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Abstract: AlGaN/GaN metal-oxide semiconductor high electron mobility transistors (MOS-HEMTs)
with undoped ferroelectric HfO2 have been investigated. Annealing is often a critical step for
improving the quality of as-deposited amorphous gate oxides. Thermal treatment of HfO2 gate
dielectric, however, is known to degrade the oxide/nitride interface due to the formation of Ga-
containing oxide. In this work, the undoped HfO2 gate dielectric was spike-annealed at 600 ◦C after
the film was deposited by atomic layer deposition to improve the ferroelectricity without degrading
the interface. As a result, the subthreshold slope of AlGaN/GaN MOS-HEMTs close to 60 mV/dec
and on/off ratio>109 were achieved. These results suggest optimizing the HfO2/nitride interface can
be a critical step towards a low-loss high-power switching device.

Keywords: MOS-HEMT; ALD HfO2; Spike annealing; ferroelectric

1. Introduction

III-Nitrides (InN, GaN, and AlN) are well-known for their intrinsic spontaneous polariza-
tion and piezo-electricity. Furthermore, AlN and GaN exhibit large bandgap energy of 6.2 and
3.4 eV, respectively. Owing to these excellent material properties, AlGaN/GaN-based HEMTs
have been extensively studied and are being commercialized for high-frequency and high-
power applications [1–3]. Along with the vast improvement of material quality of nitrides,
there have been significant improvements in device design to enhance the performance and
reliability of HEMTs throughout the years [4,5]. To reduce the gate leakage and drain current
collapse, for example, MOS-HEMTs have been developed with various high-k dielectrics such
as Al2O3, Y2O3, and HfO2 [6–8]. HfO2 is a very promising gate dielectric for HEMTs due to
its large bandgap (5.3–5.8 eV) and high dielectric constant (20–25).

HfO2 is especially interesting as a gate dielectric because of its ferroelectricity [9].
Ferroelectric gate can lead to a host of new and novel devices such as nonvolatile memory,
radio-frequency, and neuromorphic devices [10,11]. When combined with AlGaN/GaN
HEMTs, the reconfigurable polarization of HfO2 means polarization engineering for 2-
dimensional electron gas (2DEG) channel. One of the advantages of polarization engi-
neering is the ability to modulate the carrier density of 2DEG to lower the subthreshold
slope (SS) and therefore reduce switching power loss. A large threshold voltage tuning
(range: 2.8 V) and reduction of SS have been demonstrated with Hf0.5Zr0.5O2-based ferro-
electric gate HEMTs recently [12]. While very promising, the effectiveness of a HfO2-based
ferroelectric gate for HEMTs remains somewhat elusive as the reported average values
of SS were still relatively large (160–180 mV/dec). Furthermore, it has been reported the
interface of HfO2/GaN prone to the formation of unfavorable Ga–O bonds, which could
potentially become interfacial traps [13].

Micromachines 2021, 12, 1441. https://doi.org/10.3390/mi12121441 https://www.mdpi.com/journal/micromachines

https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://orcid.org/0000-0002-8887-5295
https://orcid.org/0000-0002-8125-6141
https://orcid.org/0000-0002-1599-5034
https://orcid.org/0000-0002-7826-9005
https://doi.org/10.3390/mi12121441
https://doi.org/10.3390/mi12121441
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/mi12121441
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/article/10.3390/mi12121441?type=check_update&version=1


Micromachines 2021, 12, 1441 2 of 8

In this work, AlGaN/GaN-based MOS-HEMTs with SS near 60 mV/dec and an
on/off ratio of >109 have been demonstrated. Undoped HfO2 was deposited by ALD as
a gate dielectric. After spike-annealing, the ferroelectric property of HfO2 was assessed
via high-resolution transmission electron microscopy (HR-TEM) and polarization voltage
(P-V) PUND (Positive Up Negative Down) measurements on the fabricated HfO2/AlGaN
MOSCAP. Due to the atomically abrupt HfO2/nitride interface and the spike annealing-
induced orthorhombic phase in HfO2 film, the counterclockwise ferroelectric hysteresis
was observed. As a result, a low SS value near 60 mV/dec could be achieved without
compromising the overall performance of AlGaN/GaN MOS-HEMTs.

2. Experimental

Figure 1a shows the cross-sectional schematic of fabricated MOS-HEMTs with HfO2
gate dielectric. The AlGaN/GaN structure was grown by metal–organic chemical vapor
deposition on a sapphire substrate, consisting of a 50-nm GaN nucleation layer, a 2 µm
semi-insulating GaN:Fe buffer, a 50 nm undoped GaN channel, 1 nm AlN interlayer,
a 25 nm Al0.25Ga0.75N barrier, and a 3 nm GaN capping layer. The room-temperature
Hall mobility and sheet carrier concentration were 2200 cm2/Vs and 7.9 × 1012 cm−2,
respectively. After cleaning the sample using acetone and 2-isopropanol (IPA) for 10 min
each in an ultrasonicator, a 30 nm thick (1Å/cycle) HfO2 dielectric layer was deposited by
atomic layer deposition (ALD) at the stage temperature of 350 ◦C. For the ALD process
of HfO2, tetrakis (ethylmethylamino) hafnium (TEMAH) was the precursor and ozone
was the reactant. A mesa was formed using Cl2/BCl3 inductively-coupled plasma reactive
ion etcher. After the mesa formation, a Ti/Al (75/180nm) stack was deposited by and
an e-beam evaporator for the ohmic source (S) and drain (D) contacts. These contacts
and the gate oxide were spike-annealed at 600 ◦C for 90 sec and 900 ◦C for 30 sec using
a rapid thermal annealing (RTA) process in the N2 atmosphere [14]. The ramp-up rates
were 30 ◦C/sec from room temperature to 600 ◦C and 90 ◦C/sec from 600 to 900 ◦C. The
cooling rate was 150 ◦C/min. The purpose of the first annealing step is twofold. While
it is a temperature stabilization step before a spike annealing step, it is also to improve
the ohmic contact and induce a phase transition within HfO2 for ferroelectricity. The
second annealing step is solely to lower the contact resistance. The annealing had to be
shortened to protect the ferroelectric phase in HfO2 and maintain the abrupt interface. As a
result, the temperature had to be raised above normal ohmic contact annealing temperature
(850 ◦C). To minimize the gate leakage through the grain boundary between the crystallized
HfO2, a 30 nm thick amorphous HfO2 dielectric layer was deposited under the same ALD
condition [15,16]. Finally, Ni/Au (20/50 nm) contact was formed on the gate dielectric.
Figure 1b shows summarized process steps.
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The electrical performance of fabricated MOS-HEMT was conducted via DC and
PUND measurement. A 4200A-SCS semiconductor parameter analyzer ( Solon, OH, USA)
was used for I-V measurements. PMU-4225 (Solon, OH, USA) with a remote pulse measure
unit is used to perform PUND measurements. Additional source meter and DC power
supply (Keithley 2410 and 2220G, Solon, OH, USA) were set up to apply a high voltage
and measure breakdown voltage. The structural and interfacial analyses of the oxide-
semiconductor structure were performed using TEM.

3. Results and Discussion

It has been reported that HfO2 can be ferroelectric when doped with elements includ-
ing Al, Gd, Si, Zr, etc. [17]. The origin of ferroelectricity in the doped HfO2 film has been
associated with a non-centrosymmetric orthorhombic phase (Pca21) [18]. Undoped HfO2
can also display ferroelectric characteristics when an orthorhombic phase is present [19].
Therefore, regardless of doping, the key to the ferroelectric behavior of HfO2 is strongly
related to an orthorhombic phase within the matrix. Figure 2 shows the cross-sectional
TEM image of HfO2 on AlGaN after the second annealing at 900 ◦C for 30 sec. Given
that the phase transition of HfO2 starts at ~500 ◦C [19], the orthorhombic HfO2 was likely
formed during the fast short annealing step at 600 ◦C. While undesirable for the HfO2
layer, a 900 ◦C annealing step is necessary for the ohmic contacts. According to the cross-
sectional TEM image, there was no evidence that the second contact annealing degraded
the HfO2/AlGaN interface. The atomically abrupt interface between HfO2 and AlGaN
was observed as indicated by the white dotted box in Figure 2a. The diffraction patterns
(zone axis = [100]) from regions 1 and 2 are shown in Figure 2b,c, respectively. Based on
the comparison between the measured and simulated patterns (the insets in Figure 2b,c),
one can see regions 1 and 2 correspond to the orthorhombic (space group: Pc21) and
tetragonal (space group: P42/nmc) phase, respectively. In the case of region 2, however,
note that the diffraction pattern is a mixture of both phases. This non-centrosymmetric
orthorhombic phase within the HfO2 film is likely the origin of the gate voltage-dependent
polarization switching shown in Figure 3. Note that the polarization charge measured from
our samples is relatively low in comparison with an undoped HfO2 layer sandwiched in
between TiN. This is likely because of the absence of a capping layer that suppresses the
phase transition from the ferroelectric to paraelectric phase [20]. Although the ferroelectric
phase and the abrupt HfO2/AlGaN interface were confirmed by TEM, the 2-step annealing
process without a capping layer likely weakened the ferroelectric strength. Details of the
ferroelectric property are discussed below.

Due to the unconventional S/D metal scheme adopted in our device structure, transfer
length method (TLM) measurements were conducted to characterize the contact resistance
of the S/D metal scheme in our device structure [21]. The total resistance (R) for variable
gap spacings from 20 µm to 100 µm was calculated from the IDS vs. VDS curves in Figure 4a.
After the measured R over the gap spacing is plotted, the contact resistance (Rc) and specific
contact resistivity (ρc) were extracted as 19.1 Ω·mm and 1.8 × 10−3 Ω·cm2, respectively
through a linear fit on the results as shown in Figure 4b. The relatively high contact
resistance is attributed to the contact structure, which is contacted to the 2DEG through the
corner of the sidewall, not through AlGaN/GaN layer. However, the sheet resistance (Rsh)
is extracted as 374 ohm/�, which is close to the sheet resistance measured by the Van der
Pauw method. Therefore, the relatively high contact resistance does not seem to interfere
with the ferroelectric effect of the spike-annealed HfO2 layer on 2DEG.
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To examine the ferroelectricity of the HfO2 layer, the P-V PUND measurements were
performed on the fabricated HfO2/AlGaN MOSCAP. PUND is a method that utilizes the
displacement current (D) produced across a ferroelectric film. Before applying the positive
switching voltage, D equals 2PS + εE, where PS is a spontaneous polarization field, ε is a
dielectric constant of an insulator, and E is an applied field. The second positive pulse is
a non-switching pulse that makes D simply εE. Therefore, the spontaneous polarization
charge induced by a ferroelectric film is given by the difference in D between the first and
second pulses. When it comes to measuring the actual polarization charge in a MOSCAP,
a typical metal–insulator–metal (MIM) capacitor is not ideal. The measured polarization
charge from a MIM is often different from the actual polarization charge in a real MOS
device due to the surface potential of the semiconductor and trapped-charge induced
screening of polarization. The leakage current can also be affected by the difference in the
barrier height between a MOSCAP and MIM. Furthermore, the crystallinity of a ferroelectric
film deposited on metal is different from the one deposited on the semiconductor. As the
ferroelectric property is dependent on the domains, crystallinity plays a critical role in
the magnitude of spontaneous polarization. Therefore, this work followed the method
suggested in [24] to perform PUND on our MOSCAP [22–24]. Figure 3a shows the current
(orange) measured in response to the PUND pulses; P and N voltage pulses correspond to
switching polarization. The measured current for N and D pulses is larger than that of P
and U, which leads to different magnitudes for each polarization half-loop as calculated in
Figure 3b. Moreover, the amount of switched charge for the N pulse is larger compared with
the P pulse; the estimated induced charge ranges from 0.11 to 0.22 µC/cm2. Considering the
amount of 2DEG is ~1.3 µC/cm2 (carrier concentration = 7.9 × 1012/cm2), these additional
charges induced by the polarization are expected to increase the carrier density of 2DEG
by ~10% and thereby lower the subthreshold swing of HEMTs.

Figure 5 shows the electrical characteristics of a representative device with LG of
10 µm, channel length (LDS) of 30 µm, and channel width (W) of 100 µm. Figure 5a shows
the transfer curves (IDS–VGS) normalized with W for VDS = 2 and 10 V. The device exhibits a
high on/off ratio of >109 and a negligible hysteresis (∆V) related to the interfacial traps [25].
∆V is approximately 160 and 70 mV at VDS of 2 and 10 V, respectively. IDS is lower than
state-of-the-art devices due to the long channel length and unoptimized device structure.
However, Figure 5b illustrates the subthreshold slope (SS) close to 60 mV/dec during the
transient owing to the abrupt HfO2 (with spike RTA)/GaN interface confirmed by TEM
analyses. The SS of 73.6 and 58.9 mV/dec is calculated from

S =
dVGS

d(log10 IDS)
(1)

under forward and backward VGS sweeps, respectively, with 0.05 V/step and VDS = 2 V. In
addition to the TEM analysis in Figure 2 and small ∆V, the interface trap density (Dit) was
estimated using the equation

Dit =
Ci
q2

(
qSS

kTln10
− 1

)
(2)

The obtained Dit of 8.64 × 1011 eV−1 cm−2 is comparable to Dit of more conventional
MOS-HEMTs such as the ones with Al2O3. Therefore, the spike-annealing process does
not seem to degrade the interface. Considering the similar Dit and material quality of
our devices to the others, the lower SS of our devices is likely to be related to the weak
ferroelectricity of the undoped HfO2 layer. Furthermore, note that even lower SS was
observed during the backward sweep due to the ferroelectric dipoles within the HfO2
aligned toward the direction of HEMTs dipoles [26]. Figure 5c shows negligible current
crowding and therefore good ohmic contacts. At VGS = −3 V, however, self-heating of
the device led to the lowering of IDS in the saturation region. As shown by Figure 5d, the
off-state breakdown of the device (LGD = 10 µm) occurs at VDS of ~400 V with VGS = −9 V.
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The observed off-state IDS was a few orders of magnitude higher than other measured I-V
results in this work due to the high voltage measurement set-up.
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Figure 5. (a) IDS-VGS and transconductance curves with VDS at 2 V (orange) and 10 V (navy). (b) Measured subthreshold
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Figure 6a shows the on/off ratio and SS values as a function of LG. A high on/off
ratio of >109 was maintained while exhibiting steep SS below 60 mV/dec under backward
VGS sweep. Figure 6b summarizes the reported SS and on/off ratio. Our MOS-HEMTs
(LG = 10 µm) show a relatively high on/off ratio of >109 with near-ideal SS of 60 mV/dec.
This study strongly suggests the spike annealing of HfO2 at 600 ◦C can induce ferroelectric-
ity while maintaining the pristine HfO2/GaN interface with low Dit.
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4. Conclusions

In summary, we investigated the impact of undoped HfO2-based ferroelectric gate
dielectric on the device performance of AlGaN/GaN HEMTs. The spike annealing process
at 600 ◦C induced the orthorhombic phase, which is likely the origin of observed ferroelec-
tric behavior. TEM analysis confirmed the atomically abrupt HfO2/nitride interface with
no interlayer and an overall Dit of 8.64 × 1011 eV−1 cm−2 was estimated from the SS. The
combination of the enhanced ferroelectricity and high interfacial quality led to SS close
to 60 mV/dec and on/off ratio>109. These results show that the HfO2-based ferroelectric
gate can improve the efficiency of AlGaN/GaN MOS-HEMTs without compromising the
overall performance of HEMTs.
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