value of z→ ∞ . Further, temperature and concentration at the wall are more significant
than the ambient temperature and concentration.

The rheological equation of state for an isotropic and incompressible flow of Casson
fluid is given by:

τij =

{
2
(

µB + py/
√

2π
)

eij, π > πc,
2
(
µB + py/

√
2πc

)
eij, π < πc.

In the above equation, π is the product of the deformation rate component and itself;
i.e., π = eijeij and eij is the (i, j)th component of the deformation rate. πc is the critical value
of this product based on the non-Newtonian model. µB is the plastic dynamic viscosity of
the non-Newtonian fluid, and py signifies the yield stress of the fluid.

The geometry of the described problem is illustrated in Figure 1a. Based on the
above assumptions, the governing equations and boundary conditions are given (see
Epstein et al. [20], Butt et al. [21], Raju et al. [22], Khan et al. [23]).

ux + vy + wz = 0 (1)

uux + vuy + wuz =

(
1 +

1
β

)
νn f uzz (2)

uvx + vvy + wvz =

(
1 +

1
β

)
νn f vzz (3)

uTx + vTy + wTz =
kn f

(ρCp)n f
Tzz (4)

uCx + vCy + wCz = Dn f Czz − (VT(C− C∞))z (5)

Boundary conditions (see Raju et al. [22], Khan et al. [23])

u = uw, T = Tw, v = vw, C = Cw, w = 0 at z = 0 (6)

C → C∞, u→ 0, v→ 0, T → T∞ as z→ ∞ (7)

From the Equations (1)–(7), u, v, w
(
ms−1) are the velocity components along the

x, y, z(m) directions, respectively. β(−) is the Casson parameter, ν =
(

µ
ρ

)(
m2s−1) signi-

fies the kinematic viscosity, µ
(

kgm−1s−1
)

signifies dynamic viscosity, ρ
(

kgm−3
)

is the

density, k
(

kgms−3K−1
)

signifies thermal conductivity, Cp
(

m2s−2K−1
)

signifies specific

heat, D
(
m2s−1) is diffusivity, and VT

(
ms−1) is the thermophoretic velocity.
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The term VT is defined as

VT = −
(K1νn f

Tr

)
Tz (8)

Here, K1 is the thermophoretic coefficient and Tr is the reference temperature (see
Epstein et al. [20]).

Figure 1. (a): Physical representation and coordinate system. (b) Flow chart for numerical scheme.

The below-mentioned similarity variables are introduced (see Raju et al. [22], Khan et al. [23]).

v = a(x + y)ng′(η), w = −
((

f ′(η) + g′(η)
)(n− 1

2

)
η + ( f (η) + g(η))

(
n + 1

2

))
(x + y)

n−1
2
√

aν f ,

u = a(x + y)n f ′(η), η = (x + y)
n−1

2

√
a

ν f
z, T − T∞ = θ(η)(Tw − T∞), C = C∞ + χ(η)(Cw − C∞). (9)
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After substituting Equations (8) and (9) into (1)–(6) and simplifying, the following
equations are obtained.(

1 +
1
β

)
f ′′′ + ς1ς2

(
( f + g)

(
n + 1

2

)
f ′′ − n f ′

(
f ′ + g′

))
= 0 (10)

(
1 +

1
β

)
g′′′ + ς1ς2

(
( f + g)

(
n + 1

2

)
g′′ − ng′

(
f ′ + g′

))
= 0 (11)

kn f

k f
θ′′ + Prς3

(
θ′
(

n + 1
2

)
( f + g)

)
= 0 (12)

ς1χ′′ + Scχ′
(

n + 1
2

)
( f + g)−

(
θ′′χ + χ′θ′

)
τSc = 0 (13)

with
( f ′, g′, f , g, θ, χ)(0) = (1, 1, 0, 0, 1, 1)atη = 0

( f ′, g′, θ, χ)(∞) = (0, 0, 0, 0)asη → ∞

}
(14)

The proposed problem deals with two different cases based on the following considerations:

(1) n = 1: Linear stretching.
(2) n > 1: non-Linear stretching.

Where, ς1 = (1− φ)2.5, ς2 =
(

1− φ + φ
ρs
ρ f

)
, ς3 =

(
1− φ + φ

(ρCp)s
(ρCp) f

)
, Sc =

ν f
D f

is

the Schmidt number, Pr =
µ f Cp f

k f
is the Prandtl number, and τ = −K1(Tw−T∞)

Tr
signifies

thermophoretic parameter.
The thermophysical properties of nanofluid are given (see Khan et al. [24], Devi and

Devi [25]):

kn f =
−2φ(−ks+k f )+2k f +ks

2φ(−ks+k f )+2k f +ks
k f , (ρCp)n f =

(
1− φ +

(ρCp)s
(ρCp) f

φ

)
(ρCp) f

µn f =
µ f

(1−φ)2.5 , ρn f = ρ f

(
1− φ + φ

ρs
ρ f

)
, Dn f = D f (1− φ)2.5

 (15)

Engineering Coefficients

The expressions and reduced forms of skin friction along the x and y directions is
given as follows (see Raju et al. [22], Khan et al. [23]):

Alongx direction : C f x =
µn f

(
1 + 1

β

)
(uz + wx)z=0

ρ f u2
w

→ f x
(

1+ 1
β

)
f ′′(0)

ς1
√

Re (16)

Alongy direction : C f y =
µn f

(
1 + 1

β

)(
vz + wy

)
z=0

ρ f u2
w

→ f x
(

1+ 1
β

)
g′′(0)

ς1
√

Re (17)

Nusselt number : Nu =
−kn f (x + y)(Tz)z=0

k f (Tw − T∞)
→ Nu
√

Re
−kn f θ′(0)

k f

(18)

Sherwood number : Sh =
−Dn f (x + y)(Cz)z=0

D f (Cw − C∞)
→ Sh√

Re1(0)
(19)

where, Re =
uwν−1

f

(x+y)−1 is the local Reynolds number.

3. Numerical Procedure

The set of reduced equations stated in Equations (10)–(13) and boundary constraints
(14) are solved using the RKF-45 method and the shooting scheme. The obtained equa-
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tions are higher-order and two-point in nature. To get the solution, we reduced the
system of ODEs and boundary conditions into a first-order system by substituting a1 = f ,
a2 = f ′, a3 = f ′′, a4 = g, a5 = g′, a6 = g′′, a7 = θ, a8 = θ′, a9 = χ, a10 = χ′ and obtain



a
′
1

a
′
2

a
′
3

a
′
4

a
′
5

a
′
6

a
′
7

a
′
8

a
′
9

a
′
10


=



a2
a3

−1(
1+ 1

β

) ς1ς2

((
n+1

2

)
( f + g) f ′′ − n f ′( f ′ + g′)

)
a5
a6

−1(
1+ 1

β

) ς1ς2

((
n+1

2

)
( f + g)g′′ − ng′( f ′ + g′)

)
a8

− k f
kn f

Prς3

((
n+1

2

)
( f + g)θ′

)
a10

1
ς1

((
a
′
8χ + χ′θ′

)
τSc− Sc

(
n+1

2

)
χ′( f + g)

)



(20)

with, 

a1(0)
a2(0)
a3(0)
a4(0)
a5(0)
a6(0)
a7(∞)
a8(∞)
a9(∞)
a10(∞)


=



0
1

λ1
0
1

λ2
1

λ3
1

λ4


(21)

The IVP stated in Equations (20) and (21) are solved by the RKF-45 method, and
unknown values are obtained by the shooting scheme by setting step size h = 0.01 and error
tolerance 10−6, which satisfy the boundary condition at infinity. The numerical solutions
are obtained with build-in package bvp4c by MATLAB and setting the constraints’ values
as φ = 0.01, β = 0.5, Pr = 6.45, Sc = 0.8&τ = 0.1. Figure 1b shows the flow chart for the
numerical scheme. The solutions are compared with the existing works, and they best
match each other (see Tables 1 and 2).

Table 1. Nanoparticle and base liquid thermophysical characteristics (see Khan et al. [24]).

Property C6H9NaO7(SA) Al2O3

Pr 6.45 -

ρ 989 3970

Cp 4175 765

k 0.613 40

Table 2. Comparison of the model for f ′′(0) in the absence of φ&
(

1 + 1
β

)
= 1.

n Khan et al. [23] Raju et al. [22] Present Result

1 −1.414214 −1.4142141 −1.415192

3 −2.297186 −2.2971860 −2.297297
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4. Results and Discussion

The fundamental goal of the present section is to analyze the influence of various
dimensionless constraints on their respective profiles. The reduced ODEs (10–13) and
boundary conditions (14) are numerically solved with RK-45 and shooting schemes. We
convert the ODEs into IVP, and the shooting scheme is adopted to obtain the missing
boundary conditions. Thermophysical properties of nanoparticle and base liquid are pre-
sented in Table 3. The numerical procedure is validated with the previously existing works.
The obtained results show the influence of the dimensionless parameters, i.e., Casson pa-
rameter (β), power-law index (n), Schmidt number (Sc), and thermophoretic parameter
(τ), on the axial velocity profiles and the thermal and concentration profiles. Throughout
the analysis, computations are made for the power-law index n = 1&n = 3.

Table 3. Comparison of the model for g′′(0) in the absence of φ&
(

1 + 1
β

)
= 1.

n Khan et al. [23] Raju et al. [22] Present Result

1 −1.414214 −1.4142140 −1.415192

3 −2.297186 −2.2971860 −2.297297

Figure 2 estimates the influence of the β on axial velocity f ′(η). The rise in the values
of the β will diminish f ′(η). From the physical point of view, increased β(= 0.1, 0.2, 0.3)
values reduce fluid flow because the flow is subjected to a higher viscous force. It is further
observed that axial velocity is diminished more in the case of n = 3 than in the case of
n = 1. The influence of the β on axial velocity g′(η) is displayed in Figure 3. A similar
trend is observed as seen in the axial velocity profile f ′(η). The variation of the thermal
distribution profile θ(η) for the rise in the values of the Casson parameter (β) is portrayed
in Figure 4. The rise in the values of β will enrich the thermal distribution in the system.
In physical view, increasing the Casson parameter β increases the fluid’s boundary layer
thickness, resulting in increased thermal distribution. The thermal distribution is more in
the case of n = 3 than in the case of n = 1. Figure 5 is drawn to show the influence of the β
on the mass transfer profile χ(η). The rise in values of Casson parameter will enhance the
accumulation of particles, resulting in the enrichment of boundary layer thickness. As a
result, the mass transfer enhances. The enhancement in concentration is more in the case of
n = 1 than in the case of n = 3.

Figure 2. Influence of β over axial velocity f ′(η).
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Figure 3. Influence of β over axial velocity g′(η).

Figure 4. Influence of β over thermal profile θ(η).
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Figure 5. Influence of β over concentration χ(η).

The variation of τ on χ(η) is revealed in Figure 6. The enhancement in (τ) values
will reduce concentration χ(η). The mobility of the particles increases as the temperature
gradient grows, resulting in a decrease in fluid concentration. The influence of the Sc on
the χ(η) is drawn in Figure 7. The concentration profile decreases as the Schmidt number
increases. The Schmidt number is the physical definition of the kinematic viscosity to
molecular diffusion coefficient ratio. As a result, the enhanced values of Sc decline χ(η).
The significant concentration diminishes more in the case of n = 3 than in the case of
n = 1 for τ and Sc. Figure 8a represents the variation of surface drag force in x direction
on n for the various values of β. The rise in the values of β will weaken the surface drag
force. This is due to the improvement in the values of β, and the n values will improve
the thermal boundary layer and the liquid distribution. As a result, the surface drag will
reduce. Similar behavior is seen in surface drag force along y direction (see Figure 8b). The
variation of rate of thermal distribution on n for the numerous values of φ is shown in
Figure 9a. The rise in the solid volume fraction will improve the boundary layer thickness
and improve the thermal distribution rate. Figure 9b illustrates the consequence of the rate
of mass transfer on Sc for the numerous values of τ. The rate of mass transfer will enhance
with the increase in the thermophoretic parameter.

Table 4 is drawn to show the computational values of f ′′(0), g′′(0), θ′(0), and χ′(0)
over various dimensionless constraints. From the table, it is clear that increased values
of n will diminish the surface drag coefficients f ′′(0)&g′′(0) along x&y directions and
mass transfer rate but will improve the rate of thermal distribution. The addition of solid
volume fraction will diminish the f ′′(0), g′′(0), θ′(0), and χ′(0) profiles. The increase in
the values of β will reduce f ′′(0)&g′′(0), but a reverse trend is seen for the θ′(0)&χ′(0)
profiles. Improvement in the values of Sc&τ will decrease the θ′(0)&χ′(0) profiles.
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Figure 6. Influence of τ over concentration χ(η).

Figure 7. Influence of Sc over concentration χ(η).
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Figure 8. (a) Consequence of n and β over C f x, (b) Consequence of n and β over C f y.

Figure 9. (a) Consequence of n and φ over Nu, (b) Consequence of Sc and τ over Sh.
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Table 4. Computational values of f ′′(0), g′′(0), θ
′
(0), and χ′(0) for various dimensionless constraints.

When n = 3, φ = 0.01, β = 0.1, and Sc = 0.8&τ = 0.1.

n φ β Sc τ −f′′(0) −g′′(0) −θ′(0) −χ′(0)

1 0.428707 0.428707 23.723047 2.883644

2 0.576782 0.576782 23.720796 3.072287

3 0.01 0.1 0.8 0.1 0.694439 0.694439 23.718549 3.231165

0.01 0.694439 0.694439 23.718549 3.231092

0.02 0.695638 0.695638 34.085641 4.164654

0.03 0.696469 0.696469 42.056350 4.941831

0.1 0.694439 0.694439 23.718549 3.231092

0.2 0.940005 0.940005 23.712475 3.182007

0.3 1.106068 1.106068 23.707350 3.148383

0.8 0.694439 0.694439 23.718549 3.231092

1.0 0.694439 0.694439 23.718549 3.873363

1.2 0.694439 0.694439 23.718549 4.496217

0.1 0.694439 0.694439 23.718549 3.231092

0.2 0.694439 0.694439 23.718549 5.174942

0.3 0.694439 0.694439 23.718549 7.125058

5. Conclusions

An incompressible, laminar three-dimensional flow of a Casson nanoliquid in the
presence of thermophoretic particle deposition over a non-linearly stretching sheet is exam-
ined. To convert the collection of partial differential equations into ordinary differential
equations, the governing equations are constructed with appropriate assumptions, and
acceptable similarity variables are employed. The simplified equations are solved using
software by applying the Runge Kutta Fehlberg 4th 5th order method with a shooting
scheme. The graphs are drawn for various constraints, and important engineering factors
are discussed in detail. The significant findings of the current study are as follows:

1. Improvement in the Casson parameter will decline the axial velocity in x&y directions
due to higher viscous force.

2. The thermal distribution is improved with enhancement in the Casson parameter due
to an increment in boundary layer thickness.

3. Improved values of the Schmidt number will decline the concentration due to an
increase in mass diffusivity.

4. An increase in the values of the thermophoretic parameter affects the concentration
profiles due to an increment in the temperature gradient.

5. The rate of mass transfer will decrease with an upsurge in the values of the ther-
mophoretic parameter.

6. The rate of thermal distribution will improve with an increment in the Casson param-
eter due to an enhancement in the thickness of the boundary layer.

7. The axial velocity and thermal distribution will be more in the case of n = 3, but a
reverse trend is perceived in the case of concentration profile.
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Nomenclature

Al2O3 Aluminium oxide.
C6H9NaO7(SA) Sodium Alginate.
a Stretching rate.
C Concentration.
Cw Concentration at wall.
C∞ Ambient concentration.
Cp Specific heat.
C f x Skin friction.
D Diffusivity.
k Thermal conductivity.
K1 Thermophoretic constant.
f (η)&g(η) Dimensionless velocity components.
n Power law index.
Nu Nusselt number.
Pr Prandtl number.
Re Local Reynolds number.
Sh Sherwood number.
Sc Schmidt number.
T Temperature.
Tr Reference temperature.
Tw Wall temperature.
T∞ Ambient temperature.
VT Thermophoretic velocity.
Greek Symbols
β Casson parameter.
µ Dynamic viscosity.
ρ Density.
ν Kinematic viscosity.
η Similarity variable.
θ(η)&χ(η) Dimensionless temperature and concentration.
φ Solid volume fraction.
τ Thermophoretic parameter.
Subscripts:
f Fluid.
n f Nanofluid.
S Solid particle.
Abbreviations
PDE Partial differential equation.
ODE Ordinary differential equation.
RKF-45 Runge Kutta Felhberg 4th 5th order.
TPD Thermophoretic particle deposition.
MHD Magneto hydrodynamic.
3D Three dimensional.
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