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Abstract: Field-free switching in perpendicular magnetic tunnel junctions (P-MTJs) can be achieved
by combined injection of spin-transfer torque (STT) and spin-orbit torque (SOT) currents. In this paper,
we derived the relationship between the STT and SOT critical current densities under combined
injection. We included the damping–like torque (DLT) and field-like torque (FLT) components of
both the STT and SOT. The results were derived when the ratio of the FLT to the DLT component of
the SOT was positive. We observed that the relationship between the critical SOT and STT current
densities depended on the damping constant and the magnitude of the FLT component of the STT
and the SOT current. We also noted that, unlike the FLT component of SOT, the magnitude and sign
of the FLT component of STT did not have a significant effect on the STT and SOT current densities
required for switching. The derived results agreed well with micromagnetic simulations. The results
of this work can serve as a guideline to model and develop spintronic devices using a combined
injection of STT and SOT currents.

Keywords: combined spin-transfer torque (STT) and spin-orbit torque (SOT) switching; field like
torque; damping like torque; magnetic tunnel junction

1. Introduction

Information can be stored in ferromagnetic structures by the interaction between spin-
polarized currents and magnetic moments. An magnetic tunnel junctions (MTJ) consists
of a tunneling oxide layer (usually MgO) deposited between two ferromagnetic layers.
Binary information is stored based on the relative orientation of the free layer (FL) to the
reference layer (RL). An antiparallel (AP) orientation offers a high resistance and a parallel
(P) orientation offers low resistance. Usually, the AP state is used to store bit “1” and the P
state is used to store bit “0”. The AP or P state can be obtained by the interaction of the FL
with spin-polarized charges. Depending on the mechanism of interaction, the magnetic
storage devices can be classified into spin-transfer torque (STT) devices and spin-orbit
torque (SOT) devices. In STT devices (Figure 1a), spin-polarized charges are generated
via spin filtering from the RL of the MTJ. These charges can transfer their spin angular
momentum to the FL, thereby exerting torque on its magnetization, which changes its
magnetic orientation [1–3]. In SOT (Figure 1b), the magnetization switching in the free layer
takes place due to the surface (Rashba effect) and bulk interactions (spin hall effect) caused
by the attached heavy metal layer [4–6]. The magnetic reversal in the aforementioned
mechanisms is due to the combined effects of DLT and FLT vector components [7–10]. In
fact, the FLT component can affect the critical current required for switching in both STT
and SOT devices [11,12]. Although commonly used, STT devices suffer from reliability
and endurance issues caused by damage to the thin MgO tunneling layer. This happens
because of the repeated tunneling of electrons, as the read and write paths are overlapped
(both out of plane) [13,14]. In addition to this, an STT device suffers from incubation delay
and, unlike SOT, does not realize sub-nanosecond switching [15]. On the other hand, an
SOT device requires an external in-plane bias field for deterministic switching [16]. In order
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to overcome these constraints, devices operating under the combined effects of STT and
SOT have been experimentally demonstrated [17]. The use of combined injection of STT
and SOT currents provides a two-way advantage. The use of an STT current component
facilitates complete magnetic reversal, which would otherwise require an external bias
field in an SOT device. On the other hand, the SOT current component can provide lower
switching time than a pure STT device. Due to these advantages, it was deemed neces-
sary to comprehensively analyze the behavior of STT-SOT devices (Figure 1c). Although
these devices have been extensively studied through macrospin simulations [18–20], their
analysis under the influence of DLT and FLT has yet to be explored.
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Figure 1. A schematic of the (a) spin-transfer torque (STT) device (b) spin-orbit torque (SOT) device and (c) STT-SOT device.

In this paper, we investigated the effects of combined injection of SOT (JSOT) and
STT (JSTT) current in P-MTJs with their individual DLT and FLT components under zero
bias field. We first derived the critical STT density (JSTT

critical), required for switching in
the absence of any SOT current. We then derived the relationship between the STT and
SOT critical current densities when the ratio of the FLT to the DLT component of the SOT
(βSOT) was positive. We observed that, under combined injection, the critical SOT current
density depended on damping constant and the magnitude of the FLT component of the
STT current and the SOT current. We also noted that the critical STT and SOT current
densities required for switching did not change considerably with the magnitude and sign
of the FLT component of STT. However, they decreased with the increasing magnitude of
FLT component of SOT. The derived results were verified with a micromagnetic model
developed in OOMMF [21].

2. Landau–Lifshitz–Gilbert Equation with Spin-Transfer Torque (STT) and Spin-Orbit
Torque (SOT) Terms

The magnetization dynamics of a ferromagnet under the influence of magnetic fields
(internal and external) and spin currents can be described by the LLG equation with
additional STT and SOT terms as given below [3].
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→
τ FL−STT = −γβSTT HSTT

(→
m× p̂STT

)
Here, γ is the gyromagnetic ratio, βSTT (βSOT) is the ratio of the FLT to DLT of the

STT (SOT), α is the damping constant,
→
m is the unit vector which represents the magnetic

orientation of the FL, p̂STT and p̂SOT are the spin polarization directions, and HSTT and
HSOT are the spin torque strengths of the STT and SOT, respectively, described as follows:

HSTT =
}η JSTT

2eMstFM

HSOT =
}θSHE JSOT
2eMstFM

Here, e is the electron charge, } is the reduced Planck’s constant, η is the spin polariza-
tion constant, Ms is the saturation magnetization of the FL, θSHE is the spin hall angle, tFM
is the thickness of the free layer, and JSTT and JSOT are the STT and SOT charge current
densities, respectively.

For simplicity, we ignored the effect of the stray fields of the RL on the FL. We also
ignored the effects of the Oersted fields generated by the STT and SOT currents, as they
only provided an initial misalignment in the FL magnetization and did not contribute
significantly toward switching [22]. The analysis and the micromagnetic simulations (refer
to methods: micromagnetic model) were developed based on Equation (1).

Unless otherwise specified, parametric values adopted in this work are mentioned in
Table 1.

Table 1. Input parameters used in this work unless otherwise specified.

Parameters Numerical Values

γ 17.32× 1011radT−1s−1

α 0.005
η 0.33

Ms 1.5× 106 A/m [23]
tFM 1 nm [23]

HKe f f 540Oe [23]
θSHE(β− Ta) 0.14

p̂STT êz
p̂SOT êy
βSOT 2
βSTT 1

Aexchange 20 pJ/m
Trise (JSTT, JSOT) 0.5 ns
Tfall (JSTT, JSOT) 0.5 ns

3. Results
COMBINED STT-SOT Induced Switching in PMA-MTJ

In this section, we theoretically derived the relationship between the STT and SOT
current densities under combined injection. The relationship was derived for FL switching
from P to AP state. However, the same approach could be extended to obtain the rela-
tionship for switching from AP to P. The duration of the STT pulse in simulations was
kept larger than the SOT pulse to promote deterministic switching [17]. As evident from
Equation (1), the magnetic destabilization in these devices took place under the influence
of an effective field (refer Figure 2b) given by

→
He f f =

→
H + βSOT HSOT p̂SOT + βSTT HSTT p̂STT (2)
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Switching when βSOT > 0 took place through precessions, since both STT and SOT
directly compete with damping12 (refer Figure 2c). Thus, we were able to derive the relation
between JSOT and JSTT by linearizing the LLG equation. The magnetization dynamics of
the FL under combined injection, as described by Equation (1), can be modified to the
following form:

−
(

1+α2

γ

)
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→
m

dt =
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→
m×

→
H
)
+ α
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→
m×
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→
m×

→
H
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m
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+ HSTT(α + βSTT)
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−HSOT(αβSOT − 1)
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m×
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p̂SOT ×
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m
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+ HSOT(α + βSOT)
(→
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) (3)

Equation (3) can be linearized by converting the coordinate’s axes xyz to a new XYZ

system where Z aligns with the direction of
→
He f f by using the rotation matrix R given by

R =

 cos θ cos φ cos θ sin φ − sin θ
− sin φ cos φ 0

sin θ cos φ sin θ sin φ cos θ


Here, θ and φ are the polar and azimuthal angles of the effective field when SOT

and STT current approach their critical values (shown in Figure 2b). We linearized the
LLG equation based on the assumption that the Z–component of magnetization remains
unchanged at the beginning of the reversal and reversal occurs after small perturbations
around the equilibrium direction. Thus, for simplification, we considered

MZ = 1
MY.MX << 1
M2

X , M2
Y = 0
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Using the above assumptions Equation (3) can be modified into the following form

1 + α2

γ

(
dMX/dt
dMY/dt

)
= M

(
MX
MY

)
+ G (4)

Equation (4) has solutions of the form

MX , MY = A exp
(
−γ

{
[±i
√
|M| − (Trace[M]/2)2 − Trace[M]/2]t

})
, where the real part

in the exponential represents the time evolution of the oscillation amplitude. Thus, the
realization of switching was based on the boundary condition of Trace [M] = 0. Hence,
we obtained

M11 + M22 = −2Hke f f α cos2 θ + Hke f f α sin2 θ + 2HSOT(1− αβSOT) sin φ sin θ + 2HSTT(1− αβSTT)cosθ = 0 (5)

Substituting the values of θ and φ (from supplementary note 1), we first derived the
critical switching current density (JSTT

critical) for STT-based switching, as follows:

JSTT
critical =

2etFM MsαHke f f

}η(1− αβSTT)
(6)

From Equation (6), we observed that JSTT
critical depended on the magnitude and sign of

βSTT . JSTT
critical did not change significantly with increase in βSTT , as shown in Figure 3. This

result was consistent with observations made by Carpentieri et al. [24]. In addition to this,
the rate of increase was relatively JSTT

critical , with βSTT greater for larger values of α. The value
of βSTT depended on the properties of the materials [7,25–30] and was experimentally
estimated to be between 0.01–0.1 for a CoFeB/MgO/CoFeB [29,30]. In this article, we used
βSTT values greater than the experimentally measured results to clearly show its effect.
Here, a positive value of JSTT

critical refers to the electrons moving from the FL to the RL.
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Including the effects of SOT in Equation (5), we determined the relationship between
the critical STT and SOT current densities, above which the P-MTJ switched from P-AP
state as follows

JSOT =

√
2
√

α + ξSTT JSTT(αβSTT − 1)(1 + ξSTT JSTT βSTT)

ξSOT
√

βSOT(2 + αβSOT − ξSTT JSTT(βSOT − 2βSTT + αβSOT βSTT))
(7)

where ξSTT = }η
2etFM Ms Hke f f

and ξSOT = }θSHE
2etFM Ms Hke f f

Equation (7) is valid only when βSOT > 0, since for βSOT = 0, switching did not
take place entirely through precessions, although the STT always competed with the
damping torque (refer to supplementary note 2, (Figure S1)). In the absence of JSTT ,
Equation (7) was consistent with results obtained by Tanuguchi.et al. [12]. As seen in
Figure 4a, the critical current densities did not decrease appreciably, even for very large
values of βSTT . However, their magnitudes decreased considerably with increasing values
of βSOT (Figure 4b). This is because the FLT components of STT and SOT added to the
effective field in the êz direction and êy direction, respectively (Equation (2)). Since the
magnitude of JSTT required for switching was lower than JSOT , the contribution of its FLT
component to the effective field was insignificant. Additionally, the FLT component of
STT did not contribute toward a significant tilt in the magnetization. On the contrary, the
FLT component of SOT was stronger, owing to the large SOT current density. As the FLT
component of SOT was in-plane, it provided a larger tilt to the magnetization from its
initial position, thereby reducing the individual critical current for switching. Hence, JSTT
and JSOT , under combined injection, decreased appreciably for increasing values of βSOT .
Here, positive values of JSTT refer to electrons flowing from FL to RL and positive values
of JSOT refer to electrons flowing in the negative êy direction (refer Figure 2a). It must be
noted that deterministic switching took place only in the presence of combined STT and
SOT and did not take place in the presence of SOT alone.
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SOT switching is symmetric in nature, since the final configuration of the FL is in-plane
irrespective of the direction of current injection. Unlike SOT, STT-based switching is asym-
metric, i.e., the magnitude of JSTT for AP to P switching is lower than JSTT required for P to
AP switching. However, this inclusion was beyond the scope of this work. Figure 5 shows
the boundaries separating the different regions of switching for parameters mentioned in
Table 1. As seen in Figure 5, Equation (7) was consistent the experimental results obtained
by Wang et al. [17].
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4. Conclusions

In this work, we investigated the magnetic switching in MTJ devices under combined
injection of Spin transfer torque (STT) and Spin orbit torque (SOT) currents. We included
the effects of both the damping-like and field-like torque of the STT and SOT currents.
We derived the relationship between the STT and SOT current densities when the ratio
of the FLT to DLT component of the SOT was positive. We observed that the relationship
between the critical SOT and STT current densities under combined injection depended on
the damping constant and the magnitude of the FLT component of the STT current and the
SOT current. However, unlike the FLT component of SOT, the magnitude and sign of the
FLT component of STT had an insignificant effect on the STT and SOT current densities.
The derived results were verified with a micromagnetic model.

5. Methods
Micromagnetic Model

In this work, the micro-magnetic model was developed in OOMMF [21] based on Equation
(1). Combined injection of STT and SOT was implemented using the “Oxs_SpinXferEvolve”
extension module. The field-like torque components of STT and SOT were added as
external magnetic fields with magnitudes depending on the individual injection currents.
The duration of the STT current pulse was kept larger than the SOT to promote deterministic
switching [17].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/mi12111345/s1, Figure S1: Magnetic switching under combined injection of STT and SOT
when βSOT = 0.
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