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Abstract: The accurate and precise monitoring of epirubicin (EPR), one of the most widely used
anticancer drugs, is significant for human and environmental health. In this context, we developed a
highly sensitive electrochemical electrode for EPR detection based on nickel ferrite decorated with
gold nanoparticles (Au@NiFe2O4) on the screen-printed electrode (SPE). Various spectral characteris-
tic methods such as Fourier transform infrared spectra (FT-IR), X-ray diffraction (XRD), field emission
scanning electron microscopy (FESEM), transmission electron microscopy (TEM), ultraviolet-visible
spectroscopy (UV-Vis), energy-dispersive X-ray spectroscopy (EDX) and electrochemical impedance
spectroscopy (EIS) were used to investigate the surface morphology and structure of the synthesized
Au@NiFe2O4 nanocomposite. The novel decorated electrode exhibited a high electrocatalytic activity
toward the electrooxidation of EPR, and a nanomolar limit of detection (5.3 nM) was estimated
using differential pulse voltammetry (DPV) with linear concentration ranges from 0.01 to 0.7 and
0.7 to 3.6 µM. The stability, selectivity, repeatability reproducibility and reusability, with a very low
electrode response detection limit, make it very appropriate for determining trace amounts of EPR in
pharmaceutical and clinical preparations.

Keywords: epirubicin; anticancer; monitoring; nickel ferrite; gold nanoparticles

1. Introduction

Epirubicin (EPR) (Scheme 1) is an anthracycline topoisomerase II inhibitor used for
chemotherapy. Epirubicin, as an antitumor and anthracycline antibiotic derivative of dox-
orubicin, has been widely utilized for clinical therapy [1,2]. Doxorubicin and epirubicin(4′-
epidoxorubicin) have only one difference, the spatial orientation of the 4′-moiety, and it
has been exhibited effectively for treating leukemia, sarcoma and lymphoma [3,4]. EPR is
an anticancer medication that works by selectively killing cancer cells rather than harming
them by quickly dividing cells. Therefore, there may be a relationship between the EPR
concentration and the clinical response. Low plasma EPR concentrations may suggest an
ineffective prescription medication since the levels may be inadequate due to a significant
molecular or complete cytotoxic response. As a result, measuring EPR levels in real biolog-
ical samples is crucial for clinical diagnosis. In addition, cardiac problems such as heart
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failure and hair loss are crucial in the significant side effects of EPR and controlling the
EPR concentration in the human body after cancer therapy.
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nology. Due to their distinct benefits, they are increasingly being used for enzymes and 
other bioactive molecules. Nickel ferrite (NiFe2O4) nanoparticles (NPs) are a promising 
material for modified electrodes among various spinel transition metal oxides due to their 
high theoretical capacities (914 mA h/g), appropriate conductivity and low toxicity [40–
42]. Due to its solid superparamagnetic characteristics, superior biocompatibility, high 
adsorbability and ease of production, NiFe2O4 nanoparticles are increasingly attracting 
interest in sensor and biosensor design [43]. Moreover, NiFe2O4 NPs show a high active 
surface area and low mass transfer resistance [44]. Metal nanoparticles (MNPs) are con-
sidered the most promising alternative for altering magnetic nanoparticle surfaces be-
cause of their size and their physical and chemical properties. The size and shape of metal 
nanoparticles are well recognized to impact electrochemical activity in sensing applica-
tions significantly. Due to their unique electrical, chemical and catalytic characteristics, 
various-shaped gold nanoparticles (Au NPs) such as nanospheres, nanorods and nan-
owires are widely utilized to construct electrochemical electrodes [45,46]. In addition, 
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EPR analysis has used a variety of analytical methods, including ultraviolet–visible
spectroscopy (UV–Vis) [5,6], high-performance liquid chromatography (HPLC) [7–11], fluo-
rimetry [12,13], mass spectrometry [14] and liquid chromatography–mass spectrometry/mass-
spectrometry (LC-MS/MS) [15]. However, most of these techniques have drawbacks, such
as long response times, complex analysis, high prices and limited sensitivity [16,17]. Voltam-
metric techniques, because of their quick reaction, high sensitivity and selectivity, and
electrochemical techniques, particularly square wave voltammetry (SWV) and differential
pulse voltammetry (DPV), have been used [18–20]. According to previous research, the
performances of the electrochemical methods described are more appropriate than the
other methods due to merit, such as a quick response to the analyte and the selectability
in the presence of interfering agents [21–26]. Modifying electrode surfaces can remark-
ably enhance the surface sensitivity with appropriate stability and reproducibility [27–31].
Lately, the electrochemical properties of various binary metal oxides have been inves-
tigated widely due to their excellent conductivity, lower activation energy, appropriate
structural stability and comparatively higher specific capacitance compared to the unitary
metal oxides [32–34]. Nanomaterials have garnered a great deal of interest since they
may be utilized in a variety of applications, including medical, electronics, energy storage
and conversion systems, wastewater treatments, photovoltaic cells, catalysts, etc. [35–39].
Magnetic nanoparticles with the general formula MFe2O4 (M = Fe, Ni, Co, Cu, Mn) are
among the most widely used materials in analytical chemistry, medicine and biotechnology.
Due to their distinct benefits, they are increasingly being used for enzymes and other
bioactive molecules. Nickel ferrite (NiFe2O4) nanoparticles (NPs) are a promising material
for modified electrodes among various spinel transition metal oxides due to their high
theoretical capacities (914 mA h/g), appropriate conductivity and low toxicity [40–42]. Due
to its solid superparamagnetic characteristics, superior biocompatibility, high adsorbability
and ease of production, NiFe2O4 nanoparticles are increasingly attracting interest in sensor
and biosensor design [43]. Moreover, NiFe2O4 NPs show a high active surface area and
low mass transfer resistance [44]. Metal nanoparticles (MNPs) are considered the most
promising alternative for altering magnetic nanoparticle surfaces because of their size and
their physical and chemical properties. The size and shape of metal nanoparticles are
well recognized to impact electrochemical activity in sensing applications significantly.
Due to their unique electrical, chemical and catalytic characteristics, various-shaped gold
nanoparticles (Au NPs) such as nanospheres, nanorods and nanowires are widely utilized
to construct electrochemical electrodes [45,46]. In addition, AuNPs have several benefits,
including flexibility in size and shape management and excellent electrical and catalytic
activity because of their superior conductivity and wide active surface area in the elec-
trode [47,48]. These characteristics suggest that sensing applications aim to enhance the
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electron transport between the target molecules’ redox centers and electrode surfaces [49].
Firstly, the gold nanoparticles decorated on a nickel ferrite (Au@NiFe2O4) nanocomposite
was synthesized in this work. There is no other original work on the electrochemical detec-
tion of EPR by Au@NiFe2O4 modified on SPE. Chemically produced Au@NiFe2O4 has a
unique combination of characteristics, including a large electroactive surface area, good
electron transferability and adsorptive properties, making it an appropriate sensing mate-
rial for electrochemical determination EPR. The nanocomposite was characterized using
field emission scanning electron microscopy (FESEM), transmission electron microscopy
(TEM), electrochemical impedance spectroscopy (EIS), UV–Vis, Fourier transform infrared
spectra (FT-IR) and energy-dispersive X-ray spectroscopy (EDX). The screen-printed elec-
trode (SPE) modified using a Au@NiFe2O4 nanocomposite (Au@NiFe2O4/SPE) exhibited
an outstanding detection limit of 5.3 nM and extremely selective electrode in the presence of
interfering agents with two different concentration ranges, 0.01 to 0.7 and 0.7 to 3.6 µM. In
addition, EPR analysis with satisfactory recovery in real samples (human plasma, injection
and urine) was first performed using a Au@NiFe2O4/SPE. In comparison to the other
approaches, it can be claimed that the analytical method used in this study is preferable.

2. Materials and Methods
2.1. Materials

Epirubicin was purchased from the Council of Europe (France); Nickel(II) chloride
(NiCl2·6H2O), Ferric chloride(FeCl3 6H2O), ethylene glycol, polyvinylpyrrolidone (PVP),
Gold (III) chloride trihydrate (HAuCl4 3H2O, ≥49%), ascorbic acid, potassium hexacyano-
ferrate(III) and potassium hexacyanoferrate(II) were purchased from Sigma Aldrich Co
(Burlington, MA, USA). Sera-Flex human blood plasma samples were also purchased from
Dyna-Tek Industries Inc. (Lenexa, KS, USA). Additionally, a urine sample was obtained
from a volunteer for use in the experiments. Epirubicin injection was also obtained from
a local pharmacy. All of these substances were of analytical grade, and di-ionized water
was utilized. The supporting electrolyte was 0.1 M Britton–Robinson buffer (B-R) prepared
by mixing acetic acid (CH3COOH), phosphoric acid (H3PO4), boric acid (H3BO3) and
potassium chloride (KCl) with deionized water. The pH of the supporting electrolyte was
monitored with a pH meter (Hanna Instruments, Woonsocket, Rhode Island, USA). In
addition, a stock EPR solution in the deionized water was prepared before each experiment.

2.2. Instrumentation

The electrochemical techniques such as differential pulse voltammetry (DPV), cyclic
voltammetry (CV) and chronoamperometry (CA) were conducted using a Metrohm-
Autolab potentiostat/galvanostat system (PGSTAT128N, Metrohm, Herisau, Sweden).
Electrochemical impedance spectroscopy was performed under a 0.1 Hz to 100 kHz fre-
quency using an IVIUM Compactstat (Eindhoven, The Netherlands) device. The employed
screen-printed electrode had a Ag/AgCl paste and Pt electrodes on their own surface, as a
reference and a counter electrode, respectively. UV–Vis was recorded using a double beam
spectrophotometer (Shimadzu, Kyoto, Japan) model UV-1800 and quartz cells (Hellma,
Müllheim, Germany). SEM and EDX were observed micrographs of the materials by ZEISS
GeminiSEM 560 at 3.00 kV. The X-ray diffraction pattern was recorded using a Rigaku
smart laboratory diffractometer (operated at 40 kV and 20 mA) with a Cu Kα source
at a wavelength of 1.540 Å. TEM images were performed using an FEI Tecnai G2 Spirit
microscope (Thermo Fisher Scientific, Waltham, MA, USA) at 120 kV. All electrochemical
measurements were performed at 27.5 ◦C unless otherwise specified.

2.3. Synthesis of NiFe2O4

Firstly, 4.76 g of NiCl2·6H2O (0.02 mol) and 10.82 g of FeCl3·6H2O (0.04 mol) were
dissolved in 30 mL of ethylene glycol (solution 1). Secondly, 5.0 g of urea and 0.4 g of
polyvinylpyrrolidone (PVP) were dissolved in 30 mL of ethylene glycol (solution 2). Thirdly,
solution 1 and solution 2 were mixed and stirred at 400 rpm at 30 min with a magnetic



Micromachines 2021, 12, 1334 4 of 18

stirrer. Finally, this solution was moved to Teflon, a lined hydrothermal vessel, and heated
at 180 ◦C for 20 h. The hydrothermal vessel was cooled at room temperature, and NiFe2O4
NPs were collected with a magnet. The NiFe2O4 NPs were washed with water (three times)
and ethanol (two times) and dried at 70 ◦C for 12 h.

2.4. Synthesis of Au@NiFe2O4

Firstly, 70 mg of the powder obtained from magnetite nanoparticles was ultrasonicated
in 20 mL of deionized water for 30 min to gain a uniform solution. Then, 700.0 µL of a
HAuCl4 (0.1 g mL−1) solution was added to the reaction mixture at 70 ◦C. Afterward, after
10 min, 560 µL of ascorbic acid (0.5 g mL−1) was added to the reaction mixture, the stirring
condition was maintained until the solution showed a slightly reddish color, and finally,
the solution was cooled to room temperature and was separated using a magnet to form
a magnetite-gold nanostructure. Next, Au@NiFe2O4 nanocomposites were washed four
times with deionized water, and the resulting brown precipitate was dried at 70 ◦C.

2.5. Preparation of Au@NiFe2O4/SPE

The electrode surfaces were polished by 0.05-mm alumina slurries for 10 min and
washed using a mixed solution of ethanol and water (1:1, v/v). Then, the mirror electrodes
were dried at 25 ◦C for 1 h under argon gas. The electrode surfaces were modified using the
optimized amount and concentration of NiFe2O4 and Au@NiFe2O4 nanocomposites (7.0 µL,
1.0 mg mL−1) on the screen-printed electrode surface. The solvent was removed using
an infrared heat lamp. Then, the developed electrodes were obtained as a NiFe2O4/SPE
and a Au@NiFe2O4/SPE. All electrodes were kept in a sealed box without fluctuations of
temperature and pressure [50].

2.6. Preparation of Real Samples

Human plasma, urine and injections were used as real samples to detect the EPR
content using the standard addition method. Additionally, the urine sample was obtained
from candidates without a disease history. The urine samples were filtered thoroughly
using PTFE (0.45-micrometer) membrane filters. A certain amount of EPR solution was
added to the urine solution to prepare EPR spiked. To prepare the human plasma sample,
the acquired plasma sample was kept at 20 ◦C until the test to produce the human plasma
sample. Firstly, an aliquot of plasma was fortified with EPR to reach a concentration of
5.0 mM EPR. Then, 1.0 mL of plasma sample containing EPR was treated with 1.0 mL of
acetonitrile, employed as a plasma protein precipitating agent. The precipitated proteins
were separated by centrifugation for 15 min at 10,000 rpm after a 45-s vortex step. Finally,
appropriate volumes of the supernatant were transferred to a volumetric flask and diluted
with pH 4.0 B-R buffer to an acceptable volume. To prepare an injection, a certain number
of injections were diluted with the B-R buffer solution and then investigated to measure
EPR using DPV, analyzing without more purification.

3. Results
3.1. Characterizations of Au@NiFe2O4 Nanocomposite

XRD patterns were utilized to illustrate the crystal structure, size and phase purity
of the produced NiFe2O4 NPs and Au@NiFe2O4 nanocomposites (Figure 1A). The NPs
were manually ground in an agate mortar for the powder XRD analysis sample. The planes
(220), (311), (222), (400), (422), (511) and (440) corresponded to the 2θ values 30.5◦, 35.6◦,
38.1◦, 43.4◦, 54.2◦, 57.6◦ and 63.2◦. As a result, the sample has a face-centered cubic (FCC)
structure and may be classified as an inverse spinel NiFe2O4 (ICCD 00-044-1458) [51]. The
particle sizes of the nickel oxide and gold nanoparticles were investigated by Equation (1).
The mean nanoparticle sizes were 32.6 and 14.0 nm for synthesized NiFe2O4 and Au
nanoparticles, respectively. The particle size, D, was estimated using Scherrer’s equation,
which is as follows [52]:

D =
kλ

βcoseθ
(1)
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where k presents the shape coefficient for reciprocal lattice point (0.9), β shows the FWHM
of the peak, θ exhibits the Bragg angle and λ presents the wavelength of X-rays = 1.54 Å.
Further, the XRD of Au@NiFe2O4 exhibits four additional peaks located at 38.1◦, 44.1◦,
54.6◦ and 76.4◦, which are attributed to the (111), (200), (220) and (311) planes of Au,
respectively, with the JCPDS ref. No 89-3697 [53]. Thus, the XRD patterns affirm the
deposition of Au nanoparticles on the surface of covalently grafted NiFe2O4.
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Figure 1. (A); XRD patterns of NiFe2O4 and Au@NiFe2O4 (A,B); UV–Vis spectra of NiFe2O4 and Au@NiFe2O4.

The FT-IR spectra for the crystalline NiFe2O4 and Au@NiFe2O4 nanocomposites were
observed in the region from 4000 to 450 cm−1, as exhibited in Figure S1. The band located
at 1375 and 3444 cm−1 attributed to the O-H bond bending and stretching vibrations,
respectively [54]. The two main metal-oxygen bands at 695 and 487 cm−1 are exhibited in
the spectrum of the prepared NiFe2O4. These two bands are attributed to the vibration
of ions in the crystal lattices, and the vibration absorption peak of C-O-Fe appears at
1115 cm−1. The 1317 cm−1 peak is assigned to the characteristic—CH3 bending [55]. In
the case of Au@NiFe2O4, the intensity increased due to the doping of Au nanoparticles
on NiFe2O4. The above evidence strongly proves the successful covalent binding of
Au@NiFe2O4. Figure 1B exhibits the UV–Vis spectra of the pure NiFe2O4 and Au@NiFe2O4
nanocomposites. Only the side-band adsorption at 750 nm was found in the UV–Vis spectra
of NiFe2O4, which can be attributed to the d–d transition from Ni3d-t2g to Ni3d-eg [56].
NiFe2O4 has a conventional spinel structure, with Ni2+ and Fe3+ occupying the tetrahedral
and octahedral positions of the cubic spinel lattice, respectively [57]. At the same time, the
spectra of the Au@NiFe2O4 were dominated by strong absorptions in 570 and 745 nm due
to the presence of Au nanoparticles on the surface of NiFe2O4. These results reaffirmed the
synthesis of the Au@NiFe2O4 nanocomposite.

The structure and morphology of the NiFe2O4 and Au@NiFe2O4 samples and their
chemical composition are analyzed using SEM micrographs. Figure 2A,B present SEM im-
ages of NiFe2O4 nanoparticles and the Au@NiFe2O4 nanocomposite. There is a significant
amount of aggregation of particles observed in the SEM image of NiFe2O4. Figure 2B shows
that many of the Au NPs with a diameter of about 10.0 nm adhered to the surface of the
NiFe2O4 nanocomposite. The results suggested that Au nanoparticles were immobilized
on the NiFe2O4 nanocomposite.
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Moreover, the TEM images of Au@NiFe2O4 exhibited in Figure 2C,D indicate the pres-
ence of AuNPs over the NiFe2O4 nanocomposite. Thus, the AuNP immobilized NiFe2O4
nanocomposite may increase the electron-transfer process by increasing the electrical con-
ductivity to enhance the electrochemical detection potential. Energy-dispersive X-ray
analysis was also utilized to analyze the elemental compositions of the nanocomposite
and its synergistic components (Figure S2 and Table S1). The results demonstrate that
the Au@NiFe2O4 nanocomposite was successfully manufactured. As a result, all the spec-
troscopic and microscopic studies of the nanocomposite’s production method and size
are compelling.

3.2. Electrochemical Performance
3.2.1. Influence of Modifier on the Electrochemical Oxidation of EPR

Cyclic voltammetry and DPV voltammograms were utilized to assess the redox
behavior of the Au@NiFe2O4/SPE in a 0.1 M B-R buffer as a supporting electrolyte and
compared with the NiFe2O4/SPE and a bare electrode. Figure S3 shows DPVs recorded
with different modified and bare electrodes. After the modified Au@NiFe2O4, the peak
current of the 0.5 µM EPR was approximately 3.1 times higher than the bare electrode,
indicating that the effect of the increased active surface area and conductivity by synergic
affects the nanocomposite. Therefore, the Au@NiFe2O4/SPE was utilized for further
experiments. Moreover, the cyclic voltammograms of bare and modified electrodes in the
absence of EPR in 0.1 M B-R (pH 4.0) were obtained to evaluate the effect of the nanohybrid
on the electroanalytical performance of the bare electrode. The findings demonstrated that
in the absence of EPR, thanks to the large electroactive surface area and the synergistic
effects between the Au and Ni Fe2O4 nanoparticles, the response of the Au@NiFe2O4/SPE
was detected higher than that of the bare electrode (Figure S4). The electrochemical
performance of the proposed electrochemical sensor was studied by determining the
electron transfer rate using the solution as a redox probe molecule in 0.1 M KCl. For
this purpose, the peak-to-peak distance (∆Ep) value between the anodic and cathodic
signals, an essential indicator for the electron transfer rate, was determined at a bare SPE,
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the NiFe2O4/SPE and the Au@NiFe2O4/SPE with a scan rate of 50 mV s−1. As seen in
Figure 3A, the ∆Ep value of the Au@NiFe2O4/SPE (∆Ep = 239 mV) was lower than that
of the bare electrode (∆Ep = 301 mV), exhibiting the presence of a faster electron transfer.
In addition, an improvement obtained at both the anodic and cathodic signals has clearly
revealed the strong electrocatalytic activity of the Au@NiFe2O4. Furthermore, Figure S5A
exhibits the CV voltammograms of the Au@NiFe2O4/SPE in the presence of 5.0 mM
[Fe(CN)6]3−/4− containing 0.1 M KCl at various scan rates from 10.0 to 300.0 mV s−1 and
the plot of the peak current against the square root of scan rate is exhibited in Figure S5B.
Figure S5A shows that with an increasing scan rate, the width of the voltammograms
gradually increased. The anodic/cathodic peaks current density enhanced dramatically at
high scan rates. Therefore, electron exchange happens slowly at the electrode surface to
record peak currents at low scan rates, resulting in a thinner voltammograms with shorter
current density peaks. The scan rate study revealed a clear relationship between the peak
current and the specified range of the square roots of scan rates.
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The electrochemical active surface area (EASA) of the Au@NiFe2O4/SPE was con-
ducted using CV analysis in 0.1 M B-R buffer as a supporting electrolyte, containing
5.0 mM [Fe(CN)6]3−/4− as a redox probe and compared with the bare electrode and the
NiFe2O4/SPE. The EASA of the electrodes was evaluated using the slope value of the
peak current against various square root scan rate plots with the Randles–Sevcik equation
(Equation (S1)). As a result, the active surface area was observed at 0.26, 0.16 and 0.069 cm2

for the Au@NiFe2O4/SPE, the NiFe2O4/SPE and the bare SPE, respectively. On the other
hand, the active surface area of the Au@NiFe2O4/SPE is about 3.8-fold higher than the
area of the bare electrode, showing that the Au@NiFe2O4/SPE is the most appropriate for
electrocatalytic sensing applications.

The electron transport characteristics of changed electrodes can also be studied us-
ing electrochemical impedance spectroscopy. The charge transfer resistance (Rct) for the
electrodes could be observed through the semicircle diameter. Figure 3B exhibits the
Nyquist plot of the Au@NiFe2O4/SPE, the NiFe2O4/SPE and the bare SPE in the presence
of 5.0 mM [Fe(CN)6]3−/4− in 0.1 M KCl. The Rct at the bare SPE, the NiFe2O4/SPE and
the Au@NiFe2O4/SPE are approximately 6.32, 4.33 and 2.97 kΩ, respectively. The semicir-
cle diameter of the Au@NiFe2O4/SPE showing that Rct was decreased at the developed
electrodes. The EIS measurements demonstrate that the Au@NiFe2O4/SPE has a better
electrochemical activity and conductivity than the bare electrode. Therefore, it can be
inferred that the Au@NiFe2O4/SPE indicates a synergistic effect by combining the Au and
NiFe2O4 and the Au@NiFe2O4/SPE nanocomposite improves the electron transfer process.
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3.2.2. Heterogeneous Electron Transfer Rate Constant (K◦)

The ability of the Au@NiFe2O4/SPE was investigated in increasing the rate of elec-
tron transfer. The electrical conductivity and surface resistance have a reciprocal rela-
tionship. The electrical conductivity of the Au@NiFe2O4/SPE is higher than the bare
SPE and the NiFe2O4/SPE, suggesting improved electron transport kinetics. It is due to
the greater surface area and higher conductivity of the Au@NiFe2O4/SPE. Equation (S2)
is utilized to observe the standard heterogeneous rate constant. The K◦ values for the
Au@NiFe2O4/SPE, the NiFe2O4/SPE and the bare electrode are 1.96 × 10−8, 1.22 × 10−8

and 8.41 × 10−9 cm s−1, respectively. The K◦ values represent the estimated kinetic fa-
cilities of redox couples. A higher K◦ achieves equilibrium in a shorter amount of time,
implying a quicker electron transfer.

3.3. Optimization of Conditions for Developing Sensitive and Selective Au@NiFe2O4/SPE
3.3.1. Effect of Physical and Chemical Properties

Optimal conditions affect the activity and sensitivity of the electrochemical electrode
and can be useful for the sensitivity of the developed electrodes. Therefore, the following
parameters were obtained: certain concentration and amount of nanocomposite, sup-
porting electrolyte and its pH, scan rate, temperature and stirring of electrolyte at the
Au@NiFe2O4/SPE.

To obtain the optimum concentration to achieve the highest current efficiency, the
impact of the Au@NiFe2O4 dosage on the surface of the electrode was investigated, in the
range of 0.1–2.0 mg mL−1, and the obtained data are exhibited in Figure S6. As shown,
raising the Au@NiFe2O4 amount from 0.1 to 1.0 mg mL−1 increased the current percentage
substantially. It might be because a greater surface area and more adsorption functional
sites are available. On the other hand, at higher concentrations (higher than 1.0 mg mL−1),
there is a significant decrease, which might be related to overlying or aggregating acces-
sible binding sites and reducing the total available adsorbent surface area. In the next
step, investigating the effect of the nanocomposite amount 4.0–10.0 µL of Au@NiFe2O4
suspension was dropped to the surface of the electrode, drying at room temperature. The
voltammetric behavior of different Au@NiFe2O4 suspension amounts was studied using
5.0 µM EPR (Figure S7). The results showed that the highest Ip was obtained with 7.0 µL of
Au@NiFe2O4. Upon a further increment in the amount of the suspension, the adherence of
the modifier layer on the surface of the electrode would be reduced.

Furthermore, the analyte diffusion through the dense layer of modifier would be
hindered, which causes a noticeable decrease in the sensitivity of the modified SPE. As a
result, the optimal volume of Au@NiFe2O4 as a modifier nanocomposite, increasing the
conductivity and activity to increase the electron transfer process, is 7.0 µL. The effect of
various supporting electrolytes, various temperatures and stirring rates was also observed
using DPV in the presence of 1.0 µM EPR at pH 4.0 (Figures S8–S10).

3.3.2. The Effect of pH

The pH is an essential factor in the electrochemical behavior of a developed elec-
trode. The activity of EPR in real samples due to the pH of the solution can affect the
adsorbent surface in the presence of OH− and H+. According to the DPV signals of the
Au@NiFe2O4/SPE in the range of pH 3.0–6.0, the oxidation current of EPR enhanced with
an increase in the pH value from 3.0 to 4.0, and after pH 4.0, the signals decreased at the
surface of the Au@NiFe2O4/SPE. Additionally, the oxidation peak potential of EPR shifted
to the left by increasing the pH value (Figure 4A) with a slope of 60.4 mV/pH at the surface
of the Au@NiFe2O4/SPE that is close to the Nernstian value (59.0 mV/pH) for an equal
number of electrons and protons in the redox system (Figure 4B). The results confirm that
the best oxidation current occurs at pH = 4.0, and this value is selected as the optimum pH
for further experiments.
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Figure 4. (A); Differential pulse voltammetry solution containing 5.0 µM EPR in the pH range of 3.0–6.0 at the
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3.3.3. The Effect of Scan Rate

Figure 4C exhibits the effect of the scan rate on the redox peak current responses of
the Au@NiFe2O4/SPE in the presence of 5.0 µM EPR containing a 0.1 M B-R buffer at a
pH 4.0 scan rate ranging from 10.0 to 300.0 mV s−1. A systematic increase in Ipa and Ipc
and ∆Ep was observed with an increase in the scan rate. The results of the relationship
between the current of EPR and ν1/2 on the surface of the Au@NiFe2O4/SPE are shown
in Figure 4D. The equations Ipa = 0.4152 ν1/2 −0.6893 (R2 = 0.999) and Ipc = −0.331 ν1/2

+1.1423 (R2 = 0.9845) were observed for this study for the oxidation and reduction in EPR.
These equations and the linear relations between current and ν1/2 at the Au@NiFe2O4/SPE
suggest that the electro-oxidation of EPR is under diffusion control. The slope of the
logarithm of peak current vs. the logarithm of scan rates (Figure 4E) also reaffirmed that
the electrode progression was a diffusion-controlled electrode process because the slop
of the log Ip vs. log v is close to 0.5. Figure 4F exhibits a linear relationship between Epa
and ln v for EPR, as presented in the following equation: Epa (V) = 0.0679 ln v + 0.4292
(R2 = 0.995). In Laviron’s theory, for a reversible electrode reaction, Epa is determined by
Equation (S3). Hence, the number of transferred electrons in the electro-oxidation of EPR
is estimated to be 0.78 (∼=1). The results confirmed that one electron and one proton are
transferred during the electro-oxidation of EPR on the Au@NiFe2O4/SPE. Based on our
observations using Laviron’s theory and slope of Epa vs. pH, a possible electrode reaction
mechanism proposed for EPR was illustrated in Scheme 2, in which one proton and one
electron transfer was involved and caused the oxidation of the hydroxyl group to quinine.
The results also demonstrated that the reversible electron process led to the formation of
the quinolinic structure of EPR.
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The corresponding results to optimize the modified electrode are shown in the support-
ing information. The following optimal experimental conditions were observed: the certain
concentration of nanocomposite: 1.0 mg mL−1; the amount of nanocomposite: 7.0 µL;
the optimal supporting electrolyte and pH value: B-R buffer at pH 4.0; the electrolyte
temperature and stirring rate: 25.0 ◦C and 400 rpm.

3.3.4. Chronoamperometric Study

The chronoamperometric evaluation was performed via adjusting the Au@NiFe2O4/SPE
potentials at 0.6 V with different concentrations of EPR (200.0, 300.0, 400.0 and 500.0 µM)
containing 0.1 M B-R buffer at pH 4.0 (Figure 5A). Cottrell’s equation (Equation (S4)) was
utilized to describe the current responses (I) for the diffusion coefficient electrocatalytic
procedures of electroactive substances. By plotting I versus t−1/2, the linear curve was
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observed for various concentrations of EPR. Afterward, the obtained direct lines’ slope
was drawn against the EPR concentration (Figure 5B). Finally, the diffusion coefficient of
4.72 × 10−6 cm2 s−1 was evaluated for a developed EPR electrode.
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3.4. Determination of EPR at the Au@NiFe2O4/SPE

The analytical performance of the Au@NiFe2O4/SPE was performed by analyzing
EPR at diverse concentrations using DPV under optimized experimental conditions. As
shown in Figure 6A, the oxidation peak current of EPR has enhanced linearly with in-
creasing EPR concentrations at the ranges 0.01–0.7 and 0.7–3.6 µM with slopes of 1.5758
and 0.4008 µA µmol L−1, respectively. The corresponding linear regression equations were
observed as Ipa (µA) = 1.5758 CEPR (µM) + 0.3245 (R2 = 0.9909) and Ipa = 0.4008CEPR
+ 1.1324 (R2 = 0.997) (Figure 6B). The second linear segment’s reduction in sensitiv-
ity (slope) is most likely due to a kinetic limitation. Therefore, the limit of detection
(LOD) of the Au@NiFe2O4/SPE was calculated as 5.32 nM (RSD = 5%) using the equation
LOD = 3.3 s/m [22], where ‘s’ is the standard deviation of the 10 repeated measurements
at the calibration range’s lowest concentration, and ‘m’ is the calibration curve’s slope,
respectively. The analytical detection figures of merit are summarized in Table 1. These
results suggest that the Au@NiFe2O4/SPE could be used in a real environment to detect
medically relevant concentrations of EPR.
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Figure 6. (A); Differential pulse voltammograms of EPR with increasing concentrations at
the Au@NiFe2O4/SPE, (B); the plot of EPR concentrations versus oxidation current peak the
Au@NiFe2O4/SPE in the concentration range of 0.01–3.6 µM.

Table 1. Determination figures of merit for EPR at Au@NiFe2O4/SPE.

Metrics Au@NiFe2O4/SPE

response variability (RSD, %) 3.56
sensitivity (µA µmol L−1) 1.5758 ± 0.14 a

linear dynamic range (µM) 0.01–0.7 and 0.7–3.6
correlation coefficient 0.9909 and 0.997

limit of detection (LOD, nM) 5.32
a Mean ± Standard deviation for n = 3.

The obtained analytical parameters were compared to similar reported analytical sen-
sors and other analytical methods such as HPLC, fluorescence and LC-MS/MS, which have
been utilized to sense EPR (Table 2). The analytical performance of the Au@NiFe2O4/SPE,
which has wide dynamic linearity and low LOD value, was almost much more appropriate
than other comparative analytical methods toward detecting EPR.

Table 2. Detection figures of merit for other methods for EPR reported in the literature.

Method Modified Electrode LOD (µM) LWR a (µM) Ref.

DPV b Ce-ZnO/GCE c 0.0023 0.01–600 [58]
SWV d Au/MWNTs-ZnO/SPE 0.0025 0.005–0.2 [59]
LSV e SWNT–DCP/SPE f 0.02 0.05–10 [60]
SWV CoFe2O4/1,3-DPIBr g/CPE 0.01 0.04–450 [61]

fluorescence CMC-CdTe/ZnS QDs 0.04 - [62]
HPLC - 0.0149 1.87–187 [11]

LC–MS/MS - 1.87 5.6–374.5 [15]
DPV Au@NiFe2O4/SPE 0.0053 0.01–3.6 Our work

a Linear working range, b differential pulse voltammetry, c cerium-doped ZnO nanoflowers, d square
wave voltammetry, e linear sweep voltammetry, f single-walled carbon nanotube/dicetyl phosphate, g 1,3-
dipropylimidazolium bromide.
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3.5. Selectivity of Au@NiFe2O4/SPE

The interference study is an essential factor for electrodes, which significantly im-
pacts practical applications. To assess the selectivity of the Au@NiFe2O4/SPE, various
concentrations of interfering agents such as ascorbic acid (b), uric acid (c), glucose (d),
L-cysteine (e), L-arginine (f), dopamine (g), vitamin D (h) and vitamin B12 (k) were sep-
arately added into a 0.1 M B-R buffer at pH 4.0 containing 0.5 µM EPR (a). The results
exhibited that a 200-fold excess of interfering agents did not show any or negligible inter-
ference effect in the determination of EPR (Figure 7). The corresponding relative errors
for EPR were lower than ±5%, which correlates with the tolerance limit defined in the
selectivity measurements, indicating that the Au@NiFe2O4/SPE has a promising selectivity
for the determination of EPR. Therefore, the results suggest that the developed electrode
has outstanding anti-interference activity and can be performed to EPR determination in
biological samples.
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glucose (d), L-cysteine (e), L-arginine (f), dopamine (g), vitamin D (h) and vitamin B12 (k) at the
Au@NiFe2O4/SPE.

3.6. Reproducibility, Repeatability, Stability and Reusability of the Au@NiFe2O4/SPE

The response of Au@NiFe2O4/SPE in a B-R buffer containing 0.5 µM of EPR was
observed to study reproducibility (Figure 8A). The five individual electrodes were prepared
at similar conditions, and the relative standard deviations (RSDs) less than 2.61% were
obtained for EPR. The RSD of 2.1% for ten successive signals was observed confirming
good repeatability for the Au@NiFe2O4/SPE as an electroanalytical electrode (Figure 8B).
Moreover, to evaluate the longer-term response stability, two electrodes were kept in 0.1 M
B-R (pH 4.0) at 4 ◦C. The developed electrodes were kept in glass vials with the tops
wrapped using parafilm. After each week, two electrodes were utilized to use contin-
uous voltammetry to measure the 0.5 µM EPR mixed with a 0.1 M B-R buffer (pH 4.0)
(Figure S11). The observed signal showed 97.9% of its initial response relative to 0.5 µM
EPR, using the Au@NiFe2O4/SPE, indicating the good stability, repeatability and repro-
ducibility of the developed electrode. Finally, the reusability of the Au@NiFe2O4/SPE
was observed. The Au@NiFe2O4/SPE is not a disposable electrode. It can be utilized at
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least 13 times by rinsing with 0.1 M B-R buffer (pH 4.0). Thanks to the strong covalent
bond interaction between the uniformly dispersed Au nanoparticles and NiFe2O4 surface
(notably, the Au[Fe–O] bond), the specific capacity and the long-term cyclic stability of the
fabricated Au@NiFe2O4 nanohybrid was assured.
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3.7. Real Samples Analysis

The Au@NiFe2O4/SPE was used to determine EPR in urine, injection and human
plasma samples. To assess the target analytes in these real samples, the standard addition
method was performed. According to the results obtained in Table 3, the developed
electrode can be used directly to determine EPR in real samples. The relative recovery
was utilized to estimate the accuracy of the results. The recoveries varied between 97.5
and 101.0% for human plasma, 98.4 and 103% for a urine sample and 102.6 and 105.2% for
an injection with acceptable RSDs for a novel developed electrode. Table 3 confirms the
high-performance ability of the Au@NiFe2O4/SPE as an EPR electrochemical electrode in
the real samples.

Table 3. Analysis of EPR in real samples using Au@NiFe2O4/SPE.

Sample Spiked (µM) Found (µM) a RSD (%) Recovery (%)

Human plasma

0.4 0.39 ± 0.01 2.14 97.5
0.6 0.6 ± 0.05 2.84 100.1
0.8 0.79 ± 0.04 3.52 98.8
1.0 1.0 ± 0.01 2.98 100.0

Urine

0.4 0.41 ± 0.01 3.15 102.5
0.6 0.59 ± 0.06 2.89 98.4
0.8 0.80 ± 0.03 4.11 100.0
1.0 1.03 ± 0.03 2.59 103.0

Injection
- 1.15 ± 0.14 - -

0.4 1.51 ± 0.08 3.7 102.6
0.6 1.78 ± 0.09 4.27 105.2

a All samples were analyzed using the standard addition method.
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4. Conclusions

This paper reports on a new EPR sensor design that consists of gold nanoparticles
immobilized on the bimetallic nanocomposite on the surface of an SPE. The developed
Au@NiFe2O4/SPE exhibits good electroactivity because of its high surface area and con-
ductivity. A dynamic linearity range and detection limit of 0.01 to 0.7 and 0.7 to 3.6 µM
and 5.3 nM were observed for the Au@NiFe2O4/SPE, respectively. The developed elec-
trochemical sensor exhibits outstanding selectivity, linearity, repeatability, reproducibility,
sensitivity and reusability in target detection. According to the recovery experiments and
standard addition method, it could be said that EPR in real samples such as human plasma,
urine and an injection did not affect the selective analysis of the anticancer drug. On the
other hand, the applicability of the Au@NiFe2O4/SPE to the rapid analysis of EPR in real
samples demonstrates the excellent ability for practical application. The developed sensor
could be an outstanding candidate as an alternative analytical technique for determining
the trace amount of EPR in clinical samples.
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