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Abstract: SiC wafers, due to their hardness and brittleness, suffer from a low feed rate and a high
failure rate during the dicing process. In this study, a novel dual laser beam asynchronous dicing
method (DBAD) is proposed to improve the cutting quality of SiC wafers, where a pulsed laser is
firstly used to introduce several layers of micro-cracks inside the wafer, along the designed dicing
line, then a continuous wave (CW) laser is used to generate thermal stress around cracks, and, finally,
the wafer is separated. A finite-element (FE) model was applied to analyze the behavior of CW
laser heating and the evolution of the thermal stress field. Through experiments, SiC samples, with
a thickness of 200 µm, were cut and analyzed, and the effect of the changing of continuous laser
power on the DBAD system was also studied. According to the simulation and experiment results,
the effectiveness of the DBAD method is certified. There is no more edge breakage because of the
absence of the mechanical breaking process compared with traditional stealth dicing. The novel
method can be adapted to the cutting of hard-brittle materials. Specifically for materials thinner than
200 µm, the breaking process in the traditional SiC dicing process can be omitted. It is indicated that
the dual laser beam asynchronous dicing method has a great engineering potential for future SiC
wafer dicing applications.

Keywords: silicon carbide; wafer dicing; stealth dicing; laser thermal separation; dry processing;
laser processing

1. Introduction

SiC power devices have continuously increased their share in the high-power semi-
conductor market in the last decade and are used in a series of applications such as electric
vehicles and urban rail transit. However, due to their hardness and brittleness character-
istics, there is one bottleneck in the SiC device manufacturing field, which is the wafer
dicing process. Currently, SiC wafers are mainly mechanically diced by diamond-coated
blades with low feed rates, in the range of 5–10 mm/s, and a high risk of side chipping at
the edges of the diced chips. Furthermore, the diameter of the 4H-SiC wafer has increased
from 25 to 100 mm, and the 150 mm transition is upcoming. With the recent smaller and
thinner trend in semiconductor manufacturing, mechanical sawing has reached its limit in
SiC wafer dicing.

To improve the dicing quality of SiC wafers, many novel dicing technologies have
been developed to fulfill the requirements of throughput, edge quality, and costs, such
as laser ablation cutting, plasma cutting, high-pressure water cutting, electrical discharge
wire cutting, and water-jet guided laser cutting. The thermal separation method is a
critical technology that is suitable for the dicing of hard-brittle materials [1]. Typically, the
generation and extension of cracks in materials are critical issues in the field of materials
science and engineering [2]. However, the thermal separation method developed the
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theory of utilizing crack generation and extension along a predetermined trajectory. The
development of the theory in this field will further enrich the fracture behavior of micro-
nano manufacturing. Based on this method, green and efficient cutting technologies for a
wide range of materials have been developed [3].

Currently, there are two major processes based on the thermal separation method:
non-premade trajectory cutting (NPTC) [4] and premade trajectory cutting (PTC) [5]. The
process of NPTC is: firstly, prefabricate a micro notch at one point on the edge of the sheet;
then, the thermal stress generated by the heat source scanning drives the force for crack
growth along the scanning track until the whole sheet is fractured. The process of PTC is:
firstly, a depth of cutting trajectory is performed on the upper or lower surface of the sheet;
then, the thermal stress generated by the heat source scanning drives the cutting track to
extend to the depth of the plate.

NPTC is mainly used for the rough machining of thicker glass and ceramic plates and
other thick materials, with no chips and microcracks in the middle of the cut trajectory.
The objectives of the researchers are to increase the cutting speed, reduce the trajectory
deviation, and improve the surface cutting quality. A practical method based on the
principle of the NPTC to increase the cutting speed is to change the shape of the heat source
energy distribution and application of cooling. Yamamoto et al. [6] used the elliptical
distribution CO2 laser + water-cooled method for the thermal fracture cutting of glass. It
was shown that increasing laser heat source power or applying cooling measures could
increase the stress intensity factor at the initial crack to reach the threshold value quickly,
to increase the cutting speed. Abramov et al. [7] of Corning used laser-induced thermal
cracking to cut chemically strengthened glass. Another method to improve the cutting
speed is to use a body heating source. The researchers of the LEMI company from Japan
used a surface heating source—a tubular infrared lamp with an output power of 1 kW (for
body heating) was placed 200 mm above the material and superimposed on the LD laser
scan. However, the cutting speed without the IR lamp was only 23 mm/s [8].

The major problem in NTPC is trajectory deviation. Salman et al. [9] used a diode
laser to cut 5-mm-thick soda-lime glass at a speed of 33 mm/s. It was found that there
were severe trajectory shifts at the entrance and exit of the material. They simulated the
stress field of the workpiece during the cutting process. It was found that the reason for
the shifted trajectory was that the tensile stress at the entrance and exit of the cut was huge.
Salman et al. [10] also studied the stress distribution at the entrance and exit of the cut using
simulation. The artificial neural network model and finite element model were applied,
respectively, for different thicknesses and laser scanning speeds. The results showed that
the prediction results of the artificial neural network model were better than those of the
finite element model.

The surface quality obtained by the thermal cracking method effectively improves
bending strength. Kondratenko et al. [11] investigated laser-induced thermal cracking of
cutting glass with thicknesses of 4–19 mm. They compared the strength of 6-mm-thick glass
cut by mechanical, grinding, and laser. Finally, the quality of glass cut by the laser-induced
thermal cracking method was better, and the edge strength was 5.5 times higher than that
of conventional mechanical cutting.

Premade trajectory cutting is mainly used for the processing of liquid crystal dis-
play (LCD), plasma display (PDP), and flat panel display (FPD). PTC is characterized
by faster cutting speeds and higher accuracy of the cutting trajectory. Many researchers
have expanded the applicability of the PTC method for material dicing. Kang et al. [12]
performed high-speed cutting of laminated glass. For PDP cutting, the authors used a
two-step cutting method of scribing and thermal cracking, which is more efficient than
the one-step cutting method. A series of processing devices were developed based on this
principle. Huang et al. [13] created an implicit crack inside the glass using a 10 W 355 nm
Nd:YAG laser. Huang et al. [14] also introduced ultrasonic vibration into the Nd:YAG
UV laser and continuous CO2 laser in the cutting system of LCD glass substrates. The
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results showed that the introduction of ultrasonic vibration could improve the cutting
speed greatly (three times the original speed).

Cross-sectional quality is significantly improved by using PTC. KIM et al. [15] used
a femtosecond laser for etching and a CO2 thermal laser for cracking to separate LCD
glass. The experimental results showed that at low numbers of femtosecond laser pulses,
the glass damage was small and the groove depth was not deep enough. When the
number of femtosecond laser pulses was increased to six, the following CO2 laser was
more effective in separating the glass by thermal stress. Wang et al. [16] conducted a study
on laser thermal cleavage-cutting crystal glass substrates and proposed a new grooving
and thermal cracking cutting method. Firstly, micro-cracks were created on the surface of
liquid crystal glass using the instantaneous high energy of a YAG laser. Then, the glass was
heated by CO2 laser and cooled by Ar gas.

Stealth dicing [17–19] is another state-of-the-art dicing method where a pulsed laser, at
a wavelength capable of penetrating the material, is focused inside the substrate. Focused
laser spots cause an extremely high power density, both temporally and spatially, at
localized points. By moving the laser along the desired path at different depths, several
passes of the laser ablation points are formed. When external tensile stress is subsequently
applied, the dies are separated. The process is fast, clean, and has zero kerfs. However,
stealth dicing is typically combined with a mechanical breaking process. When it comes to
hard-brittle material such as SiC [20], this mechanical breaking process can cause serious
edge breakage and even cause wrong crack propagation and, finally, reduce the dicing yield.

In this work, we investigate a dual laser beam asynchronous dicing method by com-
bining stealth dicing and premade trajectory cutting. The laser-based cutting method
proposed in this work is clean, fast, and efficient and does not involve any chemical agent
or liquid. The dependence of the laser process parameters on the cutting quality was
theoretical and experimentally investigated. The quality of the cut edge was thoroughly
analyzed by optical microscopy.

2. Materials and Methods

Figure 1 shows the whole set-up used in this study, which includes a 5 W-532 nm
femtosecond pulsed laser manufactured by NKT working under the condition of 750 fs
pulse duration, and a 10 W-1040 nm CW laser manufactured by IPG with customized
wavelength. The pulsed laser is focused on the interior of the SiC wafer by an objective
microscope lens to create bottom-up stealth dicing layers, while the continuous laser is sent
to a Galvano scanner system and used as a heat source to create thermal stress.
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2.1. Dicing Method

The operation of the DBAD method in our experiments is as follows: firstly, stealth
dicing is operated on SiC. The pulse duration of the laser used in this process is 750 fs, and
the scanning speed is 3000 µm/s. Through the fine control of focus depth and single pulse
energy, the surface has no visible cracks after the process. Then, a CW laser sweeps through
the trace of SD, and the internal cracks from the stealth dicing are extended vertically due
to the thermal stress. The parameters of the two lasers are listed in Table 1.

Table 1. Main parameters of the lasers.

Laser Parameters Pulsed Laser CW Laser

Wavelength 532 nm 1040 nm
Max power 5 W 10 W

Repetition rate 20~200 kHz N/A
Focal length 4 mm 140 mm

Beam diameter 8 µm 20 µm
Quality factor M2 < 1.1 M2 < 1.2
Beam mode TEM00 Gaussian

2.2. Samples

Briefly, 4-inch diameter silicon carbide (4H-SiC) wafers of 200 µm thickness were
selected in this study; the physical properties of the material are shown in Table 2. The key
principle of this dicing method is to minimize cracks and chippings and realize the cutting
track as straight as possible. As a result of the wafers’ brittle and hard characteristics,
different laser parameters lead to very different results.

Table 2. Physical properties of 4H-SiC.

Material Properties Value

Density 3210 kg/m3

Thermal conductivity 490 W/(m·K)
Constant pressure heat capacity 690 J/(kg·K)
Coefficient of thermal expansion 4.3 × 10−6 1/K

Poisson’s ratio 0.185
Young’s modulus 7 × 1011 Pa

Absorption coefficient 30 cm−1 [21]

2.3. Numerical Molding

To better understand the heat accumulation process and stress concentration process
caused by the continuous laser, a two-dimensional finite element model (FEM) was es-
tablished. The thermal stress produced by the moving CW laser around the interior hole
produced by the previous pulsed laser is shown schematically in Figure 2. The height of
the voids produced by the pulse laser set in this model is 20 µm, while the width is 5 µm.
The size is approximately the same as the size of the hole created in the experiment.

High-intensity lasers, incident upon a material that is partially transparent, will
deposit power into the material itself. The absorption of the incident light can be described
by the Beer–Lambert law as it can be written in differential form for the light intensity I as:

∂I/∂z = α(T)I, (1)

where z is the coordinate along the beam direction, and α(T) is the temperature-dependent
absorption coefficient of the material. As the heating and subsequent cooling process can
vary in space and time, the evolution of temperature distribution is predicted by solving
the time-dependent partial differential equation:
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ρCp∂T/∂t − ∇·(k∇T) = Q = α(T)I, (2)

where Q is the heat source, which is equal to the absorbed light; ρ and Cp are the density
and constant pressure heat capacity of the material, respectively. The formula of thermal
stress is given by:

F = Y(ε∆T)/L0, (3)

where Y is Young’s modulus of the given material, ε is the coefficient of linear thermal
expansion of the given material, and L0 is the original length of the material before the
expansion. These three equations are coupled with each other and are resolved using
COMSOL Multiphysics.

The component structure with mesh is shown in Figure 3. A cuboid model is estab-
lished with three microvoids inside, which are shaped like an ellipsoid to simulate the
micro-cracks ablated during the stealth dicing process. For balancing the demand for
simulating precision and computational efficiency, the model is simplified to a mirror-
symmetrical model in the x–z plane, and infinity element layers are used for thermal
diffusion simulation of large wafers. The energy deposition is assumed to be a moving
Gaussian profile and is modeled by a boundary heat flux in the x–y plane (z = 0); energy
depositions generate heat in the material, which can cause local stress concentrations
resulting from thermal expansion.
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3. Results
3.1. Numerical Molding Results

Figure 4 shows the dynamic temperature change of the 4H-SiC material during CW
laser scanning when P = 10 W, v = 1000 mm/s. The maximum temperature inside the
sample is only 312 K, which is far below the melting point of 4H-SiC. It can be concluded
that the CW laser scanning process does not induce thermal damage to the substrate.
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Figure 4. Moving laser heating material (10 W; 1000 mm/s).

Figure 5 shows the thermal stress at the endpoint of the long axis of the void-changing
process during laser scanning. The maximum thermal stress, 48 MPa, presents at t = 400
µs, which indicates that 10 W of CW laser power is capable of generating enough thermal
stress for the separation process.
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Figure 5. Thermal stress at the endpoint of the long axis of voids.

Figure 6 shows the thermal stress distribution change along the z-direction through
the center of three voids, as we can see a large stress gradient at both the endpoints of
the long axis of the ellipsoid; this is the main cause for the cracks to spread along the
z-direction.
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3.2. Experimental Results

In this study, a series of experiments were conducted to cut SiC using a dual laser
beam asynchronous dicing method based on the finite element simulation. Based on the
principle of DBAD, single-pass stealth dicing is processed on the material, and then the
thermal stress is generated using the 8 W-1040 nm continuous laser to extend the crack.
Finally, the material is cut completely through the simple wafer expanding process. If the
stealth cutting operation and thermal cracking are performed simultaneously, it will lead
to misalignment and defects inside hard-brittle materials such as SiC, resulting in large
errors in the positioning accuracy of the subsequent process.

Figure 7 shows the experimental results of cutting the SiC wafer with a thickness of
200 µm using DBAD compared with the simulation results. The surface of the material after
stealth dicing is illustrated in Figure 7a. There were processing traces with no remarkable
cracks. Then, a clear crack was performed through scanning using the continuous laser due
to the thermal separation, as shown in Figure 7b. Figure 7c shows the cutting profile of SiC
with a thickness of 200 µm. There was a line of three craters because of the process of SD.
The height of the craters was about 25 µm, and the width was almost 9 µm. Additionally,
it can be seen that the cracks from the thermal press could almost separate the material.
Finally, in Figure 7d, the wafer of SiC is completely separated after the simple wafer-
expanding process.
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The experimental results are in agreement with the above FEM simulation results,
proving the correctness of the FEM simulation model and the effectiveness of the DBAD
method. The quality of processing is perfectly expected. Compared with traditional stealth
dicing, there was no serious edge breakage and no wrong crack propagation occurred
from the mechanical breaking process. During the stealth dicing operation, there was
no remarkable crack trace on the surface, so that the processing window was expanded
with an improved production rate. In addition, the following wafer-expanding process
maybe not be necessary, especially for the processing of thin hard-brittle materials. It is
also suitable for the processing of hard-brittle materials with a thickness less than 200 µm.

4. Discussion

In our experiments, the effect of the changing continuous laser power on the DBAD
system was also studied. The thermal press is generated using a 1040 nm continuous
laser. However, the crack trajectory may be bent with the power of the laser rising to 10 W
compared with the crack using an 8 W continuous laser, as seen in Figure 8. The reason
for this phenomenon is still unknown. The effect of continuous laser parameters on the
DBAD process will be investigated deeply in subsequent studies. It is beneficial to find
better laser parameters during the processing.
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Miniaturization and performance enhancement drives the development of wafer
separation technologies. Especially for hard-brittle materials, chippings occur with a poor
cutting quality using mechanical dicing, while traditional stealth dicing with a mechanical
breaking process leads to edge breakage. It is shown that the validity of the DBAD
method is certified because of the above finite element simulation and experiments. The
processing flow for cutting hard-brittle materials is simplified by improving processing
quality compared with traditional processing. An effective method is provided, using dual
laser beam asynchronous dicing to cut hard-brittle materials such as SiC.

5. Conclusions

In this paper, a dual laser beam asynchronous separation method for SiC wafer dicing
has been put forward. In this method, a series of micro-cracks is firstly formed inside the
wafer through a stealth dicing process by controlling the focal depth; the SD process will
not induce visible cracks on the surface. Then, a CW laser is loaded on the dicing street,
and the thermal stress leads to the wafer separation process.

The absorption of the CW laser and the resulting thermal stress was calculated using a
finite element model. The simulation indicated that the tensile stress produced by the CW
laser heating in the upper and lower ends of the voids is the main mechanism of vertical
crack propagation. To get better separation quality, the moving speed and the power
of CW laser should be properly adjusted. Insufficient laser power will weaken thermal
accumulation, and the SiC wafer will not reach its fractural strength. In contrast, excess
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laser power can cause unnecessary heat accumulation and potentially harm the circuit.
Based on the simulation analysis, an experimental machine was built, and several 4H-SiC
wafers with a thickness of 200 µm were cut; a neat cutting side wall without chipping was
obtained. Through the experimental study, it can be determined that the proper depth of
the last SD layer can be 50 µm below the surface, and the optimal moving speed of the CW
laser is 1000 mm/s; acting with 8 W of laser power, the fracture will propagate upward
stably, and the SiC wafer can be separated along the expected SD path.

This novel DBAD method provides an effective solution for wafer cutting, specifically
for hard-brittle materials with a thickness less than 200 µm, compared with other traditional
processing methods.
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