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Abstract: Designed micro-nano structures on the surface of aluminum alloy provide excellent light
trapping properties that can be used extensively in thermal photovoltaics, sensors, etc. However, the
fabrication of high-performance antireflective micro-nano structures on aluminum alloy is challenging
because aluminum has shallow intrinsic losses and weak absorption. A two-step strategy is proposed
for fabricating broadband antireflection structures by superimposing nanostructures onto microscale
structures. By optimizing the processing parameters of femtosecond laser, the average reflectances of
2.6% within the visible spectral region (400–800 nm) and 5.14% within the Vis-NIR spectral region
(400–2500 nm) are obtained.

Keywords: femtosecond laser; aluminum alloy; antireflection; surface micro/nanostructure

1. Introduction

Surface morphology is crucial in controlling the optical, chemical, biological, and other
properties of solid surfaces [1]. Specially designed micro/nanostructures are utilized to
tune reflectance of the surface, which offers opportunities in photovoltaics, sensors, etc. [2].
Traditionally, antireflection structures are fabricated by coating black paint on the surface.
On the other hand, vertically aligned carbon nanotubes (VACNTs) are grown on the surface
of workpiece in order to reduce effective refractive index to nearly one [3,4]. Carbon
nanotubes (CNTs) on aluminum surfaces yield an efficient absorption rate in a range from
ultraviolet to terahertz [5]. However, these CNTs are fragile in extreme environments and
require controlled fabrication conditions [6]. Coating or deposition of another material
on a surface tends to delaminate due to mismatching thermal expansion coefficients
together with insufficient bonding, and its performance will decline over time [7]. In
comparison, micro/nanostructures of the same material with substrates offer better stability
and durability [2].

Femtosecond laser as a direct writing technology is a versatile fabrication method for
micro/nanostructures that offers the following advantages: the capability to process almost
all materials; the capability to induce nanostructures during ablating microstructures [8];
the capability to process nonplanar samples; and low requirements on the fabrication
environment. Currently, there are many reports on antireflection micro/nanostructures
prepared by the ultrafast laser on metal surfaces. The picosecond laser was used to prepare
porous coral-like structures on copper, resulting in over 97% absorptivity in the visible spec-
tral region and an average absorbance of 90% in the UV-vis-NIR regions (250–2500 nm) [8].
Coral-like microstructures were also prepared on the surface of NiTi alloy, which could
achieve about 90% absorption from the UV to MIR region [9]. The cauliflower-shaped
hierarchical surface micro/nanostructures were induced on copper by femtosecond laser.
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The average absorbance was 98% over a band of 200–800 nm [10]. In addition to micro-nano
structures prepared with ultrafast laser, high-quality oxidized nanowires were uniformly
grown on copper surfaces in order to enhance optical phonon dissipation. The structures
achieved an ultralow reflectance of 0.6% at the infrared wavelength of 17 µm and stably
kept at less than 3% within the wavelength range of 14–18 µm [11]. Luo et al. [12] adopted a
two-step manufacturing strategy that combines the femtosecond laser with the nanosecond
laser. They fabricated micropillars of different heights by adjusting the process repeat
number of the femtosecond laser. Then, nanoparticles of different numbers and sizes were
fabricated by changing the scanning speed of the nanosecond laser. A processing method
of high and low speed hybrid scanning was proposed, which could apply to Cu, Ti, and W
surfaces, via uniting multiple fast laser scanning to obtain microscale frame structures with
single slow laser scanning to induce nanoscale features [13]. However, a super-blackening
antireflection surface on the surface of aluminum alloy fabricated by pulsed laser has rarely
been reported.

Aluminum is the only material with high reflectivity from the UV to IR region [14]. It
is challenging to prepare antireflection surfaces of aluminum alloy due to its low melting
temperature and high thermal conductivity [15]. As a kind of aluminum alloy with high-
strength and high hardness in the Al-Cu-Mg series, aluminum alloy (2A12) is mainly used
in various high-load parts and components [16], and it is more challenging to fabricate
blackened aluminum alloy with higher hardness than compared pure aluminum. Antire-
flection micro-nano structures are mostly reported on metals such as Cu [2,8,10–13,17,18],
Ti [12,13,18], Ti alloy [19,20], and Al [18,21–23]. There are few reports on preparing antire-
flection structures of aluminum alloy [12], especially on a broader spectrum (400–2500 nm)
with high antireflection. In this paper, a two-step superimposing strategy was devel-
oped in order to process robust metal micro-nano structures via superimposing nanoscale
structures onto microscale structures directly.

2. Experiment and Material
2.1. Material

The experimental material is aluminum alloy (2A12), and its chemical composition is
provided in Table 1. The aluminum alloy was cut into a 50 mm × 50 mm × 2 mm sample,
and the samples were polished to achieve surface roughness of 70 nm Ra. The workpiece
was cleaned ultrasonically with ethanol for 3 min before laser ablation.

Table 1. Chemical composition of the 2A12 aluminum alloy (%).

Al Si Fe Cu Mn Mg Cr Zn Ti Others

≥92.87 0.08 0.26 4.42 0.49 1.58 0.01 0.12 0.02 ≤0.15

2.2. Experimental Device

Surface micro-nano structures on aluminum alloy surfaces were fabricated by an
HR-Femto 50 femtosecond laser system (Huaray, HR-Femto-IR-80-60, Wuhan, China),
which can generate 350 fs pulses at a central wavelength of 1035 nm and a repetition rate
of 1 MHz. The maximum average power is 60 W. An x-y galvo is used to scan the laser
beam on the aluminum alloy surface in an atmospheric environment.

2.3. Machining Parameters

Several laser processing parameters (illustrated in Figure 1) are involved during
laser ablation, including pulse energy (J), power (P), laser fluence (F), scanning speed (V),
scanning interval (I), scanning repetition (N), and defocusing (D). Two different structures
(structure S and structure B) were prepared by using the HR-Femto 50 femtosecond laser
system with specific laser processing parameters shown in Table 2. As shown in Figure 1c,
the irregular surfaces with disorderly micro-nano particles and flocs were processed by
the same parameters, represented by S. As shown in Figure 1g, the microscale structures
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were covered with disorderly micro-nano particles and flocs, which were processed by two
kinds of parameters, denoted as B.
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Figure 1. Schematic illustrations of two-step superimposing strategy: (a) polished surface, (b) single scan with large power,
(c) S series structures, (d) repeat scan with small power, (e) micron-level substrate structures, (f) single scan with large
power, and (g) B series structures.

Table 2. Processing parameters for different samples.

Samples Pulse Energy
(µJ)

Power
(W)

Fluence
(J/cm2)

Velocity
(mm/s)

Interval
(mm) Repeat Defocusing

(mm)

S1 84 42 18.11 20 22 5 4

S2 96 48 20.70 10 10 3 3.8

S3 84 42 18.11 20 10 1 4.5

B1
60 30 12.94 800 25 80 0
96 48 20.70 30 25 1 4

B2
60 30 12.94 800 25 100 0
120 60 25.87 25 25 1 4.5

B3
60 30 12.94 800 25 100 0
120 60 25.87 50 25 1 4.5

B4
62.4 31.2 13.45 800 23 120 0
84 42 18.11 25 23 1 4

B5
62.4 31.2 13.45 1000 22 120 0
84 42 18.11 25 22 1 4

2.4. Characterization

After laser processing, the samples were ultrasonically cleaned with ethanol again.
The micro-nano structure morphology of the sample surface was analyzed by a scanning
electron microscope (FEI, Helios NanoLab G3 CX, Hillsboro, OR, USA). A white light
interferometer (Zygo NewView 9000, Middlefield, CT, USA) was used to obtain the three-
dimensional (3D) topography of the sample surface. A UV-Vis-NIR spectrophotometer
with an integrating sphere (Shimadzu, SolidSpec-3700, Kyoto, Japan) was utilized in order
to investigate their absorption behaviors in Vis-NIR regions. An energy spectrum analyzer
(AMETEK EDAX, Mahwah, NJ, USA) was used to analyze the elements contained in
the sample.
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3. Results and Discussions

The reflectance depends on the structures’ depth, shape, and period related to the
processing parameters [24]. The antireflection structures are hierarchical structures of
different scales as shown in Figure 2.
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Figure 2. Schematic illustrations of hierarchical structure.

3.1. Hierarchical Structure

(1) Microscale light-trapping structure
When the size of the cavity or the interval between the microstructures (usually

referred to a size range from a few micrometers to tens of micrometers) is much larger
than the wavelength of the incident light, the microcavity has excellent light-trapping
property. The electromagnetic waves are trapped in the microcavity and reflected multiple
times [13,25]; thus, their energy is absorbed. The optical properties of the structures do not
depend on the wavelength of the incident light [17].

(2) Subwavelength structure
Subwavelength structures (referred to the structure for which its characteristic size

is equivalent to or smaller than the working wavelength) promote grating coupling
and cavity-trapping mechanisms by exciting surface plasmon polaritons (SPPs) [26].
Surface plasmon polaritons are divided into propagating surface plasmon polaritons
(PSPPs) [27–29] and localized surface plasmons polaritons (LSPPs) [3,30,31]. Both PSPPs
and LSPPs have good subwavelength properties and characteristics of bounding electro-
magnetic fields [32].

(3) Nanoparticle
Metallic nanoparticles (usually referred to a size range from a few nanometers to

hundreds of nanometers) are excellent structures for exciting plasmon resonance and
tuning the optical response of the surface [33]. Metal nanoparticles enhance light-trapping
effects due to induced scattering by surface plasmon resonances [7]. Resonance and light
extinction may occur at specific wavelength positions, and the size of the particle on the
surface determines the total resonance frequency [2]. The aggregation of nanostructures
results in the broadening effect of the resonance band and enhances broadband absorption,
especially in the shortwave spectrum [8].
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(4) Metal oxides layer
Metal was oxidized on the surface of the microstructure as well as nanoparticles.

The impedance mismatch caused by the vast refractive index difference between metal
and air causes high reflectivity on the interface. Metal oxides as the transition layer can
reduce impedance mismatch on the interface [34]. As observed in Figure 3, there is about
40% oxygen on the surface of the B series, which indicates that there are abundant metal
oxides formed on the surface of aluminum alloy under femtosecond laser ablation. Metal
oxides improve the antireflection performance of micro-nano structures by introducing a
transitional medium between the metal and free space [11].
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Figure 3. (a) Oxygen distribution on the polished surface; (b–f) oxygen distribution on the surface of
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3.2. Antireflection Structure in the Visible Spectral Region: Subwavelength Structure + Nanoparticle

Microscale light-trapping structures, subwavelength structures, and nanoparticles are
visible on SEM images with scales of 100 µm, 5 µm, and 1 µm. The blackened aluminum
alloy was made via a sizeable defocusing laser beam with high power. As observed in
Figure 4d, the average reflectance of S1–S3 (Figure 4a–c) is below 10% within the wave-
length range of 400–2500 nm. Under the magnification of 20,000 times and 100,000 times,
there are plentiful subwavelength structures and nanoparticles on the surfaces of S1–S3.
The blackening was caused by multi-scattering attributable to the aggregated nanoparti-
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cles [35]. The surface particles of S2 are smaller and flocculent, which is not as various
as S1 and S3; thus, its reflectivity is higher in the visible spectral region (400–800 nm).
The shallow structures of S1–S3 cannot achieve effective light-trapping effects for long
electromagnetic waves. Thus, reflectance increases significantly with increases in incident
wavelength. The refractive indices of the effective medium layers are estimated [13] by
neff = fnmetal + (1−f)nair, and f is a filling factor of metal in the range 0–1. The more porous
and rougher surfaces have smaller filling factors, and as f becomes smaller, surface re-
flectance is reduced gradually [13]. Structures in Figure 4a have more pores (as shown in
red arrows) than in Figure 4b,c; thus, the reflectance curve of S1 moves down relative to S2
and S3.
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Figure 4. (a–c) SEM photographs (magnification of 1200 times, 5000 times, 20,000 times, and
100,000 times) of S1, S2, and S3. (d) Reflectance curves of S1–S3. Triangles (white), rectangles
(white), and circles (white) represent, respectively, microscale light-trapping structures, subwave-
length structures, and nanoparticles.
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3.3. Antireflection Structure in the Vis-NIR Spectral Region: Microscale Light-Trapping Structure
+ Subwavelength Structure + Nanoparticle

It is necessary to have microscale light-trapping structures, subwavelength structures,
and abundant nanoparticles simultaneously in order to achieve high-performance antire-
flection effects in a wide wavelength range. Thus, the laser processing parameters were
improved based on the S series, as shown in Figure 1. In our experiment, the blackened
parameters of the polished surface were also applicable to samples with microscale struc-
tures. B1–B5 (Figure 5a–e) micro-nano structures were prepared by multiple fast laser
scans with low power and a single slow laser scan with high power and large defocusing.
Among them, the power of the slow laser scan of B2 and B3 was higher (60 W); thus, the
heat-affected zones of laser ablation were more extensive. As a result, melting and recasting
phenomena were prominent, causing the structures to be more irregular [36]. Compared
with the relatively flat surfaces of B4 and B5, the structure of B1 has a regularly arranged
pointed top, as shown by the red circle in Figure 5a. The surface of B3 has flat structures
with inconspicuous height fluctuations, as shown by the red rectangular in Figure 5c. In
contrast, B1 has the best light-trapping effect. The light-trapping structures of B4 and B5
are shallow without obvious wide micron gaps; thus, reflectance increases significantly
with increasing wavelength. However, their average reflectance is kept below 3% from
400 nm to 800 nm because of abundant nanoparticles. The microscale structures of B1 have
a relatively sizeable depth-diameter ratio with obvious wide micron gaps. Structure B1 has
hierarchical structures (illustrated in Figure 2) with multiple antireflection mechanisms;
thus, the average reflectance is 5.14% from 400 nm to 2500 nm.

The speed of a laser scan when processing structure B was selected according to
the previous experimental experience. During the experiment, it was observed that the
laser power and scanning intervals have a significant impact on the microscale frame
structures. Thus, the single variable experiments of power and scanning intervals were
performed, respectively. The processing target of the microscale frame structure is conical.
It is defined that the regular topography conforming to the ideal structure (conical) is
of good quality. The processing effect we expect is shown in Figure 6d–f. By using 3D
topography observations in Figure 6, some observations can be made. The higher the
laser power is, the higher the laser fluence is. When laser fluence is higher than the
ablation threshold of aluminum alloy, the aluminum alloy will be melted and recast or
even gasified by the femtosecond pulse with high peak power. The laser energy obeys
Gaussian distribution. The energy density of the central part first reaches the ablation
threshold, and the periphery slowly reaches the ablation threshold [37], increasing the
transverse dimension of the etched structure. Secondly, when the power becomes too large,
laser energy becomes unstable, and the ablation quality of the microscale structures at high
energy is poorer than that at low energy [36]. The physical-chemical reactions on the metal
surface are more complex and intense, resulting in the actual processed structure deviating
from the expectation, as shown in Figure 6g. Therefore, mild laser power (32.4~36 W)
benefits the quality and morphology control of the processed microscale structures, as
shown in Figure 6d–f.

As shown in Figure 7a–d, when the scanning interval is too small, the scanning path
of the laser beam is partially overlapped and cannot obtain regular microscale structures. An
excessive scanning interval results in a decrease in the duty ratio of microscale structures from 1
to less than 1, leaving an original surface and reducing antireflection performance [8,38].
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Figure 5. (a–e) SEM photographs (magnification of 1200 times, 5000 times, 20,000 times, and
100,000 times) of B1, B2, B3, B4, and B5. (f) Reflectance curves of B1–B5. Triangles (white), rectangles
(white), and circles (white) represent, respectively, microscale light-trapping structures, subwave-
length structures, and nanoparticles.
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microscale frame structures. Subwavelength structures and nanoparticles can reduce the 
reflectance of aluminum alloy in the visible light band by exciting plasmon resonance and 
tuning the optical response of the surface. Microscale light-trapping structures, subwave-
length structures, and nanoparticles can reduce the reflectance of aluminum alloy in the 
Vis-NIR spectral region by enhancing the light-trapping effect, exciting plasmon reso-
nance, and tuning the optical response of the surface. The light-trapping effect of mi-
croscale frame structures can effectively inhibit the increase in reflectance of the antire-
flection micro/nanostructures on the aluminum alloy surface as the wavelength increases. 
The hierarchical structures formed by the microscale structures, subwavelength struc-
tures, and the rich nanoparticles obtained by the processing with blackened parameters 
can yield excellent antireflective properties in a broad spectrum. About 97.4% absorptivity 
in the visible spectral region (400–800 nm) and 94.8% absorptivity over the Vis-NIR spec-
tral region (400–2500 nm) can be achieved. The method of processing micro-nano struc-
tures described in this article has the advantages of low cost, high efficiency, and strong 
adaptability. 
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4. Conclusions

The femtosecond laser is used to fabricate micro/nanostructures for antireflection on
the surface of 2A12 aluminum alloy. Different micro-nano structures and antireflection
properties can be obtained by adjusting laser processing parameters. A slow laser scan with
high power and sizeable defocusing can prepare blackened aluminum alloy. The blackened
parameters of the polished surface are also applicable for samples with specific microscale
frame structures. Subwavelength structures and nanoparticles can reduce the reflectance
of aluminum alloy in the visible light band by exciting plasmon resonance and tuning
the optical response of the surface. Microscale light-trapping structures, subwavelength
structures, and nanoparticles can reduce the reflectance of aluminum alloy in the Vis-
NIR spectral region by enhancing the light-trapping effect, exciting plasmon resonance,
and tuning the optical response of the surface. The light-trapping effect of microscale
frame structures can effectively inhibit the increase in reflectance of the antireflection
micro/nanostructures on the aluminum alloy surface as the wavelength increases. The
hierarchical structures formed by the microscale structures, subwavelength structures, and
the rich nanoparticles obtained by the processing with blackened parameters can yield
excellent antireflective properties in a broad spectrum. About 97.4% absorptivity in the
visible spectral region (400–800 nm) and 94.8% absorptivity over the Vis-NIR spectral region
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(400–2500 nm) can be achieved. The method of processing micro-nano structures described
in this article has the advantages of low cost, high efficiency, and strong adaptability.
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