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Abstract: The hardware security of embedded systems is raising more and more concerns in numer-
ous safety-critical applications, such as in the automotive, aerospace, avionic, and railway systems.
Embedded systems are gaining popularity in these safety-sensitive sectors with high performance,
low power, and great reliability, which are ideal control platforms for executing instruction opera-
tion and data processing. However, modern embedded systems are still exposing many potential
hardware vulnerabilities to malicious attacks, including software-level and hardware-level attacks;
these can cause program execution failure and confidential data leakage. For this reason, this paper
presents a novel embedded system by integrating a hardware-assisted security monitoring unit
(SMU), for achieving a reinforced system-on-chip (SoC) on ensuring program execution and data
processing security. This architecture design was implemented and evaluated on a Xilinx Virtex-5
FPGA development board. Based on the evaluation of the SMU hardware implementation in terms
of performance overhead, security capability, and resource consumption, the experimental results
indicate that the SMU does not lead to a significant speed degradation to processor while executing
different benchmarks, and its average performance overhead reduces to 2.18% on typical 8-KB
I/D-Caches. Security capability evaluation confirms the monitoring effectiveness of SMU against
both instruction and data tampering attacks. Meanwhile, the SoC satisfies a good balance between
high-security and resource overhead.

Keywords: embedded system; security monitoring unit (SMU); system-on-chip (SoC); instruction
monitoring; data monitoring

1. Introduction

The modern embedded system integrates a reduced instruction set computing (RISC)
processor core, specific functional modules, commonly-needed peripherals, and memory
blocks on a single chip, for achieving the desired functions according to specific application
requirements, such as increasing computing performance, keeping low power consumption,
and improving reliability in the radiation environment [1–3]. The widespread applications
of embedded systems are pushing systems-on-chip (SoCs) toward the dramatic improve-
ments in performance and multifunction; however, these improvements are accompanied
with the higher hardware complexity and various security threats [4]. Diversiform attacks
can arise from the untrusted intellectual properties (IPs) [5], vulnerable hardware and soft-
ware [6], and even insecure communication with remote devices [7], which are potential
methods for jeopardizing the execution security of embedded systems in safety-critical ap-
plications. In practice, the various forms of existing and emerging attacks can be classified
into the two main types: hardware-level attack and software-level attack. In hardware-level
attacks, hardware Trojan is a typical example which could be inserted into an internal logic
and activated under a specific condition to cause the processor unintended behaviors or
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program execution failures. Especially, recent reports show that attackers are inserting
the hardware Trojans into memories to leak and modify critical data [8,9], which further
aggravates the security concerns of SoCs in security-critical applications. The software-
level attacks are mainly exploiting some vulnerabilities or bugs in programs to disturb
instruction executions or perform other unintended actions, such as tampering program
code or data and injecting malicious code. At present, most of embedded programs are
written in the high-level programming languages of C and C++, which can access memory
directly without any valid bound checks. These software-level attacks make it easy to
implement the buffer overflow [10,11] via stack smashing and take control of the hardware
platform during executing untrusted programs.

Function failure and data leakage have been emerging as the primary manifestations
of being attacked in processing-intensive platforms, where the security of instruction
execution and data processing in embedded systems must be guaranteed. An intelligent
attacker can exploit the modified instruction and tampered data to trick the processor core’s
internal interpreter into executing unintended instructions and accessing unauthorized
data. Generally, for a trusted SoC chip, external memory Trojan and external physical attack
are the two critical factors on damaging the trustworthiness of embedded systems. For
example, the hardware Trojan could be designed and inserted into external flash memory to
change program codes to cause the unintended behaviors or execution failures. In addition,
external physical attacks could exploit high-tech detection instruments to implement bus
monitoring and offline analysis for obtaining confidential data [12] and inject tampered
data to disorganize program intended behaviors through external access interfaces.

Several security mechanisms have been proposed to protect the program executions
against the potential hardware Trojans. Existing techniques by using standard functional
validation [13,14] and side-channel analysis [15,16] after the chip manufactures can detect
hidden hardware Trojans and do not need any hardware resource consumption. However,
the high complexity of SoC with integrating several hundreds of IPs makes it expensive
and time consuming to fully test and validate all the IP modules, and some purposefully
inserted Trojans are developed to be exercised by rare events under a specific execution
condition, so that they make it especially difficult to activate, analyze, and identify hard-
ware Trojans in a functional validation environment. In particular, the commercial design
of SoC architectures mainly adopts the efficient integration approach of IPs, and many IPs
are acquired from some untrusted third-party vendors for shortening the time to market of
applied products. This approach further increases the risk of malicious attacks. The side-
channel analysis techniques can detect inserted Trojans by observing power consumption,
circuit delay, electromagnetic emission and circuit noise at the postfabrication stage [17].
However, the effectiveness of side-channel analysis is greatly affected by the technology
variation and highly depends on a golden reference design; therefore, that method is
limited by the device parameter variations of nanometer technology.

Damaging program execution is not the only risk challenge for a trusted SoC chip;
the off-chip main memory connecting with target SoC is also a vulnerable device, which
can suffer from the external attacks of bus monitoring and offline analysis, and then, the
adversaries can exploit the external data bus to launch physical tampering attacks with
malicious data injections [18]. For example, the attackers can steal sensitive data during the
dynamic data exchanges and exploit tampered data into memory stack and heap segments
to change program executions out of the original intentions. Therefore, the confidentiality of
dynamic data between the main memory and SoC is also an important concern for program
execution security. In practice, few techniques were applied to encrypt the dynamic data of
embedded systems in real time, since it was harder to predict dynamic data than instruction
transfer during program execution without a significant speed degradation. To the best
of our knowledge, program execution monitoring and data processing monitoring are
mostly researched independently in existing techniques, and it is significantly necessary to
provide a reinforced protection for both instruction execution and data processing security.
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This paper presents a hardware-assisted security monitoring unit (SMU) for embed-
ded system to provide real-time security monitoring and authenticated encryption. The
integration of SMU can comprehensively prevent unintended instruction behaviors, dy-
namic data leakages, and physical tampering attacks caused by the off-chip threats. The
specific contributions of this paper are summarized as follows:

• An instruction monitor is constructed in SMU to real-time monitor instruction execu-
tions, and any instruction tampering is detected by program basic block (BB) integrity
checking mechanism;

• A data monitor is also constructed in SMU to complete the authenticated encryption
and dynamic data monitoring for preventing dynamic data leakages and data tamper-
ing attacks, and any unauthorized change of ciphertext or signature in external main
memory is detected by Tag integrity checking;

• The I-Cache, D-Cache, and monitor cache (M-Cache) are felicitously configured to
significantly reduce the system performance overhead induced by SMU, and its
average performance overhead reduces to as low as 2.18%;

• The experimental evaluations of security capability and hardware consumption con-
firm that the monitoring mechanism of SMU satisfies a good balance between high-
security capability and low hardware complexity.

The remainder of this paper is organized as follows: Section 2 introduces SoC security
assumptions and threat models considered in this work. Section 3 presents the related
works concerning design strategies of instruction monitoring, information leakage, and
physical data tampering. Sections 4 and 5 present the hardware implementation mecha-
nisms of instruction monitor and data monitor in SMU, respectively. Section 6 presents the
experimental evaluations of SMU about performance overhead, security capability, and
practicality comparison. The SoC hardware implementation is presented in Section 7. This
paper is concluded in Section 8.

2. Security Assumptions and Threat Models

Before developing a hardware-assisted SMU for a target-embedded system platform,
its specific security trustworthy assumption and threat model should first be determined,
and the associated assumptions of all the design components (including IP entities) should
be classified as trustworthy and untrustworthy. Hence, we make the following assumptions
regarding the hardware architecture, hardware Trojan setting, and off-chip physical attacks.

We propose an embedded system architecture based on the open-source reduced
instruction set computing (OpenRISC) processor OR1200. This softcore processor is con-
structed with a Harvard microarchitecture; meanwhile, the sequential execution of central
processing unit (CPU) consists of a five-stage pipeline of the instruction fetching (IF) stage,
instruction decoding (ID) stage, instruction executing (EX) stage, memory accessing (MA)
stage, and write back (WB) stage. The CPU connects with some commonly needed pe-
ripherals, such as the addressable quick memory (QMEM), instruction cache (I-Cache),
data cache (D-Cache), and other components. We extended a proposed hardware-assisted
SMU with CPU by the Wishbone bus to real-time monitor instruction execution and data
processing. The SoC hardware architecture with integrating SMU is shown in Figure 1. We
make the boundary assumption regarding the SoC hardware architecture apart from the
on-chip as a trusted domain, and the whole off-chip domain is the untrustworthy region.
The self-provided CPU and SPU were highly tested and validated anywhere without po-
tential hardware Trojans inserting in the internal logic; meanwhile, the adversaries cannot
tamper the instructions of I-Cache, the dynamic data of D-Cache from on-chip.
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Figure 1. The SoC hardware architecture with integrating SMU for real-time security monitoring.

According to the different locations where instruction tampering and data tampering
are derived from the off-chip interfaces, there are three types of threat model assumptions
considered in this paper, which are commonly used approaches to disturb CPU program
execution and data processing in reported studies:

• The first situation is that the instructions that were tampered with artificially arise from
the program code phase (including software and application) before compiling and
linking. For example, the program codes are modified via malicious code injections in
C and C++ programmings [19] to cause stack-based and heap-based buffer overflows.

• The second situation is that the program instructions were maliciously modified in
external instruction memory (such as flash memory) induced by hardware Trojans.
The designers were leaning memory-oriented hardware Trojan insertions to modify
or leak memory critical data [20,21]; here, the instruction modifications in memory
are manifested as the data bit flips.

• The third situation is that the dynamic data were modified in external main memory
by physical tampering attacks (or errors caused by a hardware Trojan). For example,
external attacks aim at the vulnerable interface between SoC and external main mem-
ory, and their dynamic data exchange suffers from the three physical attacks of bus
monitoring, offline analysis, and data tampering [22].

We assume the SoC suffers from external instruction tampering and data tampering
attacks. Instruction tampering attacks arise from external instruction memory caused by
human or hardware Trojans; therefore, an instruction monitor is implemented in SMU
to real-time monitor instruction executions for defending CPU unintended behaviors. In
addition, data tampering attacks arise from the external main memory caused by physical
detection and tampering, or potential hardware Trojan; therefore, a data monitor is also
needed in SMU for achieving high-speed authenticated encryption for data exchanges.
In the SoC design, we select the integrity of instruction code as the key parameter of the
instruction monitor and the confidentiality and integrity as two key parameters of the
data monitor.

3. Preliminaries

Our architecture focuses on obtaining the prompt identifications of unintended behav-
iors via SMU security monitoring at runtime to avoid system malfunction. This section
introduces the security strategies related to instruction and data protections in embedded
systems, for inspiring the secure SoC architecture design.

3.1. Security Strategy of Instruction Execution Monitoring

With the mounting concerns on execution instructions being tampered with in an
unauthorized way by adversaries or hardware Trojans, program code integrity and control-
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flow integrity are the two remarkable techniques for defending the internal intrusions in
instruction stream instead of hardware Trojan detection.

3.1.1. Program Code Integrity

The program code integrity strategy checks the integrity of instruction stream to ensure
the embedded program does not deviate from the intended and permissible behaviors. In
the previous techniques of instruction integrity monitoring, the basic block (BB) signature
monitoring scheme according to the program code segments is an effective technology to
real-time monitor each instruction’s execution [23]. At the BB granularity, the BB segment
of consecutive instructions is defined as when a program starts from the first instruction
and ends up with the branch or jump instruction; meanwhile, each BB is assigned to an
integrity signature, which is generated on the basis of reference information extraction
at the compile phase. During program execution, the integrity signature of each BB is
recalculated and compared to the previously on-chip stored one for validating the integrity
of BB.

3.1.2. Control-Flow Integrity

Control-flow integrity (CFI) is an effective mechanism for strictly monitoring pro-
gram execution to see whether it is following the set of possible control-flow transfers,
which could be extracted from the statically specified policy of control-flow graph (CFG).
Therefore, the CFI checker can detect the unexpected control-flow changes or tampered
instructions. The reported protection methods for CFI can be classified into the forward
control flow and the backward control flow according to the addressing mode. Forward
control flow with an indirect call or jump instruction is often derived from advanced
language features, such as virtual functions, function pointers, and callback functions,
making it difficult to analyze and implement CFI monitoring in distinguishing different
valid targets with a single label. By contrast, backward control flow, such as a return
instruction, is relatively easier to protect the return address of a called function and re-
turn control back to the calling function in security, such as stack-guard mechanisms of
shadow stacks [24] and SafeStacks [10]. Although CFI method can prevent the code-reuse
techniques such as return-oriented programming (ROP), the data-oriented programming
(DOP) [25] invalidates the CFI monitoring capability via the noncontrol data utilization.

3.1.3. Integrity Label Calculation

The existing solutions for program execution monitoring need to compute integrity
labels with the aid of cryptographic hash function and store labels into on-chip memory
beforehand. Then, the integrity labels are compared with the recalculated hash values
during the program execution. While recalculating the hash values, a suitable crypto-
graphic hash function requires a high-speed hardware to complete the hash calculation
of a sequence of instructions. In order to keep up with the CPU execution pipeline as
fast as possible, the cryptographic hash function is expected to quickly transform a given
sequence of messages into a fixed number of integrity label; moreover, it can keep a low
hardware complexity. A reported study [26] proposed a lightweight hash (LHash) function,
which employs a Feistel-PG extended sponge structure to improve its diffusion speed in
internal permutations. Therefore, we utilize an LHash sequential iteration mechanism in
sponge structure to calculate the integrity label of a sequence of instructions during the
program execution, while it maintains a low performance overhead.

3.2. Security Strategy against Sensitive Data Leakage

As described above, the interface between external main memory and SoC chip is the
weakest component to cause dynamic data leakages under the external physical attacks.
The adversary can implement bus monitoring and offline analysis to obtain processing
data from SoC and, subsequently, can begin to inject tampered data to disrupt program
execution. To defend against these threats, a cryptographic algorithm also requires high-
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speed hardware to keep up with execution pipeline, so that it does not incur a significant
performance loss to data processing. At present, the widely adopted strategies for data
protection are based on the three cryptographic elements: confidentiality, integrity, and
authentication (CIA).

3.2.1. Confidentiality Protection Scheme

Symmetric-key and asymmetric-key are the two frequently used cryptographic algo-
rithms to provide confidentiality assurance for data privacy. Furthermore, considering the
sophistication and power of adversary, cryptographic algorithms have to encrypt all the
confidential data. As a representation of symmetric-key algorithms, advanced encryption
standard (AES) is a block cipher cryptosystem, in which the round function encryption
consists of SubBytes, ShiftRows, MixColumns and AddRoundKey. Input and output block
sizes are fixed to 128 bits, and the different key lengths of 128-bit for 10 rounds, 192-bit
for 12 rounds, and 256-bit for 14 rounds are provided according to the required security
strength. The AES block-cipher method has a better security feature in confidentiality
protection. Furthermore, the RC4 stream cipher proposed in [27] can also provide a good
confidentiality protection in data encryption. In addition, the asymmetric-key crypto-
graphic algorithm, such as the Rivest–Shamir–Adleman (RSA), which is a high-quality
public key cryptographic algorithm, is suitable for digital signature, key exchange, etc., in
a large set of security protocols instead of data encryption [28], because it is so expensive
compared to the symmetric cryptography in data-intensive computing tasks.

3.2.2. Integrity Protection Scheme

Data integrity is the assurance of nonalteration. In order to provide integrity authen-
ticity, the cryptographic hash function is required to transform the given amount of data
into a digital signature, and any change in input data leads to a large and unpredictable
change in digital signature with very high probability. In this way, a receiver can verify
the digital signature to guarantee the data have not been modified. For instance, the
abovementioned LHash algorithm can be used to provide digital signature for dynamic
data. Another famous hash algorithm is named GHash function [29]; by employing the
Galois/Counter Mode (GCM), it has advantages in high-speed parallel computations to
provide a fast integrity authentication, but its implementation is accompanied by a higher
hardware overhead.

3.2.3. Authentication of Digital Signature

The authentication of digital signature requires a good cryptographic hash function to
compute data blocks to a suitable size of digest for integrity checker. In embedded systems,
the digital signature generated from the extraction of data, address, and timestamp offers a
high confidence of preventing an attacker from obtaining the cracked information.

3.3. External Tampering Attacks Aiming at Main Memory

In order to better understand the embedded system external data tampering attacks,
the processor architecture suffers data tampering attacks from external main memory, as
shown in Figure 2. Data tampering attacks can be classified into three types of attacks: the
spoofing attack, corresponding to read-load request address 5, which exploits a partially
modified data to camouflage such as a legitimate data to replace the correct data block,
causing the processor to malfunction; the relocation attack, which occurs at read-load
request address 3 and utilizes the data block in address 2 to swap the returned data block
from address 3; the replay attack, which happens at read request address 1 and exploits a
previously stored data block at time T3 to replay the data block at read-request time T5.
According to their different attack capabilities, the relocation attack is more easily tricks the
processor into accessing unauthorized data compared to the spoofing attack. Since these
data blocks in external memory are encrypted with the same scheme, an attacker could
tamper the processor behaviors by swapping some encrypted values. What is worse, the
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replay attack at the different time can easily overcome the protections against the relocation
attack to modify the processor behaviors. Therefore, the uniqueness of encrypted data
in time and space is applied in the data monitor to resist the above three types of data
tampering attacks.
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Figure 2. External data tampering attacks: spoofing attack, relocation attack, and replay attack.

4. Instruction Monitor against Instruction Tampering Attacks

In this section, we consider the characteristics of instruction executions to efficiently
implement the instruction monitor. This section contains four main components: the
efficient partition of basic blocks (BBs) at appropriate granularity; the reference informa-
tion extraction of BBs for real-time integrity checking; the hardware implementation of
instruction monitor; and the performance optimizations of a monitoring mechanism.

4.1. The Efficient Partition of Basic Blocks

The previous report in [30] indicates that the performance overhead of a hardware
monitor is relevant to integrity checking speed; further, the speed of validation depends
on BB granularity. When the BB partition of program code is at a coarse granularity
for reducing the number of program integrity verification, this BB integrity monitoring
granularity for reducing performance overhead may be overlarge, because the large number
of transfer instructions require frequent jumps and function calls. In addition, BB contains
a variety of possible program execution orders, which make it difficult to analyze and
extract the unique and effective BB reference information, even causing the monitor to
not be sensitive to instruction damage issues such as injection, deletion, and tampering.
When the BB partitions are too small, even with each instruction as a BB, this fine-grained
monitoring method causes the instruction monitor calculation for BB integrity signature
to not be able to keep up with CPU execution pipeline. Hence, a suitable BB granularity
contributes to achieving high security and low overhead.

During processor executing program instructions, the instruction counter is regularly
incremented by one; meanwhile, the instruction is read from next target address to pro-
cessor until the jump instruction is encountered. The transfer-type instructions cause the
program execution discontinuity and have many possible execution directions. Hence,
we plan to partition the program instruction stream with the BBs strictly according to the
branch and jump instruction characteristics. Each BB is composed of a group of successive
instructions so that BB is executed sequentially. We defined that each program BB starts
from the first instruction and ends up with the branch or jump instruction. This partition
strategy might appear in the overlaps of BBs, which aid in reducing the number of search-
ing labels in BBs reference information table (TABBB) at the same storage spaces compared
to the other nonoverlapping partition strategy.

As shown in Figure 3, a segmentation of instruction code from the benchmark of
OpenECC was selected to illustrate the partition strategy of BBs. Firstly, the instruction
stream can be partitioned into BB1, BB2, and BB3 fluently according to the boundary of
transfer-type instructions (branch and jump). Secondly, the instruction transfer target
address of each BB can be deduced according to transfer-type instruction. For example, the
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instruction l.bf is a conditional branch instruction, and two possible legal branch addresses
can be inferred from the analysis of the instruction code. The absolute jump instruction
l.jr jumps to the target address corresponding to the value of r9 register, which is usually
the returned address of the superior function. Although the value of r9 register cannot be
extracted in offline analysis, a new BB can be generated by processing the function entry
address and traversing its target jump address. Considering the target addresses of two l.bf
conditional branch instructions, BB3 and BB4 can be generated, where BB3 is an overlap
with previous BB3 and the BB4 is inside the BB2 from a new start address.

It is noteworthy that in our partitioning strategy of program code with BBs, we con-
sidered the delay slot mechanism to reduce CPU performance loss. The branch delay slot
is the wasted clock spaces following the conditional branch and jump instructions. In the
processor five-stage pipeline, it requires three clock cycles to complete a branch instruction
execution, which include instruction fetch, instruction decode, and instruction execution,
and then jumps to another target address and causes the pipeline discontinuity. To improve
the execution efficiency in clock cycles, the delay slot instruction is also partitioned into
each BB for filling the pipeline clock gap, where it follows the branch or jump instruction
as the end boundary of each BB. This BB partitioning strategy minimizes performance loss.
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Figure 3. An example of the benchmark OpenECC instruction segmentation for illustrating the
proposed partition strategy of BBs.

4.2. Reference Information Extraction for Integrity Checking

The purpose of the partitioning program code with BBs in this work is achieving
modular security checks for the instruction monitor with minimal performance loss and
high security. In the design of instruction monitor, the reference information (INFre f ) of
divisiory BBs should be predefined to determine each BB integrity monitoring parameter.
For satisfying the security monitoring requirements against the various forms of instruc-
tion tampering attacks and achieving a quick integrity verification, the selected security
parameter requires it to meet these three conditions: (1) it must be sensitive to any damage
issue, seeing as the injection, deletion, or tampering of instruction causes the security
parameter to change; (2) it is easy to extract from each BB; and (3) considering the limited
hardware resource of embedded system, it should be minimized while ensuring adequate
security sensitivity.

After the above comprehensive consideration, we plan to extract the effective start
address (ADDstart) of each BB, the instruction code (InsCode), and the BB digest generated
by using the LHash function (DIGlhash) to constitute the expected 32 bit integrity monitor-
ing INFre f , organically. The adopted OpenRISC processor OR1200 has 32 bits instruction
code and target address, whose instruction and address are aligned to 4 bytes. Due to
the lower 2 bits of a 32 bit instruction address in program counter (PC) being fixed to
2’b00 (addressing RAM by word), the available value as the effective start address of each
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BB is PC[31:2]. In general, the width of a 32 bit address can provide 4 GB address space,
where the PC[31:2] value of BB start address leads to a large on-chip storage consumption
constituting the integrity reference information of INFre f . Therefore, we selected the lower
16 bits effective values from PC, that is, PC[17:2], as the start address value of BB in INFre f ,
which can provide the applications up to 256 KB address space. Furthermore, the size of
address space can be extended by selecting more effective bits from PC[31:2] according to
real application requirements, and its storage resource overhead also increases.

In this work, we employed the abovementioned LHash algorithm to generate each
BB digest DIGlhash for performing InsCodes integrity verification in instruction monitor.
We selected 32 bit InsCodes and start address (for identification) of each BB as the input
message blocks into LHash engine’s sponge structure. After the segment of consecutive
BB InsCode being calculated by the LHash algorithm, a high-security 96 bits BB LHash
digest was obtained. Considering that the obtained 96 bits LHash digest causes a large
on-chip storage resource overhead constituting INFre f table in monitor memory, we se-
lected a 16 bits available value from the 96 bits LHash digest according to the bit-selected
numbers from a offline random number generator (RNG), for creating a 16 bits golden
LHash digest DIGlhash to avoid an attacker forging the valid digest value. Finally, the
32 bits INFre f are composed of the 16 bits ADDstart[17:2] and the 16 bits golden DIGlhash,
where the INFre f [31:16] is assigned with ADDstart[17:2], and the INFre f [15:0] is assigned
with DIGlhash.

The offline extraction preparation phase of reference information and the implemen-
tation phase of real-time monitoring are shown in Figure 4. In which, the preparation
phase mainly consists of the compile and link processes, the partition of BBs, the security
parameters extraction, and the constitution of INFre f . In preparation, the GNU tool or32-
elf-objdump was utilized to disassemble the binary InsCode, we employed the regular
expression to search all the function entries, jump instructions, and destination addresses.
The implementation phase depicts INFre f memory storage in the instruction monitor while
loading program binary InsCodes for execution.
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Figure 4. The static extraction preparation phase of reference information and the implementation
phase for real-time monitoring.

4.3. Hardware Implementation of Instruction Monitor

After completing the offline preparation works of BB partition and INFre f extraction
from InsCodes, the hardware implementation design of instruction monitor should provide
a high-efficiency violation detection in the instruction stream integrity at BB granularity.
Figure 5 shows the hardware architecture details of the instruction monitor. The instruction
monitor checks the integrity digests of BBs according to the execution order of source
program. The hardware-assisted instruction monitor takes InsCodes and ADDstart as the
input signals, where InsCodes and ADDstart are exported from the instruction decoding
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(ID) stage of execution pipeline and PC, respectively. We provide FSM IP to keep track of
transfer-type instructions (branch and jump) through control-state transitions, which can
identify the BB boundary of start address (also being the target address of previous jump
instruction) and end address with delay slot instruction after the branch/jump operation.
After FSM, the instruction streams of each BB are continuously pumped into the LHash
engine when ADDstart is detected, and then the LHash engine recalculates the 96 bits
LHash digest of each BB while the CPU executes the sequence of InsCodes. Finally, the
16 bits LHash digest (DIGcal) can be generated by stored specific bit-selected numbers
according to RNG. Meanwhile, in another path, the configured monitor cache (M-Cache),
which associatively maps with monitor memory (for storing INFre f ), searches the cache
lines according to the received start address (ADDstart) of each BB. If the M-Cache hits, the
corresponding M-Cache line of INFre f block is input to an intercept logic for obtaining the
INFre f [15:0] as golden LHash (DIGlhash); if M-Cache misses, the instruction monitor starts
to search the ADDstart in monitor memory. If it succeeds, two inputs multiplexer (MUX)
controlled by the states of hit/miss receive the INFre f [15:0] after the intercept logic; if it
fails to search, the monitor asserts an invalid signal of BB absence to the processor. When
M-Cache hits or memory hits, the recalculated DIGcal is compared with the stored DIGlhash
in integrity checker. The instruction monitor asserts valid BB when their compared result
is equal. Otherwise, the instruction monitor asserts the BB as an invalid status, where we
preset the LHash value error with invalid status “01”, and the start address error with an
invalid status “10” (BB absence).
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Figure 5. The hardware implementation details of the instruction monitor.

The invalid signal is sent into the exception module when instruction monitor detects
a violation of BB integrity, which is nonmaskable to trigger the fast-response mechanisms
inside the processor. In general, when the instruction fetching (IF) stage in pipeline fails
to read instructions from I-Cache, it needs to fetch instructions from instruction memory,
and the CPU sends out a CPU_STALL signal to suspend the execution pipeline due to
the absence of execution instruction. In the instruction monitor, the integrity checking of
each BB waits for all of the instructions in the current BB being executed. Therefore, while
checking the BB integrity, instruction monitor still asserts the CPU_STALL signal until
successful integrity checking.

4.4. Performance Optimizations of Monitoring Mechanism

An important consideration of the instruction monitor is how to reduce its perfor-
mance overhead during BB integrity checking during the instruction execution. For each
BB, the first instruction is the entry of BB, and the end of BB is the delay slot instruc-
tion, which the upper instruction leads the instruction stream to branch or jump to a new
start address of the other BB. Due to LHash calculation and INFre f searching needing to
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consume some clock cycles, it is possible that all the instruction executions of a BB are
completed, and the comparative result of the BB integrity checker is not yet asserted, which
affects processor performance. We configured an M-Cache and optimized the I-Cache to
improve the searching efficiency of DIGlhash in the instruction monitor.

4.4.1. M-Cache Searching Method

When the instructions of each BB are executed, the ADDstart of BB is first sent to
M-Cache for searching cache lines, and the corresponding INFre f can be obtained directly
from cache lines if the M-Cache hits. This method can avoid the frequent access of monitor
memory. For improving the hit rate of M-Cache, a depth of 256 cache lines is configured
for M-Cache to the buffer partial INFre f blocks of BBs from monitor memory. The M-Cache
searching method and the internal structure of BB INFre f table are shown in Figure 6.
The content-searching method of M-Cache pointer is described as a double ring buffer
that is constructed with one 8 bits register. Meanwhile, the storage parts of ADDstart and
searching circuit are fully interconnected, so that the hit status of M-Cache can be acquired
within two clock cycles. In the M-Cache, the pointer[7:0] searches the M-Cache according
to the BB start address segment of ADDstart[17:2].

ADDstart[17:2] DIGlhash[15:0]

ADDstart[17:2] DIGlhash[15:0]

ADDstart[17:2] DIGlhash[15:0]
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line 0

ADDstart[17:2] DIGlhash[15:0]
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Figure 6. The M-Cache searching method and internal structure of BB reference information table.

4.4.2. I-Cache Optimized Approach

To further decrease the performance overhead caused by LHash recalculation and
searching the INFre f table, the I-Cache can be optimized to reduce the number of times
on BBs integrity checking. We utilize the locality principle of I-Cache mapping InsCode
memory to tag the instructions of BB, with those that were cached in I-Cache and were
validated for integrity during other BB executions. An I-Cache line has four instruction
words, and when the four instructions at same cache line are read for execution, the Tag
bit in the cache line turns from “0” to “1” to indicate the instructions in the current cache
line being verified for integrity. From the partition principle of BBs, a BB contains at least
three instructions and occupies one or two cache lines, the long BB occupies several cache
lines. Hence, I-Cache outputs the Tag signal of security when all the instructions of the
BB are cached in I-Cache, and the Tags of cache lines they occupied are all signed with “1”
( for logic AND). Then, the delayed Tag from a synchronizer input into the above FSM
controller, and instruction monitor directly asserts the validation of the processor. This
optimized approach plays an important effort to reduce BB integrity checks on the situation
that the BB overlaps with the other BBs.

In the abovementioned optimization, the configured M-Cache and I-Cache improve
the searching efficiency of INFre f block. It is noteworthy that the worst situation occurs
when M-Cache and I-Cache are both failed to complete integrity verification for the current
BB. Therefore, the instruction monitor needs to search the whole INFre f blocks table in
monitor memory. Figure 7 depicts the timing diagram of one BB execution with integrity
validation at the worst situation. The period of T1 represents the total time consump-
tion spent searching the INFre f block in both M-Cache and monitor memory from a new
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BB being detected, and its search result can be obtained with a high probability before
the recalculated result of LHash engine. Period T2 represents the time consumption of
golden LHash DIGlhash being obtained and waiting for verification. Period T3 indicates
that the integrity checker completes the comparison and outputs the validation status
within one clock cycle. Since the searching process of INFre f according to the ADDstart of
each BB in M-Cache and monitor memory is simultaneous with instruction executions,
it can minimize the performance overhead of BB integrity checking; thus, the time con-
sumption on searching INFre f in M-Cache and monitor memory are both acceptable for
integrity validation.
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LH_s1 LH_s2 LH_s3 LH_sn LHash

ADDstart ADD2 ADD3 ADDn-1 ADDend
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Instr.n
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Figure 7. The timing diagram of a BB execution with integrity validation at the worst situation.

5. Data Monitor against External Physical Attacks

In this section, we describe the hardware implementation details of data monitor
on preventing dynamic data leakage and data tampering from external physical attacks;
meanwhile, we expatiate the dynamic monitoring mechanism of data monitor for achieving
a superiority of low performance overhead.

5.1. Hardware Architecture Implementation of Data Monitor

Our proposed data monitor is a part of the SMU that connects with the CPU core via
D-Cache and store buffer modules, and the overall hardware implementation architecture
is shown in Figure 8. In which, the hardware-realized data monitor was applied between
the store-buffer and external main memory for providing dynamic data confidentiality and
integrity protections during the program execution of processor.
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The hardware-implemented data monitor integrates the AES engine, LHash engine,
seed generator, counter, key management unit, integrity checker, etc. In which, the AES
engine is a symmetric-key block cipher cryptosystem that supports input and output data
lengths both at 128 bits, and we deploy the length of key as 128 bits (with 10 rounds). Its
1–9 round encryptions are duplicated in the four transformations of SubBytes, ShiftRows,
MixColumns, and AddRoundKey, and round 10 without MixColumns transformation. The
AES engine can provide a good confidentiality protection for the dynamic data exchanges
to external memory against the bus monitoring and offline analysis attacks. For responding
effectively to the physical tampering attack, LHash engine is adopted to provide integrity
protection and Tag integrity verification. In addition, an integrity checker is utilized to
check the validation of the integrity tag and send valid or invalid signals to the CPU
exception interrupt module. Timestamps are generated by increasing the counter with
increments of one, then the count values are stored into on-chip timestamp memory to
ensure the time uniqueness of AES key stream.

In the procedure of CPU loading/storing data blocks, the CPU core first sends the
request effective address for loading or storing data, and then data memory management
unit (DMMU) identifies the address offset to determine a physical address and sends it to
QMEM. QMEM judges the physical address to see whether it is within its address space
range. If it is, the CPU reads or writes the specific address directly; if it is not, QMEM sends
the request address to D-Cache, and then the D-Cache searches the physical address to see
whether it has been cached. If the D-Cache hits, the CPU reads/writes data depending
on the appointed physical address; if the D-Cache misses, then CPU reads/writes data
via accessing the external main memory. Between the D-Cache and data monitor, the
store-buffer and WB_BIU are configured as shown in Figure 8, where the WB_BIU module
is hidden for the sake of brevity. Due to the main memory being located in a vulnerable
domain and facing a risk of being attacked maliciously, the data monitor is activated only
when the D-Cache addressing misses (on Write-Back method) achieving a good trade-off
between security and performance overhead. In the proposed data monitor, we distinguish
the data write-back and read-load procedures with red and blue arrows, respectively, and
the reused signals with black arrows are employed in both write and read procedures.

5.2. Data Write-Back Procedure of Memory Access

The hardware-implemented data monitor is an efficient technique to complete high-
speed runtime data encryption operations with a reasonable hardware overhead. However,
executing the real-time encryption and decryption operations for all requires the write-back
data to be impracticable in executing the intensive data processing tasks, because the
excessive encryption protections cause the processor to have a large performance overhead.
Combined with the superiority of the D-Cache on the locality principle of mapping a
memory, we adopted the write-back method which does not write data to external main
memory synchronously when the CPU writes to the D-Cache (D-Cache hits). Here, the
D-Cache is inconsistent with the main memory on data blocks, so that external attacks do
not cause dynamic data leakage or function failure before the main memory is overwritten.
If the D-Cache misses, the CPU directly accesses external main memory to write back
according to the access address, while the D-Cache begins to stay consistent with the main
memory. In their data synchronization, many dynamic data blocks in the D-Cache require
encryption protections before storing to the external main memory at one time. The data
monitor is activated when the D-Cache addressing misses, and the “dormancy” mechanism
on the data encryption operation plays an important role in decreasing the number of times
of accessing the external main memory and performance overhead.

5.2.1. AES Ciphertext Generation

The CPU is a Harvard RISC processor with 32 bits instruction bus and data bus, and
the D-Cache line size is set as 16 bytes (128 bits). Generally, the data block encryption
in AES engine requires the acquisition of a complete 128 bits data block as being input;
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therefore, the data bus needs to access D-Cache four times to obtain a complete 128 bits data
block. Then, the AES engine works to encrypt and output the ciphertext, but this pipelined
encryption method significantly reduces 128-bit data block encryption efficiency. In order
to improve encryption efficiency for AES engine, we adopted a parallel encryption method
instead of the pipelined encryption method to encrypt the request physical addresses,
which correspond to the write-back data blocks. The time consumption comparison of the
three different methods for completing a write-back operation from D-Cache is shown in
Figure 9. In the parallel encryption method, the AES engine calculating 128 bits key stream
is parallel to the data block transmission process. During the transmission process, the
received 32 bits data sub-blocks begin to generate ciphertext sub-blocks by performing
the XOR operations with the AES key stream. Therefore, the parallel encryption method
can save the time TB-TS compared to the pipelined encryption method, and the encrypted
process of data block can be represented as follows.

C = P⊕ AESKEY(Seed) (1)

where C and P denote the ciphertext and the plaintext of the data block, respectively.
AESKEY(Seed) is expressed as the key stream generated from the AES engine.
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Figure 9. Time consumption comparison of the three different methods for completing a write-back
operation from D-Cache.

Using the key management unit to provide a 128-bit initial key for the AES engine’s
key expansion and 10-round operations. To improve the confidentiality of data blocks,
their physical address and timestamp are inputted into the seed generator for ensuring
the uniqueness of the AES key stream on space and time. The internal function structure
of seed generator is the bit-wise Exclusive-OR operation, in which the AES seed and
timestamp have the same bit widths with the 32 bits physical address.

5.2.2. LHash Digital Signature Generation

While protecting the confidentiality of the key stream from the AES engine, the sponge
construction of the LHash engine absorbs the physical address, timestamp, and data block
sequentially, and the absorb procedure can be controlled by an built-in FSM controller. The
LHash engine first absorbs the physical address of the 32 bit data sub-block (D0); the second
step absorbs the timestamp corresponding to D0; and the third step absorbs the four 32 bit
data sub-blocks (D0-D3) orderly. Finally, the LHash engine outputs a 32 bits hash integrity
Tag. Furthermore, the encrypted digital signature is created by performing the LHash Tag
XORed with the AES key stream. It is noteworthy that our protective granularity of data
block is at 128 bits, which is exactly same with the D-Cache line size, and the latter consists
of four 32 bit continuous data sub-blocks. Thus, we set the line size as a whole unit to
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participate in AES encryption and LHash calculation for avoiding the errors caused by
sub-blocks order in the decryption process.

5.2.3. Data Write-Back Procedure with D-Cache

In addition to improving the data processing efficiency, the D-Cache principle of local-
ity dynamically activates the data monitor to encrypt and decrypt data blocks. Figure 10
illustrates the internal implementation mechanism of the D-Cache. When CPU needs to
write-back a 32 bit data sub-block to the external main memory, a 32 bit physical address
(ADDphy) corresponding to the data sub-block is sent to the D-Cache through the address
bus. ADDphy consists of three parts, and its high 19 bits ADDphy[31:13] are utilized to be
compare to the high 19 bits identification tag of the indexed cache line appointed by the
ADDphy[12:4] (cache-line depth with 512). If their values after a comparison are equal,
while the Validity (V) mark bit in appointed cache line is “1”, which indicates the D-Cache
hit so that the physical address can accurately find its target address according to the
block offset address of ADDphy[3:0], then the original data sub-block of target address
will be overwritten by the write-back sub-block. Once a target address completes the data
overwriting (where main memory not updated), the Dirty bit in the cache-line turns from
“0” to “1”. Otherwise, the D-Cache searches miss when their values are unequal, which
indicates the write-back target address was not cached in D-Cache or the physical address is
appointed to an invalid cache line (V = “0”), in which the data block of cache-line is invalid.
Afterward, the D-Cache caches the corresponding cache line from the external memory
according to the physical address via the direct mapping method, and then, the CPU
completes the overwriting operation, and the line Dirty bit is marked with “1”. Finally, the
D-Cache synchronizes the data blocks (Dirty =“1”) to the main memory with encryption.
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Figure 10. The implementation mechanism of the D-Cache with the size of 8-KB.

When the D-Cache addressing misses, the CPU prepares to write back data blocks to
external main memory, and data monitor is activated immediately. Algorithm 1 describes
the write-back procedure of a 128-bit data block with authenticated encryption protection.
The hardware implementation of this procedure is shown in Figure 8. Ultimately, the
ciphertext block (4× 32 bits sub-blocks) and its relevant encrypted digital signature are
stored into the data zone and signature zone of the main memory, respectively.
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Algorithm 1 Write-back operation of 128-bit data block stored into external main memory

Inputs: Data, Address
Outputs: Timestamps, Ciphertext, Signature
1: Data← set of datai sub-blocks to write back, 0 ≤ i ≤ 3.
2: Address← set of memory physical addressi, 1 ≤ i ≤ 3.
3: D-Cache Misses, the data monitor is activated;
4: begin: Data monitor detects a write-back signal, counter generates a timestamp (Ts),

Ts + 1, buffered in Ts memory;
5: input: four physical address blocks, four datai orderly;
6: for all Addressi (i = 0; i++; i ≤ 3) do
7: Seedi = addressi XOR timestamp;
8: Key_stream = AESKEY(Seed);
9: Ciphertext = Data XOR Key_stream;

10: end for
11: for all datai (i = 0; i++; i ≤ 3) do
12: LHashtag = fLHash(Address0, timestamp, datai);
13: Signature = LHashtag XOR Key_stream
14: end for
15: Data zone⇐ Ciphertext, Signature zone⇐ Signature;

5.3. Data Read-Load Procedure from External Memory

When CPU requests to read-load a 32 bit data sub-block from the external main mem-
ory, the specific physical address is sent to the D-Cache for searching. If the identification
value of ADDphy [31:13] is same with the high 19 bits identification tag of cache line (ap-
pointed by the ADDphy [12:4]), while the line mark bit of Validity is “1”, this indicates the
D-Cache hits and then it cached data sub-block corresponding to the physical address sent
to the CPU directly. Otherwise, if the D-Cache misses, the D-Cache needs to read four data
sub-blocks (one cache line) from external main memory, and then four physical addresses
are orderly sent into the data monitor and the external memory. In the data monitor,
the timestamp memory pops the timestamp of the address to create the AES key stream
and LHash integrity tag. Meantime, the read-load signal synchronously feeds back the
data ciphertext block and its corresponding encrypted signature in external memory, and
then, the ciphertext block and signature are read into the data monitor for decryption and
integrity checking. The decryption process of ciphertext block is represented as follows.

P = C⊕ AESKEY(Seed) (2)

where P and C denote the plaintext and the ciphertext of 128-bit data block, respectively. In
addition, the integrity tag in encryption period (Tag-encry.) can be obtained by performing
the digital signature XORed with AES key stream, and the LHash engine calculates data
integrity tag in the decryption period (Tag-decry.). Finally, the tag of Tag-decry. in decryption
period is compared with the Tag-encry. of the encryption period in integrity checker.
Once their comparison values have violated the integrity checking, an exception signal
is sent to the exception unit of CPU. The read-load procedure of a ciphertext block with
the integrity verification from the external memory is described in Algorithm 2, and its
hardware implementation is shown in Figure 8. The dynamic data protection technique is
complementary to the instruction monitoring technique against the dynamic data leakage
and data tampering.
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Algorithm 2 Data-load operation of 128-bit ciphertext block from external main memory

Inputs: Address, Ciphertext, Signature
Outputs: Data, Exception
1: Ciphertext← set of the ciphertexti sub-blocks, 0 ≤ i ≤ 3.
2: Address← set of memory physical addressi, 1 ≤ i ≤ 3.
3: D-Cache misses, the data monitor is activated;
4: begin: Data monitor detects read-load signal and physical address, timestamp (Ts)

memory pops out the correlative Ts into seed generator and LHash engine;
5: input: four address blocks, four ciphertexti, Signature;
6: for all Addressi (i = 0; i++; i ≤ 3) do
7: Seedi = {addressi XOR timestamp};
8: Key_stream = AESKEY(Seed);
9: DATA = Ciphertext XOR Key_stream;

10: end for
11: for all datai (i = 0; i++; i ≤ 3) do
12: Tag-decry. = fLHash(Address0, timestamp, datai);
13: Tag-encry. = Signature XOR Key_stream
14: end for
15: if Tag-decry. = Tag-encry. then

Exception = null (“00”) /* integrity valid */
else Exception = assertion (“11”); /* integrity invalid */

6. Experiments and Results

This section presents the experiments and results of SoC to expatiate features of instruc-
tion monitor and data monitor in SMU on performance overhead and security capability.

6.1. Experimental Setup

We implement the proposed SMU into the OR1200 embedded system for ensuring
the instruction execution and data processing security, and the basic frequency of this
scalar RISC processor core is set as @100 MHz, and the internal clock cycles satisfy the
synchronization with the extended SMU. The hardware configurations of I-Cache and
D-Cache support the different sizes of 2, 4, 8, and 16 KB. We first configured the processor
with a typical depth size of 8-KB I-Cache and 8-KB D-Cache, in which the internal structures
consisted of the 512 cache line blocks. We developed the secure embedded system with
SMU in Verilog HDL and performed the logic synthesis and implementation in Xilinx ISE
Design Suite 14.7. This SoC hardware architecture with SMU was evaluated on a Xilinx
Virtex-5 FPGA platform, and GNU Cross Compilation Toolchain or32-elf-gcc matching
with OR1200 instruction set architecture (ISA) was utilized to generate InsCodes. Moreover,
we configured some necessary controllers for the off-chip peripherals, such as the DDR2
SDRAM, parallel flash, serial ports, and Ethernet. In the operational system initialization
stage (Boot Process), the SoC bitstream first is programmed from the flash memory onto
FPGA at power-up; then, the bootloader (U-Boot) boots the Linux kernel to mount the root
file system for execution. We adopted the direct mapped cache with external main memory,
while we defaulted that the initial data stored in main memory is secure and SMU encrypts
the dynamic data during the whole application life cycle.

6.2. Performance Overhead Evaluation

While the CPU executes the instruction codes, the integrated SMU inevitably causes
the performance overhead in the embedded system. In the proposed SoC hardware archi-
tecture, we made some efforts to reduce the performance overhead aiming at instruction
monitor and data monitor, such as the optimizations with I-Cache, M-Cache, and D-Cache.
In the experiments of the performance evaluations, we selected ten various scales embed-
ded in the benchmarking programs from Mibench suite [31] to execute real applications.
The MiBench group is developed based on the EEMBC-CoreMark, which consists of 35 ap-
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plications and spreads across the six classes embedded application scenarios. They are
popular performance benchmarks in academia, industry, and the military. The selected ten
benchmarks first are preprocessed under offline analysis and static extraction via running
Perl scripts to generate the INFre f of BBs; then, the benchmarks are compiled by GNU Cross
Toolchain or32-elf-gcc and downloaded into FPGA for program execution, respectively.
Furthermore, the numbers of total instructions and all BBs of each benchmark are counted,
and the INFre f table required on-chip storage space is also calculated. Considering the
hit rates of I-Cache and D-Cache can influence the performance overhead, we used the
or1ksim [32] simulation software to record the hit rates of the I-Cache and D-Cache, respec-
tively. Hence, the system average performance overheads of the different benchmarks can
be calculated according to the indicator of cycles per instruction (CPI) on the SoC with and
without integrating the SMU.

6.2.1. SMU Performance Overhead

The overall performance overhead of the SoC configured with the SMU is shown
in Table 1. These experimental data present that the benchmark of OpenECC has the
largest number of instructions and BBs, and its INFre f blocks require a maximum on-chip
storage space of 26.30 KB in monitor memory. We also found that the average hit rates
of I-Cache and D-Cache configured with 8-KB both exceeded 98%, and this superiority
means that their high-hit rates can effectively keep a low performance overhead with the
SoC integrating the SMU. The benchmark of AES has the highest D-Cache write-hit rate
and read-hit rate, with both being beyond 99.5%. Its arithmetic characteristics determine a
higher proportion in the data write-back and read-load operations, and the data monitor
causes the performance overhead to be a little higher. The indicator CPI tends to increase
with the number of benchmark instructions, which means the memory access instruction
occupies a large proportion in InsCode. For example, running the benchmarks of OpenECC,
basicmath, and patricia requires a large number of external main memory access, and the
data monitor is activated multiple times in response, and their CPI values are higher than
the other benchmarks. Finally, the experimental data indicate that the average performance
overhead of SoC is 2.18%, ranging from 0.54% (quicksort) to 4.09% (OpenECC).

Table 1. Performance overhead of SoC configured with SMU (8 KB I-Cache and 8 KB D-Cache).

Benchmark Total
Instr. Total BB Memory

Size (KB)
I-Cache

Hit
D-Cache
Read Hit

D-Cache
Write Hit

CPI
without

SMU

CPI with
SMU

Perform.
Overhead

AES 22,170 3535 13.81 99.23% 99.86% 99.73% 3.53 3.64 3.11%
basicmath 26,515 4327 16.90 98.18% 98.65% 98.62% 2.64 2.72 3.03%
bitcount 19,684 3344 13.06 97.98% 96.52% 96.48% 1.67 1.70 1.80%
blowfish 19,128 3247 12.68 97.75% 97.74% 97.67% 3.54 3.61 1.98%

CRC 18,941 3231 12.62 99.61% 98.41% 98.35% 1.72 1.75 1.74%
FFT 13,506 2143 8.37 96.29% 98.52% 98.41% 2.94 2.98 1.36%

OpenECC 56,313 6734 26.30 99.15% 99.17% 98.96% 3.18 3.31 4.09%
patricia 23,130 3853 15.05 97.68% 97.26% 97.05% 1.65 1.69 2.42%

quicksort 6707 1018 3.98 99.23% 99.10% 98.83% 1.86 1.87 0.54%
SHA1 20,455 3400 13.28 98.75% 99.38% 99.27% 2.35 2.39 1.70%

Average – – 13.61 98.39% 98.46% 98.34% 2.51 2.57 2.18%

6.2.2. Different Depths of M-Cache

To further explore the efforts of M-Cache in reducing the performance overhead
caused by SMU, we made experimental statistics about the indicator CPI under different
depths of M-Cache. In order to find the suitable depth which can reach a good tradeoff
between storage space and performance overhead, M-Cache depths are configured with
the several cases of no M-Cache, 16, 32, 64, 128, and 256. The performance overheads of
processor configured with the different depths of M-Cache are presented in Table 2. Due
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to the raising in depth of M-Cache, CPIs continuously reduce, while the M-Cache has
higher hit rates, and its reduction trend slows down when the hit rate reaches a saturation.
Therefore, we integrated the M-Cache with depth(256) into the SMU for achieving a good
performance overhead of 2.18%.

Table 2. Performance overhead of a processor configured with different depths of the monitor cache.

Benchmark CPI
without SMU

CPI with SMU under the Different Depths of M-Cache

No M-Cache Depth (16) Depth (32) Depth (64) Depth (128) Depth (256)

AES 3.53 5.16 4.52 3.98 3.78 3.65 3.64
basicmath 2.64 3.94 3.29 2.95 2.81 2.73 2.72
bitcount 1.67 2.37 2.15 1.87 1.79 1.71 1.70
blowfish 3.54 5.03 4.46 3.94 3.81 3.62 3.61

CRC 1.72 2.27 2.15 2.01 1.83 1.76 1.75
FFT 2.94 5.12 4.30 3.67 3.37 2.99 2.98

OpenECC 3.18 4.78 4.07 3.59 3.44 3.32 3.31
patricia 1.65 2.35 2.10 1.83 1.76 1.70 1.69

quicksort 1.86 2.64 2.38 2.08 1.89 1.87 1.87
SHA1 2.35 3.69 2.95 2.64 2.50 2.40 2.39

Average 2.51 3.74 3.24 2.86 2.60 2.58 2.57

Performance
overhead

– 48.92% 29.07% 13.88% 3.59% 2.67% 2.18%

6.2.3. Different Sizes of D-Cache

To explore the influences of the D-Cache about the hit rate to system performance
overhead, we continue the evaluation experiments by keeping the I-Cache 8-KB unchanged,
and the size of D-Cache is reconfigured as 2, 4, and 16 KB, respectively. Figure 11 shows the
performance overheads of ten selected benchmarks under the different sizes of D-Cache.
Due to the cache enlargement in the addressing space, the performance overhead decreases
with the increase in D-Cache hit rate. At the largest configuration of the 16-KB cache, the
performance overhead of SoC (including SMU) has a significant reduction and ranges from
0.48% to 3.75%. The mechanism of this trend is that while the D-Cache hit rate increases,
and the number of times of data monitor in SMU being activated decreases, because the
authenticated encryption operations incur the additional clock cycles. Moreover, the size
of the 8-KB D-Cache can better reduce the performance overhead incurred by SMU, which
is a suitable size for SoC in the real applications at reasonable resource consumption and
hardware complexity.
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Figure 11. The performance overheads of the selected benchmarks under different sizes of D-Cache.
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6.3. Security Capability Evaluation

In order to confirm the effectiveness of SMU on instruction and data monitoring, the
OpenRISC debugging system OR1K was established to observe the program execution flow,
special register modification, memory access, exception, or interruption record. Hence, we
performed the instruction tampering evaluations in the offline preparation phase of binary
instruction codes. Taking part of the instructions of the benchmark OpenECC (as shown
in Figure 3) to be evaluated, the nontransfer instruction l.nop 0x0 is artificially tampered
with as l.nop 0x1, and the branch transfer instruction l.bf 1f730 is modified to the different
branch address of l.bf 1f734. Meanwhile, we performed the data tampering experiments
at runtime by injecting modified data into external data bus. While the CPU executes the
benchmarks, the condition of D-Cache missing was created artificially, and the three types
data tampering attacks were implemented to modify the ciphertext sub-blocks on the data
bus from external memory, respectively. The debugging system plays an important role in
directly communicating with the CPU and the Wishbone bus, for starting and breaking the
executions of benchmarks. Table 3 presents the security capability tests of the SoC with
SMU under different data tampering attacks. Their output exception binary results are
analyzed, and the corresponding log files are displayed in the upper machine.

Table 3. Security capability tests of SoC with integrating SMU under different tampering attacks.

Tampering
Attacks

Nontransfer Instr.
Tampering

Transfer Instr.
Tampering Spoofing Attack Relocation Attack Replay Attack

Approaches l.nop 0x0
l.nop 0x1

l.bf 1f730
l.bf 1f734

Write: 0x0000201E
Read: 0x0000201E

Write: 0x00002016
Read: 0x00002012

T5: 32’h19d1458a
T3: 32’h17a380b2

Instruction
Tampering

15000000
15000001

13ff fffd
14000001

– – –

Data
Tampering

– – 32’h3a67e420
32’h3a67e000

32’h2b651d54
32’h467f57b2

32’h19d1458a
32’h17a380b2

Exception LHash Error (“01”) LHash Error (“01”)
BB Absence (“10”)

Integrity Error
(“11”)

Integrity Error
(“11”)

Integrity Error
(“11”)

According to the error_log files, the integrity verification for binary instruction codes
at granularity of BBs can recognize any instruction tampering behaviors in transfer and
nontransfer instructions. For the nontransfer instruction, the instruction monitor only
asserts the LHash error (“01”), which means BB integrity checking failed, and then the
error_log reports the corresponding BB number and correct LHash value. There are two
invalid statuses for the transfer instruction, and the LHash error (“01”) is first reported
when current BB integrity checking failed, and then another BB absence (“10”) is reported
when BB start address (target address of branch or jump) searching miss. In the experiments,
data monitor only asserts the integrity error (“11”) while in the system the three types of
data tampering attacks occur.

In theory, the security capability of LHash engine anticollision in instruction monitor
can be represented as follows.

P(m, n) =
1

C(m, n)× 2n (3)

where P(m, n) denotes the success probability for adversaries to guess correctly the digest
value of BB integrity, in which m represents the digest size of LHash algorithm, and n
represents the length of RNG-selected LHash bits from the m digest size. In our design,
the success probability for an adversary to guess the correct integrity digest of each BB

is
1

C(96, 16)× 216 , and this is almost impossible to achieve it during the period of each

BB execution. In data protection, the 128 bits AES and 32 bits digital signature make it



Micromachines 2021, 12, 1450 21 of 24

impossible for the attacker to reversely derive the desired plaintext and actualize tampering
attack successfully in limited time, and this confidentiality method has a good robustness
for resisting bus monitoring and offline analysis.

6.4. Comparison of Security and Practicality

In the routine protective measures, security and practicality are two most important
metrics to evaluate hardware-assisted techniques. Our proposed SMU is a fully hardware-
implemented unit, and it works at real-time without any modification on compiler and
processor core, so that is easily transplanted to other embedded processors with different
ISAs. Therefore, the comprehensive practicality is evaluated with the ISA extension,
compiler modification, and performance overhead. Security capability is evaluated by the
defense mechanisms against the instruction tampering, data tampering, and data leakage.
We divided the security capability into the following four levels.

• Level-I: Only defend against instruction tampering or data tampering.
• Level-II: Both defend against data tampering and data leakage.
• Level-III: Both defend against instruction tampering and data leakage.
• Level-IV: Both defend against instruction tampering, data tampering, and data leakage.

As shown in Table 4, our proposed SMU achieves the instruction monitoring and data
monitoring at a low (2.18%) performance overhead, and it is not necessary to extend ISAs
and modify compilers. In addition, the SMU can achieve the level-IV without leaking dy-
namic data during data exchange with the main memory. Hence, the protection technology
of SMU has a comprehensive security capability and is easier to implement than others.

Table 4. Comparison of security capability and comprehensive practicality.

Security
Mechanism

Security Capability Comprehensive Practicality

Level Instruction
Tampering

Data
Tampering

Data
Leakage

ISA
Extension

Compiler
Modification

Performance
Overhead

HAM [33] I Yes No No No No Medi (5.59%)
SM-FR [23] I Yes No No No No High (9.33%)

HardRoot [34] I No Yes No No No Low (2.80%)
KENALI [35] I No Yes No No No High (7–15%)
FEDTIC [22] II No Yes Yes No No Medi (7.60%)

InfoShield [36] II No Yes Yes Yes Yes Low (<1.0%)
HEP [18] II No Yes Yes No No Low (0.94%)

CFI-LEA [37] III Yes No Yes Yes Yes Low (3.19%)
WLUD-NBL [9] III Yes No Yes No No Low (3.60%)

CCFI [38] III Yes No Yes Yes Yes High (52.0%)

Our SMU IV Yes Yes Yes No No Low (2.18%)

7. Hardware Implementation Evaluation

This integrated SMU inevitably increases the SoC hardware overhead, chip area, and
power consumption. The RTL-level architecture is synthesized, implemented, and verified
on a Xilinx Virtex-5 FPGA platform. In addition, the Synopsys Design Compiler and ICC
are used to synthesize the secure SoC into gate-level netlists and then place and route
with SMIC 130-nm CMOS standard cell library. Table 5 shows the overall SoC hardware
overhead on FPGA and the ASIC implementation on chip area and power consumption.
The occupied slices of SMU is about 10.5% on the total SoC, and the BlockRAM is the
most consumed storage resources for storing INFre f table and timestamps on FPGA. The
hardware-friendly LHash engine with a Feistel-PG internal permutation structure requires
817 gate elements (GE), which is fewer than the another lightweight hash implementation
of PHOTON [39], which internal permutation costs 1120 GE. In the ASIC of SoC, our SMU
is a relatively smaller hardware module which occupies 36.4% of the chip area (larger than
10.5%) after the route due to the RAM library placements; meanwhile, its dynamic power
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keeps a low power consumption. The proposed SMU shows a good balance between
security and practicality.

Table 5. The SoC hardware overhead on FPGA and ASIC implementation.

Type Resource Utilization SoC SMU

FPGA

Slice Registers 2674 1058
Slice LUTs 17,836 2235

Occupied Slices 7762 837
BlockRAM/FIFO 58 53

ASIC Chip Area 2.94 mm2 1.07 mm2

Power Consumption 57.2 mW 7.9 mW

8. Conclusions

Instruction execution and data processing are the two important protective objects
of embedded systems against various security threats, and the existing techniques make
it hard to real-time monitor both instruction tampering, data tampering, and data leak-
age attacks simultaneously. This paper presents an embedded system by integrating an
SMU for real-time guaranteeing instruction execution and data processing security. The
hardware-assisted SMU architecture employs an instruction monitor to provide instruction
integrity monitoring for preventing the malicious instruction tampering caused by the
hardware Trojan or artificial modification. Meanwhile, the SMU also integrates a data mon-
itor to provide the authenticated encryption for defending dynamic data leakages and data
tampering attacks. Our proposed SMU is a comprehensive solution to enhance SoC pro-
gram execution and data processing security against the diversiform off-chip attacks. The
implementation results on the Virtex-5 FPGA platform show that the SMU can provide the
high-efficiency monitoring for instruction and data while maintaining a low performance
overhead. Its overhead ranged from 0.54% to 4.09% on typical 8-KB I/D-Caches. Moreover,
the security capability evaluations show that the SMU can detect transfer and nontransfer
instruction modifications and three types of data tampering attacks. Both instruction and
data monitoring features incur minimal resource overhead and performance degradation.
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