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Abstract: Previous research on friction calculation models has mainly focused on static friction, whereas
sliding friction calculation models are rarely reported. In this paper, a novel sliding friction model for
realizing a dry spherical flat contact with a roughness effect at the micro/nano scale is proposed. This
model yields the sliding friction by the change in the periodic substrate potential, adopts the basic
assumptions of the Greenwood–Williamson random contact model about asperities, and assumes
that the contact area between a rigid sphere and a nominal rough flat satisfies the condition of
interfacial friction. It subsequently employs a statistical method to determine the total sliding friction
force, and finally, the feasibility of this model presented is verified by atomic force microscopy
friction experiments. The comparison results show that the deviations of the sliding friction force and
coefficient between the theoretical calculated values and the experimental values are in a relatively
acceptable range for the samples with a small plasticity index (Ψ ≤ 1).

Keywords: sliding friction; potential barrier theory; rough surfaces in contact; micro/nano scale

1. Introduction

Friction plays a very important role in engineering and daily life. Since Amontons
formally proposed the two classical friction laws by experimental research in 1699, theoret-
ical studies on friction have been conducted for hundreds of years, and many scientists
have been actively exploring the origins of friction. Coulomb did not have the benefit of
atomic-scale knowledge of surface morphology. In his search for a fundamental explana-
tion of the origins of friction, he considered interlocking asperities and surface roughness
as the causes [1]. In 1929, Tomlinson first proposed the molecular interaction theory of
friction, according to which the cause of friction is the energy loss due to the intermolec-
ular forces in the sliding process. With the gradual understanding of the phononic and
electronic mechanisms, many energy dissipation friction models have been proposed, such
as the Frenkel-Kontorova-Tomlinson model [2], Prandtl-Tomlinson model [3], Cobblestone
Oscillator model [4], and so on.

A significant advancement was achieved in the 1950s when Bowden and Tabor [5]
reported that when two surfaces touch each other, the actual microscopic area of the contact
is typically 10,000 times less than the apparent macroscopic contact area. The vast majority
of surfaces are not atomically flat, and when two such surfaces touch, their contact occurs
only at their asperities. Consequently, friction is independent of the apparent contact area,
whereas it is proportional to the true contact area. To understand friction, it is important to
grasp the effects of surface morphology and load on the tribological performance. Hence,
numerous models incorporate the results of the finite element method (FEM) [6–8] and
sliding inception of a single asperity in a statistical representation of surface roughness [9]
to obtain the maximum static friction. Typical models include the KE model [10], CKE
model [11], and so on [12–16]. Based on Tabor’s friction theory, classical contact mechanics,
finite element analysis, statistics, etc., many static friction calculation models for rough
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surface contact have been obtained, but they still lack sufficient experimental verification.
However, the application of classical contact mechanics in the calculation of sliding friction
is difficult, and the calculation models of sliding friction are rarely reported, particularly
for rough surface contact, whereas it is easy to measure the sliding friction using modern
techniques, such as quartz crystal microbalance, atomic force microscope (AFM) [17], etc.
Sliding friction generally involves a stick-slip phenomenon, which was confirmed by
Mate et al. [18], whose experimental results showed that the friction force on a probe tip
fluctuates periodically with the position of a graphite sample. The change period was
approximately 0.25 nm, which is identical to the honeycomb hexagonal structure of the
graphite surface along the moving direction. The experiments of Mate et al. presented the
relationship between the interfacial friction and the material microstructure for the first
time. Therefore, the magnitude of sliding friction can be reflected by the change in the
periodic substrate potential. However, the difficulty in the calculation of sliding friction
is that the friction process is accompanied by energy dissipation, wear, etc. The relevant
models [19] are basically in the stage of numerical simulation and have not been verified
by experiments.

Based on the discussion above, a novel calculation model of unlubricated sliding fric-
tion with a roughness effect was investigated in this study. We established an unlubricated
spherical contact with the basic assumptions of the Greenwood-Williamson random contact
model and assumed that the real contact area satisfies the interfacial friction condition.
Subsequently, we used the contact interfacial potential theory and a statistical method
to solve the calculation problem of sliding friction. Finally, the feasibility of the model
proposed in this paper was verified by AFM friction experiments.

2. Modeling
2.1. Contact Model of Sphere and Nominal Rough Flat

As shown in [9,20], the roughness of a sphere can be transferred to a nominal flat
without changing the original contact problem; hence, a model of an unlubricated contact
between a smooth sphere and a nominal rough flat is presented in Figure 1. The sphere
and the contacting asperities deform, resulting in the real contact area, A0, which supports
the normal load, P. The peak of the sphere is flattened by the displacement, ω, forming a
circular contact area of radius, bn. It should be stated that representing the rough circular
contact area as a flat is only a simplified approximation. R is the radius of the rigid sphere,
and the separations, d(r) and h(r), denote the distance from the sphere surface to the mean
of the asperity summit heights and the mean of the surface heights at the radial coordinate,
r, respectively [21].
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Figure 1. Contact model of rigid sphere and nominally rough flat [22]. 
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Figure 1. Contact model of rigid sphere and nominally rough flat [22].

Moreover, the following basic assumptions used in [9,20] for a nominally flat and
sphere contact are adopted in this study:

1. The rough surface is isotropic.
2. All asperity summits are spherical and have the same radius, ρ, whereas their heights

vary randomly.
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3. There is no interaction and bulk deformation of the asperities.

The contact friction between the smooth ball and the rough flat is a statistical result
of the contact between each equivalent rough peak and the smooth rigid surface under
the combined action of the normal and tangential loads. Therefore, the friction between a
single rough peak and the smooth rigid surface is first analyzed.

2.2. Friction Model of Single Asperity Based on Potential Barrier Theory

Under the action of the normal force, a rough peak contacts the rigid smooth sphere
surface and deforms. It is assumed that the positions of the interfacial atoms are fully
adjusted during the deformation process, and no wear is caused by a macro slip. Simulta-
neously, it is assumed that the contact surface is smooth and clean, and there is no oxide
and adsorption film formation. Therefore, the interfacial atoms of the two contact surfaces
directly participate in the contact, and the contact parts meet the interfacial friction con-
ditions [1]. Since a solid has strong volume dependence characteristics, the atoms on the
interface can be regarded as dense stacked rigid balls, and because the diameter of the
smooth sphere is much larger than that of a rough peak, the smooth sphere is approxi-
mately planar at the contact part. The contact of asperity i with the smooth sphere is shown
in Figure 2.
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Figure 2. Schematic of contact between asperity i and smooth sphere.

According to the contact interfacial potential barrier theory [23], the position of an
interfacial atom corresponds to a certain potential energy; to make the object move, the
external force must overcome this interfacial atomic potential energy. The slip friction,
Fslip_i, of asperity i is calculated as follows:

Fslip_i = ki × g(T)× ∆Ui
∆xi

(1)

where ki is the position commensurate coefficient, and if the atoms at the contact interface
of asperity i are fully adjusted, then coefficient ki is defined as 1. g(T) is the temperature
coefficient, which is extremely complicated to fix, because the friction process is accompa-
nied by thermoelastic effect [24,25], environmental factor, and so on; an approach to obtain
the temperature coefficient is by molecular dynamics calculations [15]. ∆Ui is the change in
the interfacial potential energy of asperity i with displacement ∆xi, and it is given by [26]
as follows:

∆Ui = Ai × ∆E× [1− E∗(a∗)] (2)

where Ai is the real contact area of asperity i, ∆E is the adhesion energy per unit area at
balance distance, am, and ∆E = w, where w is the potential energy or adhesion energy of
the contact interface per unit area as follows [15]:

w = γA + γB − γAB (3)
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where γA and γB are the surface free energies of the two contact surfaces, respectively, and
γAB is the interfacial free energy. For the same friction pair material, γA = γB = γ and
γAB ≈ 0, and thus, ∆E = 2γ.

Moreover, E∗(a∗) is a universal approximate function expressed by the Rydberg
function [26] as follows:

E∗(a∗) = (1 + a∗)e−a∗ (4)

where a∗ is the interfacial clearance after a proportional adjustment,

a∗ = (y− am)/ls (5)

where y is the interfacial clearance, and ls is the length ratio parameter.

ls =
√

2γd/Eint ≈ 2
√

2γ/(12πEbodrWS) (6)

where Eint is the elastic modulus of the interface, Ebod is the bulk modulus of elasticity, and
rWS is the Wigner-Seitz radius.

The a∗ in Equation (5) can be calculated based on the crystal structure [16]. For
simplicity, only one type of friction material is analyzed in the present study. For a material
with a face-centered cubic structure (FCC), as shown in Figure 3a,b, the variation in the
interfacial clearance in each potential cycle can be obtained from

δ = amax − am =

√
2

2
a0 −

1
2

a0 ≈ 0.207a0 (7)

where a0 is the lattice constant. For a material with a body-centered cubic structure (BCC),
the calculated result is the same (δ ≈ 0.207a0). Therefore, for FCC and BCC materials,
we obtain:

a∗ = δ/ls ≈ 0.207a0/ls. (8)
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Substituting Equations (2), (4), and (8) into Equation (1), and using ∆E = 2γ, the slip
friction of a single rough peak of the same friction pair materials (FCC or BCC) in a single
potential energy cycle can be obtained as follows:

Fslip_i =
ki × g(T)× 2γ× Ai

a0

[
1−

(
1 +

0.207a0

ls

)
e−

0.207a0
ls

]
. (9)

2.3. Slip Friction of Rough Surface Contact

The slip contact friction of rough surfaces is a statistical result of the friction of each
asperity; therefore, using Equation (9), we have the polynomial form [27]:

Fslip =
n

∑
i=1

Fslip_i = g(T)
2γ

a0

[
1−

(
1 +

0.207a0

ls

)
e−

0.207a0
ls

] n

∑
i=1

ki·Ai. (10)

During loading, the real contact area, A, of each individual asperity depends only on
its own interference, ω, which is defined as ω = z− d. The total real contact area, A0, can
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be obtained by summing the contributions of all contacting individual asperities using a
statistical model [22], hence,

A0 = η
∫ R

0
2π

[∫ ∞

d
A(z− d)φ(z)dz

]
rdr (11)

where η is the area density of asperities, z is an asperity height (see Figure 1), and φ(z) is
the statistical height distribution function of the asperities. The peak height distributions
for most engineering surfaces are normal, and their Gaussian distribution is as follows:

φ(z) =
1√

2πσs
exp(−0.5(

z
σs
)

2
) (12)

where σs is the standard deviation of the asperity summit heights. If the rough surface is
non-Gaussian, the Pearson distribution can be used for the fitting [28].

The real area of a spherical contact, A, has been studied by many scholars [6,29],
and the calculation of the spherical contact area, A, under a perfect slip condition is
adopted from [29].

The critical interference, ωc, and the critical load, Pc, in a perfect slip condition were
provided by Brizmer et al. [29] as follows:

ωc =

(
Cv

π
(
1− v2)

2

(
Y0

E

))2

ρ (13)

Pc =
π3Y0

6
C3

v

(
ρ
(

1− v2
)(Y0

E

))2
(14)

where Cv is the linear function of Poisson’s ratio, v (see Table 1). Parameters Y0, E, and ρ
are the virgin yield stress, Young modulus, and asperity summit radius, respectively.

Table 1. List of functions of Poisson’s ratio [29].

Symbol Function

Cv 1.234 + 1.256v
α 0.25 + 0.125v
β 0.174 + 0.08v

Corresponding to the yield inception under the slip contact condition, the critical
value of the contact area follows from the Hertz solution as

Ac = πωcρ. (15)

The results of the contact area and contact load during the slip as function of interfer-
ence, ω, in the elastic regime, ω/ωc < 1, from the Hertz solution are

Ael = πωρ (16)

Pel =
4
3

Eρ1/2ω3/2. (17)

In the elastic-plastic regime, ω/ωc > 1, and the contact area and contact load during
the slip from [29] are

Aep =
ω

ωc

(
1 + exp

(
1−

(
ω

ωc

)α)−1
)

Ac (18)
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Pep =

(
ω

ωc

)3/2
1− exp

(
1−

(
ω

ωc

)β
)−1

Pc (19)

where α and β are linear functions of Poisson’s ratio, v (see Table 1).
The total real contact area mainly divides into two parts (the area of elastic regime, ω/ωc < 1,

and the area of elastic-plastic regime, ω/ωc > 1), so, substituting Equations (16) and (18) into
Equation (11), one can obtain the total real contact area:

A0 = 2π2ηρ
∫ R

0

[∫ d+ωc

d
(z− d)φ(z)dz +

∫ ∞

d+ωc
(z− d)(1 + Iλ)φ(z)dz

]
rdr. (20)

Moreover, using Equations (14), (17), and (19), the total contact load under the perfect
slip condition is obtained statistically as follows [22]:

P = 2πη
∫ R

0
r

[
4
3

Eρ1/2
∫ d+ωc

d
(z− d)3/2φ(z)dz +

∫ ∞

d+ωc
(

z− d
ωc

)
3/2

(1− Iκ)Pcφ(z)dz

]
dr (21)

where Iλ in Equation (20) and Iκ in Equation (21) have the following forms:

Iλ = exp
(

1−
(

ω

ωc

)α)−1

(22)

Iκ = exp

(
1−

(
ω

ωc

)β
)−1

. (23)

For the conciseness of the expression in Equation (10), we substituted this operator
with symbol D as follows:

D = 1−
(

1 +
0.207a0

ls

)
e−

0.207a0
ls . (24)

To simplify the calculation, assuming that the atoms at the contact interfaces of all
asperities are fully adjusted, ki = 1, and using Equations (20) and (24), Equation (10) can
be expressed in an integral form as follows:

Fslip =
4π2ηρg(T)Dγ

a0

∫ R

0

[∫ d+ωc

d
(z− d)φ(z)dz +

∫ ∞

d+ωc
(z− d)(1 + Iλ)φ(z)dz

]
rdr. (25)

Regardless of the adhesion force, the slip friction coefficient can be simply expressed as

µ =
Fslip

P
. (26)

3. Experiments

To verify the feasibility of the slip friction calculation model established in this study,
we prepare some rough flat samples and obtain their topography by AFM. Subsequently,
AFM friction experiments are conducted on the samples using a spherical probe, and finally,
the friction results obtained from the AFM experiments are compared with the friction
results calculated theoretically. The specific experimental steps are as follows:

1. Sample preparation

The experiments examine the spherical contact friction for the same friction pair ma-
terials; therefore, the material of the ball probe is required to be consistent with that of the
rough surface sample. The material of the mainstream AFM probe available in the market is
monocrystalline silicon; therefore, a common silicon probe and the monocrystalline silicon
wafer are preferred for probes and samples in this study. Si is the dominant material in MEMS,
due to its crystal structure: the entire solid is made up of atoms in an orderly array [30].
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There are many methods for producing surfaces with different roughness on a silicon
wafer: micromachining, LIGA process, wet etching, and dry etching. In the experiments of
this study, wet etching is conducted on an N-type polished silicon wafer to obtain samples.
There are many reagents for wet etching, including acid etchants, alkaline corrosion agents,
and organic corrosion agents. The corrosion solution used in the experiments is a mixture
of potassium hydroxide solution (KOH + H2O, the mass fraction of KOH is 10%) and
isopropanol solution (the mass fraction of isopropanol is 25%), and the ratio of the KOH
solution to the isopropyl alcohol solution is 9:1. The corrosion mechanism is as follows [31]:

KOH + H2O→ K+ + 2OH− + H+ (27)

Si+2OH− + 4H2O→ Si(OH)2−
6 + 2H2 ↑ (28)

Si(OH)2−
6 +6(CH 3)2CHOH→ [Si(OC 3H7)6]

2− + 6H2O. (29)

In the experiments, samples 1–4 were obtained by placing [100] single polished
monocrystalline silicon wafer (Guangzhou Fangdao Silicon Material Co., Ltd., Guangzhou,
China) in the corrosion solution and etching at a constant temperature of 70 ◦C for 5 min,
10 min, 15 min, and 20 min, respectively. Samples with different roughness levels were
prepared by different wet etching times. The sample size during corrosion is required to
produce four subsamples, which not only ensures the consistency of the characteristics
of the subsamples but also avoids the failure of the subsequent experiments due to a
sole sample.

2. Sample topography parameter measurement

The topography and slip friction were measured via AFM (Beijing Nano-Instruments
CSPM-4000, Guangzhou, China) using a beam deflection type equipment. For topography
measurement, AFM can be conducted in two modes: contact and tap modes. In the process
of topography scanning with the contact mode, the existence of friction makes the wear
between the sample and the probe inevitable. In the tapping mode, because there is no
friction and wear, the topography measurement accuracy is higher than that in the contact
mode; however, a disadvantage of the tapping mode is that the scanning frequency is lower
than that of the contact mode. In the experiments, although both modes can be selected
for morphology sampling, the tap mode is preferred using a sharp probe (Tap190Al-G
Budget Sensors, 190 kHz, 48 N/m) in this work. Generally, a sharp probe with a small
elastic coefficient (<1 Nm−1) can be selected to reduce the normal load between the probe
and the sample, as shown in Figure 4a. Regarding the structure and working principle of
AFM, please refer to [32].
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A high symmetry of rough peak height and density distributions is appropriate,
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Greenwood-Williamson random contact model. Before the topography scanning, the
samples were ultrasonically cleaned in an alcohol solution for 15 min and subsequently
ultrasonically cleaned in distilled water for 15 min. The microscope was operated under
ambient conditions (temperature 20 ± 1 ◦C, relative humidity 70 ± 3%).

3. Surface energy measurement

A key parameter of the friction calculation model established based on the interfacial
potential energy theory is the surface energy of the contact surface. Many studies provide
the experimental and theoretical values of the surface free energies of several different
materials; however, the surface energies of the samples in the present experiments may
be different owing to the difference in the roughness. Therefore, the surface energy of
each sample was measured in the experiments. The surface energy is calculated using the
Owens-Wendt-Kaelble method [33]:

γL(1 + cos θ) = 2
(√

γd
Sγd

L +
√

γ
p
Sγ

p
L

)
(30)

where γL is the surface tension of the liquid, θ is the contact angle, γd
S and γ

p
S are the

dispersion and polar components of the surface energy of the solid, respectively, γd
L and γ

p
L

are the dispersion and polar components of the surface tension of the liquid, respectively,
and the surface energy of the solid, γS, is as follows:

γS = γd
S + γ

p
S. (31)

Therefore, using the parameters (γL, γd
L, and γ

p
L) of two test liquids and the contact

angles with the measured samples, γd
S and γ

p
S can be calculated by Equation (30); finally,

the free energy, γS, of each sample surface is obtained through Equation (31).
An SCA20 contact angle measuring instrument is used for measuring the contact

angles in the experiments. Moreover, common distilled water and diiodomethane were
used as test liquids; their surface tension values are listed in Table 2. The static contact
angles were measured using the static drop method at room temperature. The contact
angle of each sample was measured four times, and subsequently, the average value was
taken. Substituting the values of Table 2 and measured angles of Table 3 into Equation (30),
one can obtain the surface energy components of samples, finally, using Equation (31) to
get the surface energy values of samples. The measurement and calculation results are
summarized in Table 3.

Table 2. Surface tension values of measuring liquids (mJ/m2) [34].

Measuring Liquid γL γd
L γ

p
L

Distilled Water 72.8 21.8 51.0
Diiodomethane 50.8 48.5 2.3

Table 3. Contact angles and surface energies of samples (monocrystalline silicon wafer).

No Distilled Water (◦) Diiodomethane (◦) γd
S (mJm−2) γ

p
S (mJm−2) γS (mJm−2)

Sample 1 41.9 ± 2.8 36.5 ± 3.3 37.43 27.23 64.66
Sample 2 39.4 ± 2.2 32.5 ± 1.4 39.01 27.95 66.96
Sample 3 45.0 ± 3.5 35.6 ± 4.2 37.80 25.53 63.35
Sample 4 43.6 ± 1.9 32.7 ± 2.7 38.96 25.88 64.84

4. Friction experiment

The main objective of this experiment is to verify the calculation models of sliding
friction. For each sample, the friction loop curves are tested by changing the normal load
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to obtain the friction experimental values of each sample under different positions, and
finally, the experimental values are compared with the theoretical calculated values.

Environmental factors, such as vibration, humidity, and wind force, significantly
impact nanoscale measurements. To reduce the influence of environmental factors, the
friction measurements were conducted in a glove box (Etelux Lab2000, Etelux Inert Gas
System Company Limited, Beijing, China). The glove box is circularly filled with filtered
nitrogen, and the water and oxygen contents are less than 0.1 ppm. However, the samples,
similar to particularly insulators, are prone to static electricity in the glove box filled with
high-purity dry nitrogen. Therefore, to minimize the static electricity force, an electrostatic
removal device (SY-504 ionic copper rod, Shenzhen Shengyuan Anti-static Technology Co.,
Ltd., Shenzhen, China) is used in the experiments.

In the friction measurement, the friction loop curve function module of AFM and
a spherical probe (see Figure 4b) are adopted. It can be seen from the scanning electron
microscopy (SEM) image that the spherical tip surface is very smooth and can ideally
simulate a smooth ball. The basic structure of the probe is composed of a substrate,
cantilever, and needle tip. The commonly used materials are silicon and silicon nitride.
Micro cantilevers generally have two shapes: triangular and rectangular. In the present
experiments, a rectangular cantilever probe is adopted because it is more stable and
sensitive to the transverse force than a triangular probe.

The elastic parameters provided by the manufacturer are typically the average values
of the same batch of probes; however, in practical use, a probe needs to be accurately
calibrated. The calibration method is generally to measure the width, thickness, length,
and tip height (w, b, l, and h) of a probe using an optical or electron microscope. The
normal force constant, kn, and the transverse force constant, kl , of the probe are calculated
respectively as

kn =
Ewb3

4l3 (32)

kl =
Gwb3

3h2l
(33)

where E and G are the elastic modulus and shear modulus of the probe cantilever, respec-
tively, whose values are provided by their manufacturer. In these experiments, a silicon
probe with radius 9.55 µm was used to test the friction of the samples. SEM was conducted
to measure the geometric parameters of the spherical probe (w, b, l, and h). The parameters
of the spherical probe and the force constants calculated by Equations (32) and (33) are
listed in Table 4.

Table 4. Physical parameters of the silicon spherical probe used in this work.

Name R (µm) w (µm) b (µm) l (µm) h (µm) E (N/m2) G (N/m2) kn (Nm−1) kl (Nm−1)

silicon probe 9.55 40.05 3.51 240.20 54.40 1.69 × 1011 0.5 × 1011 5.28 40.61

The calculation formulas of normal contact force FN and transverse force FL in AFM
are as follows:

FN = knSzVN (34)

FL =
3h
2l

klSzVL (35)

where SZ is the sensitivity and VN and VL are the normal voltage difference and horizontal
voltage difference of the AFM photodetector, respectively.

Considering the wear effect of a probe on sample topography and to obtain a highly
realistic statistical value of the influence of the topography parameters on friction, in the
experiments, different positions must be changed after each friction loop scan. To reduce
operations, such as needle withdrawal, moving sample position, and needle insertion,
in the present experiments, the function of changing the scanning position, range, and angle
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within the maximum scanning range of the scanner provided by AFM control software
(CSPM console) is used, as shown in Figure 5.
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The maximum reference voltage of CSPM4000 is 1.99 V, and the maximum scanning
range of scanner S8095 is 85,525 nm. The sampling length of the friction loop curve is 15 µm,
and the resolution is set as 1024. Increment in the normal load is realized by increasing
the reference voltage in AFM by a gradient. The voltage gradient of the ball probe is 0.2 V,
ranging from 0.1 to 1.7 V. For each sample and each reference voltage, the friction loop
curves are tested in three different positions by setting the scanning offset coordinates. For
the speed, the minimum scanning frequency of 0.1 Hz is adopted.

4. Results and Discussion
4.1. Sample Surface Characterization

The surface topography scanning was performed twice for each sample by AMF; then,
the topography images were analyzed by the NanoScope_Analysis (an image analysis
software). Through the surface roughness analysis function of NanoScope_Analysis, we
can get the mean values of the main surface roughness parameters (Sa, Sq, Ssk, Sku), which
are summarized in Table 5. The value before the plus–minus sign is the average of the two
sampling values for the same sample, and the number after the plus–minus sign is half of
the difference between the two sampling values. The AFM operation of this experiment is
strictly in accordance with the user manual. The ratio of difference to mean in Table 5 is
less than 7%, indicating that there is no uncertainty in the sampling process.

Table 5. Roughness parameters of samples.

No. Etching Time Sa (nm) Sq (nm) Ssk Sku η (nm−2) ρ (nm) Ψ

Sample 1 5 min 8.9 ± 0.6 11.4 ± 0.5 0.048 ± 0.008 3.14 ± 0.03 7.604 × 10−7 4.614 0.4553
Sample 2 10 min 18.8 ± 1.3 24.1 ± 0.8 0.316 ± 0.037 3.75 ± 0.17 7.488 × 10−7 2.216 0.9551
Sample 3 15 min 43.1 ± 2.8 55.6 ± 1.9 0.205 ± 0.103 3.49 ± 0.07 5.192 × 10−7 1.385 1.8348
Sample 4 20 min 125 ± 4.3 168 ± 8.1 −0.046 ± 0.015 3.26 ± 0.62 1.224 × 10−7 0.958 3.8347

The sampling area of each sample is 2500 µm2, and the maximum heights of the
roughness peaks of samples 1–4 are approximately 0.07 µm, 0.22 µm, 0.45 µm, and 1.3 µm,
respectively, presenting a gradual increase. The skewness value of sample 1 is approxi-
mately zero, and the kurtosis value is 3.14, which is close to 3; Samples 2 and 3 are positively
skewed, and their kurtosis values are more than 3; the skewness value of sample 4 is ap-
proximately zero, and its kurtosis mean value is 3.86. The first scanning analysis results are
shown in Figure 6. The height distribution diagrams of samples 1–4 are broadly bell-shaped.
Overall, the rough peak height distribution of each sample is approximately normal.
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For determining the peak density and size, the particle size analysis function of
NanoScope_Analysis was conducted for the scanning images of samples 1–4, as shown
in Figure 7. The mean peak density values, η, and mean asperity tip radius, ρ, are listed
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in Table 5. The particle distributions and particle sizes of samples 1–3 are more uniform,
whereas the uniformity of the particle distribution and particle size of sample 4 is not well.
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4.2. Friction Experimental Results

The plasticity index, Ψ, suggested by Greenwood and Williamson [9] is the most impor-
tant parameter to be considered in the analyses of contact rough surfaces. It has the form:

Ψ =
2E

πKH

√
σs

ρ
(36)

where E is the Hertz elastic modulus, K is the hardness factor, K = 0.454 + 0.41v, H is the
hardness of the softer material, and σs is the standard deviation of the asperity heights.

The height distribution of each sample is similar to a Gaussian distribution. In this
study, the distributions of the four samples are treated as Gaussian distributions. The sample
material is 100 monocrystalline silicon: H = 11.5 GPa, E = 169 GPa, v = 0.18, a0 = 0.542 nm,
and ls = 0.96.

The friction test results of the four samples are shown in Figure 8. The friction test
results of sample 1 are shown in Figure 8a. Its plasticity index is 0.4553 and surface
roughness Sa = 8.9 nm; its roughness is the smallest among the four samples. The friction
of sample 1 increases approximately linearly with the increase in the normal force, which
is consistent with the Amontons friction law [1]. When the normal force is small, the
theoretical calculated value of friction obtained using Equation (25) is in good agreement
with the experimental value. However, with the gradual increase in the normal load, the
difference between the theoretical calculated and experimental values also increases.
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The friction test results of sample 2 are shown in Figure 8b. For sample 2, Ψ = 0.9551
and Sa = 18.8 nm, and it is coarser than sample 1. The experimental value of friction is lower
than that of sample 1, which is related to the factors of the roughness peak density and
average roughness peak radius of sample 2 being smaller than those of sample 1. With the
increase in the plasticity index, the theoretical calculation value of friction is significantly
reduced compared to sample 1, and the experimental value is also reduced; however, the
theoretical calculation value is slightly greater than the experimental result.

The friction test results of sample 3 are shown in Figure 8c; its Sa = 43.1 nm and
Ψ = 1.8348, and it is coarser than sample 2. However, there is no significant difference
in the experimental values of samples 3 and 2. The experimental values of sample 3 are
smaller than the theoretical values; concurrently, the theoretical values of sample 3 become
greater than that of sample 2 with the increase in the plasticity index.

The friction test results of sample 4 are shown in Figure 8d, and its Sa = 125 nm and
Ψ = 3.8347, making it the coarsest of the four samples, whereas its experimental value of
friction does not reduce with the increase in the roughness. For sample 4, the ball radius of
the probe is not sufficiently long, which is significantly affected by the height of the rough
peak and the gap between the rough peaks, and the mechanical component of friction is
also increased. The experimental values of sample 4 are the most divergent, whereas its
theoretical values of friction are the smallest, and the difference between the theoretical
and experimental values is the largest among all samples.

The relationships between the experimental and theoretical values of the friction coef-
ficient and the plasticity index are shown in Figure 9. The experimental friction coefficient
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in the figure is the average value of the ratio of the friction force and normal force at
each sampling. For samples 1–4, the plasticity index increases gradually. The theoretical
friction coefficient decreases gradually with the increase in the plasticity index, which is
positively correlated with the roughness. For samples 1–3, the experimental values of the
friction coefficient decrease with the increase in the plasticity index, whereas for sample 4,
the friction coefficient first decreases and then increases up to the largest plasticity index.
It can be seen from Figure 9 that a small surface roughness is associated with a small
error between the experimental and theoretical values of the friction coefficient. However,
friction is an extremely complex process.
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Figure 9. Friction coefficient versus plasticity index.

5. Conclusions

The novelty of this work was to deal with the slip friction calculation of rough surfaces
contact with the potential energy theory and carry out the experimental verification with
the contact angle measuring instrument and AFM. In this study, monocrystalline silicon
samples with different roughness surfaces were prepared by wet etching, and the surface
free energies of the samples were obtained using a contact angle measuring instrument.
The morphology parameters of each sample were measured by AFM, and spherical-rough
flat contact friction experiments were conducted. Finally, the experimental results were ana-
lyzed and compared with the theoretical calculated values. The comparison results showed
that for the samples with a small plasticity index, the deviation of the theoretical calculated
and experimental values of the friction force and the coefficient was small. For the samples
with a large plasticity index, the corresponding deviation was large. In general, for a small
plasticity index (Ψ ≤ 1), the predicted values of the friction force and friction coefficient by
this model presented a relatively acceptable deviation range from the experimental values,
which can meet certain engineering requirements in MEMS.

However, the unavoidable impact factors in the actual friction process, such as the
interaction among the asperities [35,36], abrasive wear, and so on [37], are ignored by
assumptions in this model, so this model is more suitable for the friction situations of low
load, small plasticity index, dry environment, etc.

In future studies, ball tip probes with different spherical radii will be used in dry slip
friction experiments. Moreover, by comparison, the influence laws of different spherical
radii on the calculation accuracy of the model presented in this paper will be determined,
and the model will be further improved.
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Nomenclature

a0 lattice constant
A0 real contact area
Fslip sliding friction force
FN external normal force
g(T) temperature coefficient
h separation based on surface heights
k position commensurate coefficient
K hardness factor, 0.454 + 0.41v
P external normal force
R radius of the sphere
z height of an asperity measured from the mean of the asperity heights
β surface roughness parameter, ηρσ

γ energy of adhesion
∆U interfacial potential difference
w adhesion energy of the contact interface
φ distribution function of the asperity heights
η area density of the asperities
ρ asperity tip radius of curvature
µ static friction coefficient
v Poisson’s ratio of the softer material
σ standard deviation of the surface heights
σs standard deviation of the asperity heights
ω interference
ωc critical interference at the inception of plastic deformation
Ψ plasticity index
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