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Abstract: This study developed low-cost and highly sensitive immunoassay devices possessing the
ability to rapidly analyze urine samples. Further, they can quantitatively detect three biomarkers
indicating renal injury: monocyte chemotactic protein 1 (MCP-1), angiotensinogen (AGT), and
liver-type fatty acid binding protein (L-FABP). The devices were used to successfully estimate the
concentrations of the three biomarkers in urine samples within 2 min; the results were consistent
with those obtained via conventional enzyme-linked immunosorbent assay (ELISA), which requires
several hours. In addition, the estimated detection limits for the three biomarkers were comparable
to those of commercially available ELISA kits. Thus, the proposed and fabricated devices facilitate
high-precision and frequent monitoring of renal function.

Keywords: immunoassay; microchannel device; microbead; biomarker; diabetic nephropathy; urine

1. Introduction

Patients diagnosed with diabetes continue to increase globally owing to changes in
social environments and lifestyle habits. Thus, this disease must be focused upon to aid in
the development of effective health measures. The International Diabetes Federation, in
2019, stated that the global diabetes population, currently comprising 463 million people,
is expected to increase to 700 million by 2045 [1]. A similar increasing trend has been
observed in Japan, where, in 2016, approximately 10 million patients were suffering from
diabetes, which is a 112% increase over that in 2007 [2].

With the progression of diabetes, a gradual decrease in renal function is inevitable,
resulting in diabetic nephropathy. In Japan, diabetic nephropathy is the primary cause
of end-stage renal failure, accounting for 43.7% of new dialysis patients [3]. Japan has
the largest (per population) number of dialysis patients among the major countries in the
world, amounting to approximately 334,000 people [4].

Patients with diabetic nephropathy are required to be admitted to a hospital several
times a week to undergo dialysis, imposing enormous stress on the patients. Further, the
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annual medical expense to manage diabetes is approximately JPY 1.2 trillion, which is
equivalent to approximately 4.4% of the annual total medical expenses [5]. Moreover, the
annual medical expenditure for dialysis may approximately reach JPY 1.57 trillion, which
is a significant problem from the perspective of the medical economic policy of Japan [3].
Therefore, continuous monitoring and relief of the progression of renal injury in patients
with diabetes is vital.

Consequently, the quantification of biomarkers in body floods is clinically useful.
With the progression of diabetic neuropathy, there is an increase in the concentrations of
monocyte chemotactic protein 1 (MCP-1), angiotensinogen (AGT), and liver-type fatty acid-
binding protein (L-FABP) [6–9]. However, the methods currently employed to measure
these biomarkers, including microtiter plate-based enzyme-linked immunosorbent assay
(ELISA), chemiluminescent enzyme immunoassay, among others require a long assay
time and have high costs. Microfabrication technologies can potentially overcome these
problems. Diagnostic microdevices offer advantages that can inherently reduce the amount
of sample and reagents required (i.e., low invasiveness and cost) and the turnaround time.
Moreover, such features allow frequent check-ups, resulting in high-precision monitoring
and early diagnosis.

To achieve this, we developed immunoassay devices referred to as immuno-pillar and
immuno-wall devices [10,11]. In this study, the ability of immuno-pillar devices to perform
high-throughput and highly sensitive immunoassays of urine samples obtained from
patients with diabetes was demonstrated. To the best of our knowledge, no experiments
on the detection of these three biomarkers from urine samples using microdevices have
been conducted. We demonstrated the quantitative detection of the three biomarkers for
the progression of diabetic nephropathy in both standard solutions and urine samples.
In addition, the accuracy of the quantitative analysis of biomarkers performed using
immuno-pillar devices was verified through a comparison with ELISA.

2. Materials and Methods

Figure 1 shows the immuno-pillar devices that were used to analyze the biomarkers
of diabetic nephropathy. Forty straight microchannels were fabricated in a substrate (cyclo
olefin polymer), and five porous hydrogel pillars (immuno-pillar) were placed in each
microchannel. Moreover, although antibody-immobilized polystyrene beads (1 µm in
diameter, Polysciences Inc., Warrington, PA, USA) were physically enclosed within the
immuno-pillars, it was possible for the antigen and secondary antibody molecules to
reach the polystyrene beads via the pores. Further, sandwich immunoassay procedures
were conducted on the surface of the microbeads, to quantitatively detect the antigen
molecules, with a detailed description provided later. The fabrication procedures for
the immuno-pillar devices were as follows (detailed explanation provided in Ref. [10]).
First, polystyrene beads were washed with PBS (pH 7.4, Wako Pure Chemical Industries,
Ltd., Osaka, Japan) prior to the preparation of antibody-immobilized polystyrene beads.
Thereafter, anti-human MCP-1 monoclonal antibody (R&D Systems, Inc., Minneapolis,
MN, USA) was immobilized onto polystyrene beads via hydrophobic interactions. Further,
the gap between the immobilized antibodies was coated with BSA (Pierce, Rockford, IL,
USA) by immersion in 3% BSA for at least 1 h, to prevent nonspecific binding of the other
proteins. Subsequently, the same procedures were individually repeated using anti-AGT
monoclonal (Abnova Co., Taipei City, Taiwan) and anti-L-FABP monoclonal (Abcam plc,
Cambridge, UK) antibodies.

A vortex mixer was used to stir a mixed solution of PEG-based photocrosslinkable
prepolymer MI-1 (50 µL, Kansai Paint Co.,Ltd., Osaka, Japan), photo-initiator PIR-1 (5 µL,
Kansai Paint Co.,Ltd., Osaka, Japan), PBS (125 µL), and anti-human MCP-1 monoclonal
antibody-immobilized polystyrene bead emulsion (180 µL). Thereafter, this solution was
introduced into the microchannels via a pipette (PIPETMAN, Gilson S.A.S., Villiers le Bel,
France) and was subsequently irradiated with UV light (wavelength: 365 nm) through
a photomask. Further, the photo-crosslinkable prepolymer was polymerized in the mi-
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crochannel considering the pattern of the photomask. The areas that were exposed became
hydrogel pillars containing approximately 3 × 105 anti-MCP-1 monoclonal antibody-
immobilized polystyrene beads per pillar. Thereafter, the unreacted prepolymer was
removed using an aspirator, and a washing buffer (3% BSA) was used to wash the mi-
crochannel, which also removed the polystyrene beads that leaked from the hydrogel.
Moreover, to avoid loss of activity of the antibody due to drying, the microchannel was
filled with washing buffer prior to use. In addition, the immuno-pillar devices for AGT
and L-FABP were also fabricated in a similar manner, as mentioned above.
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Figure 1. Immuno-pillar device.

The immunoassay procedure using the immuno-pillar device is shown in Figure 2.
The same procedure was followed for each biomarker. The injection and removal of the
solutions (urine samples, reagents, and washing buffers) were performed using the pipette
and aspirator, respectively. Further, the Alexa Fluor 488 Labeling Kit (Invitrogen, Tokyo,
Japan) was used to prepare fluorescence-labeled secondary antibody immediately before
the immunoassay. First, the washing buffer was removed from the microchannel (step 2)
followed by the introduction of 0.25 µL of analyte solution (standard dilution solutions
with known concentrations of antigen or patient urine, step 3). This was incubated for
30 s at 37 ◦C (step 4). Standard dilution solutions of each antigen were prepared in PBS to
generate calibration curves. Following the incubation, the solution within the microchannel
was removed (step 5), and the microchannel was washed three times with PBS (step 6).
Thereafter, 0.25 µL of the fluorescence-labeled secondary antibody was introduced into the
microchannel (step 7) and incubated for 30 s at 37 ◦C (step 8). Subsequently, the solution
inside the microchannel was sucked (step 9) followed by washing of the immuno-pillars
thrice with PBS again (step 10). Finally, the microchannel was filled with PBS (step 11) and
fluorescence images of each immuno-pillar were captured using an inverted fluorescence
microscope (Ti-U, Nikon, Japan) equipped with a CCD camera (EM-CCD, Hamamatsu
Photonics, Japan) and a super-high-pressure mercury lamp (Nikon, Japan). Consequently,
the fluorescence intensity of each immuno-pillar was calculated using the ImageJ software
(NIH, Bethesda, MD, USA).
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The evaluation of performance and reliability of the immuno-pillar devices was
conducted by performing ELISA on the same urine samples using commercial kits (L-FABP:
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cat. no. 17777, Human L-FABP ELISA Kit, IBL, AGT: cat. no. 27412, Human Total
Angiotensinogen Assay Kit, IBL, MCP-1: cat. no. DCP00, Human CCL2/MCP-1 Quantikine
ELISA Kit, R&D Systems) and a plate reader. In addition, the antibody reagents used in
these kits were the same as those used in the immunoassays of our devices.

The human study was conducted on receiving approval by the Nagoya University
Hospital ethical committee for clinical investigation (approval number: 1135), and all
participants were provided written informed consent prior to participation. Twenty-six
urine samples were obtained at the Nagoya University Hospital from patients categorized
into seven stages (0, 1, 2, 3A, 3B, 4, and unknown) of diabetic nephropathy. Further, all urine
samples were centrifuged for 5 min (3000× g, 4 ◦C) to remove sediments. Subsequently,
the supernatant of each urine sample was divided into two tubes and frozen at −80 ◦C
until they were used in the ELISA or immuno-pillar assay. In addition, the ELISA was
performed twice for each urine sample, and the average concentrations estimated using
the ELISA are summarized according to the stage of diabetic nephropathy in Table S1.

3. Results and Discussion

The concentrations of the three biomarkers of diabetic nephropathy in patient urine
samples were estimated by adopting the external standard method. The standard curve
for each biomarker was obtained using the standard dilution solutions. The concentra-
tion ranges of the standard dilution solutions were 0–100 (MCP-1), 0–200 (AGT), and
0–150 (L-FABP) ng/mL. Further, PBS was used as the dilution factor in the standard
dilution solution.

The immunoassay procedure (Figure 2) was performed thrice for each standard
dilution solution and urine sample. The fluorescence intensities of the immuno-pillar
devices obtained after the immunoassays are shown in Figure 3. The blue and red plots
correspond to standard dilution solutions and urine samples, respectively. Thereafter, the
fluorescence intensity and its standard deviation were calculated from the fluorescence
images of 15 immuno-pillars (i.e., three tests using the immuno-pillar devices). The
horizontal axis of Figure 3 for the blue plots represents the concentration of the standard
dilution solutions that we prepared. In contrast, the concentration of the red plots was
determined via the ELISA. As evident, the red plots are close to each calibration curve. The
detection limits, which achieved a signal at three standard deviations above the background,
were estimated to be 15 (MCP-1), 30 (AGT), and 20 (L-FABP) pg/mL, respectively. Immuno-
pillar devices exhibited inherent rapidity during the assay time, which can be attributed to
the higher surface-to-volume ratio of the immuno-pillar devices compared to that of the
microtiter plates. The total surface area of the immuno-pillar device was approximately
4.7 mm2, while the volumes of analytes were 0.25 µL; thus, the surface-to-volume ratio of
the immuno-pillar device was 18.8 mm−1. In contrast, when considering a commercial
flat-bottom 96 ELISA plate (top and bottom diameter: 7 mm, sample volume: 100 µL), the
surface area for immunoreaction in a well of the microtiter plate was determined to be
approximately 95.6 mm2, while the surface-to-volume ratio was 0.956 mm−1. Thus, the
surface-to-volume ratio of the immuno-pillar device was approximately 20 times larger
than that of the microtiter plate. The immobilized antibodies in the immuno-pillar devices
more efficiently captured the antigens, resulting in a rapid assay.

The fluorescence intensity obtained from the immuno-pillar devices appeared to
exhibit a large deviation, which is attributed to the sponge-like porous structure of
the immuno-pillar devices. This microscopic structure renders removal of unbound
fluorescence-labeled antibody molecules inside the immuno-pillars a challenging task. In
addition, small contaminants, such as cell debris, also cause the decay of analysis precision
as they cling closely to polystyrene microbeads and inhibit the antigen–antibody reaction.
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Figure 3. Calibration curves of (a) MCP-1, (b) AGT, and (c) L-FABP. The dashed line in each figure
indicates the detection limit. The blue and red plots were obtained with standard dilution solutions
and human urine samples, respectively.

To estimate the concentrations of biomarkers in the urine samples, the fluorescence
intensity of immuno-pillar devices were analyzed using the external standard method



Micromachines 2021, 12, 1353 6 of 8

(Figure 4). The least squares line was drawn using the three nearest plots of standard
dilution solutions. In the case of the urine sample, the concentration of biomarkers was
derived from the least squares line and the average fluorescence intensity of the immuno-
pillars, as shown in Figure 4.
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by immuno-pillar devices and standard dilution solutions. (A: fluorescence intensity of immuno-
pillar devices; B: concentration estimated by immuno-pillar devices).

Regression analysis of the correlations between the results obtained using the immuno-
pillar devices and the conventional ELISA using microtiter plates was conducted to verify
the reliability of biomarker concentrations in the urine samples obtained by the immuno-
pillar devices (Figure 5). The results obtained using the two were consistent. MCP-1
sensing appeared to show worse performance than the others. We suppose that there are
two reasons for this bad accuracy: the concentration range of MCP-1 in the clinical samples
and the smoothness of the calibration curve. As shown in Figure 3, MCP-1 concentrations
of clinical samples were relatively lower than those of the other markers. It is difficult to
analyze such samples with high precision. In addition, the calibration curve was rough
between 1 to 10 ng/mL. This also prevents the estimation by using the external standard
method. Therefore, we conclude that the clinical potential and urine analysis ability of the
immuno-pillar devices were confirmed successfully.
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Figure 5. Regression analysis of the correlations between the results obtained using immuno-pillar
devices and the conventional ELISA using microtiter plate (a) MCP-1, (b) AGT, and (c) L-FABP.
Dashed lines indicate the ideal correlation. The values of coefficient of determination (R2) denote the
correlation between the plots and the dashed line.

4. Conclusions

In this study, we analyzed clinical urine samples obtained from patients with diabetic
nephropathy using immuno-pillar devices. The biomarkers of diabetic nephropathy (MCP-
1, AGT, and L-FABP) in standard solutions and urine were quantitatively detected in 2 min.
Further, we obtained a calibration curve for each biomarker and plotted the data of urine
samples on each curve. The urine sample data were consistent with each calibration curve.
Finally, to evaluate the correlations between the urine sample data obtained using immuno-
pillar devices with those using commercial ELISA kits, regression analysis was performed.
The coefficients of determination were estimated to be 0.802 (MCP-1), 0.977 (AGT), and
0.965 (L-FABP). The results indicated consistency between the results of immuno-pillar
devices and ELISA kits, implying the availability of immuno-pillar devices for the rapid
analysis of clinical urine samples.

Supplementary Materials: The following is available online at https://www.mdpi.com/article/10
.3390/mi12111353/s1, Table S1: Patient characteristics and immunoassay results.
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