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Abstract: Bulk metallic glass (BMG) has received consistent attention from the research community
owing to its superior physical and mechanical properties. Modulating and controlling the surface
functionalities of BMG can be more interesting for the surface engineering community and will render
more practical applications. In this work, a facile laser-based surface texturing technique is presented
to modulate and control the surface functionalities (i.e., wettability and hardness) of Zr-based BMG.
Laser surface texturing was first utilized to create periodic surface structures, and heat treatment was
subsequently employed to control the surface chemistry. The experimental results indicate that the
laser textured BMG surface became superhydrophilic immediately upon laser texturing, and it turned
superhydrophobic after heat treatment. Through surface morphology and chemistry analyses, it was
confirmed that the wettability transition could be ascribed to the combined effects of laser-induced
periodic surface structure and controllable surface chemistry. In the meantime, the microhardness
of the BMG surface has been remarkably increased as a result of laser surface texturing. The facile
laser-based technique developed in this work has shown its effectiveness in modification and control
of the surface functionalities for BMG, and it is expected to endow more useful applications.

Keywords: laser surface texturing; wettability; hardness; Zr-based metallic glass

1. Introduction

Bulk metallic glass (BMG) has received considerable attention from the research
community during the past several decades since its first discovery in the 1990s, mainly
owing to its superior mechanical and physical properties [1], including high values of yield
strength [2], high hardness [3], relatively low Young’s modulus [4], good corrosion and
wear resistance [5], as well as excellent magnetic properties [6]. This gives BMG a variety of
potential applications in the fields of bioimplants, magnetic materials, structural materials,
sensors, microelectromechanical systems (MEMS), and micro/macro devices [7,8].

Besides its intrinsic outstanding physical and mechanical properties, researchers have
also attempted to modify the surface functionalities of BMG, which can be achieved by
introducing micro/nanostructures into BMG. The typical fabrication methods of surface
structuring include magnetron sputtering [9,10], electro-oxidation [11], thermoplastic shap-
ing [12–14], and laser surface texturing [15,16]. Among all the existing surface modification
methods, laser surface texturing has demonstrated its strong potential as a highly efficient
and cost-effective approach due to several key advantages including process efficiency,
flexibility, ease for automation, and environmental friendliness [17].

In recent years, laser-based surface texturing has been proved to be one of the most
efficient techniques to modify and control important surface functionalities, including
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surface wettability [18–22], reflectivity [23,24], anti-icing property [25,26], corrosion resis-
tance [27], etc. For example, wettability transition from superhydrophilicity to superhy-
drophobicity has been achieved on various materials including aluminum [28], copper [29],
stainless steel [30,31], and titanium [32–36] by combining laser surface texturing and low-
temperature annealing. In terms of laser texturing for BMG materials, there have been
some recent research efforts on modification of surface properties of BMG via creation of
laser-induced surface texture and change of surface chemistry [15,16,37–42]. Huang et al.
utilized nanosecond pulsed laser irradiation to fabricate hierarchical micro/nanostructures
on the Zr-based metallic BMG substrate in order to increase the effective surface area [16].
The laser-modified BMG surface retained amorphous characteristics, and the elemental
distribution on the surface was very uniform. Jiao et al. developed a nanosecond laser
texturing technique to fabricate periodic surface structures, including dimples and grooves
on Zr-based BMG surfaces [37]. They also investigated the effect of laser surface texturing
on the wettability [15] and cytocompatibility [38] of the BMG surfaces. The modification of
the surface wettability could be attributed to the laser-induced surface roughness and alter-
ation of surface chemistry, and the enhanced cytocompatibility of the groove-textured BMG
resulted from the combined effects of surface chemistry, wettability, and roughness. Du et al.
fabricated laser-induced periodic surface structure (LIPSS) and nanoparticle structures on
four types of Zr-based BMGs using femtosecond laser irradiation [40]. The experimental
results indicated that the femtosecond laser nanostructured Zr-based BMG surface could
lead to a distinct decrease in bacterial adhesion compared with the polished surfaces, which
was strongly related to the laser-induced surface morphology and wettability. Although
the above-mentioned research efforts have effectively modified the surface properties of
BMG and achieved improved surface functionalities, none of them has attempted to realize
the precise control of the key surface functions of BMG, e.g., control of surface wettability
and microhardness, which could be more attractive and challenging, and also help to meet
more different applications [43]. Further exploration of a time-efficient and cost-effective
laser-based technique to realize the control of surface functionalities on the BMG surface is
still of particular interest for the surface engineering community.

Previously, the authors’ group has developed a facile nanosecond laser-based surface
texturing method to achieve switchable wettability control of titanium alloy [36]. In this
work, this laser-based surface texturing technique was further extended to modulate sur-
face wettability and hardness on the BMG substrate. The periodic surface textures were
directly created via laser texturing, and the surface chemistry was effectively controlled via
heat treatment. The surface wettability was shown to convert from superhydrophilicity im-
mediately upon lase texturing to superhydrophobicity after heat treatment, and the surface
microhardness was significantly enhanced on the laser-induced surface texture. The under-
lying processing mechanisms were elucidated using scanning electron microscopy (SEM),
energy-dispersive X-ray spectroscopy (EDAX), and X-ray photoelectron spectroscopy (XPS).
Compared with the existing research works on laser texturing for functional surfaces, the
laser-based surface texturing technique developed in this work proposed a novel and
highly efficient approach to modulate and control the surface functionalities, which was
achieved by the combination of high-speed UV nanosecond laser surface texturing and
subsequent heat treatment. It is expected that the developed technique could provide a
viable solution for the surface modification of Zr-based metallic glass, thus rendering a
series of applications in the industrial and biomedical fields.

2. Materials and Methods
2.1. Materials

Commercially available Zr-based bulk metallic glass Vitreloy 1 with the nominal
elemental composition Zr41.2Ti13.8Cu12.5Ni10Be22.5 (at%, purchased from METALLAB,
Changzhou, China) was used in this work due to its excellent mechanical properties.
The samples were mechanically grinded using grid SiC papers and further machined into
thin sheets with a dimension of 30 mm × 30 mm × 2 mm using wire electrical discharge ma-
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chining. Then, before laser surface texturing experiments, they were ultrasonically cleaned
with acetone, ethanol, and deionized water successively to remove the contaminants.

2.2. Laser-Based Surface Texturing

The laser-based surface texturing experiment mainly consists of two steps: (1) laser sur-
face texturing and (2) heat treatment. Laser surface texturing experiments employed a laser
marking machine (TH-UV200A, Tianhong Laser, Suzhou, China) equipped with a 355 nm
UV laser source (AWAVE 355-15W-30K, Advanced Optowave, Ronkonkoma, NY, USA).
The laser source emits a laser beam guided by reflective mirrors. The intensity of laser
power is controlled by the attenuator, and the diameter of the laser beam can be expanded
by the beam expander. The focusing lens of the system provides a focal spot diameter of
~35 µm during the laser texturing experiments. Unidirectional line pattern and cross-hatch
pattern were used due to the ease and high efficiency of fabrication, as shown in Figure 1a,b.
A series of preliminary experimental trials was attempted, and the optimal laser processing
parameters were determined and utilized in this work, which can be found in Table 1. The
schematics for the laser surface texturing experiments are shown in Figure 2a.
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Table 1. Processing parameters for the laser-based surface texturing experiments.

Name of Parameter Value

Average power (W) 9.0, 10.5, 12.0, 13.5, 15.0
Repetition rate (kHz) 30

Pulse width (ns) 20
Scanning speed (mm/s) 20, 40, 60, 80

Step size (µm) 150
Power intensity (GW/cm2) 1.56~2.60

Pulse energy (mJ) 0.3~0.5
Heat treatment temperature (◦C) 150

Heat treatment duration (h) 2
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Immediately upon laser surface texturing, the laser textured BMG surfaces became
superhydrophilic. To achieve the wettability transition, the laser textured BMG surfaces
were placed in a conventional furnace for low-temperature annealing treatment, as shown
in Figure 2b. An annealing temperature of 150 ◦C and a treatment duration of a maximum
of 2 h were used during the heat treatment.

2.3. Surface Characterizations

The surface morphology of the laser textured BMG surfaces was analyzed using field
emission scanning electron microscopy (FESEM, Navo Nano SEM450, Hillsboro, OR, USA).
The surface chemistry of the laser textured surface was evaluated using energy dispersive X-
ray analysis (EDAX, FEI Sirion, Hillsboro, OR, USA) and X-ray photoelectron spectroscopy
(XPS, PREVAC, Rogów, Poland). To examine the surface wettability of the laser textured
surfaces, a contact angle goniometer (SDC-200, Sindin Precision Instrument Co., Ltd., Dong-
guan, Guangdong, China) equipped with a high-resolution CMOS camera was utilized to
measure the static water contact angle value (θw) on each surface. A water droplet with the
volume of ~4 µL was dripped onto the sample surface using a digital syringe during each
measurement. The optical image of the water contact angle measurement was captured
using the CMOS camera, and image analysis software was utilized to determine the θw
value for each measurement. For each sample, four θw measurements were performed at
various locations, and the averaged θw value was reported. The standard deviation for
each averaged θw measurement result was also calculated and added. The microhardness
test was carried out using a Vickers hardness machine (HXD-1000TMSC/LCD, Shanghai,
China) with a test load of 300 gf and a dwell time of 10 s. Similarly, five microhardness
measurements were performed at different locations on the laser textured surface, and the
averaged hardness value as well as the standard deviation for each measurement result
were reported.
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3. Results
3.1. Surface Morphology

The surface morphology of the laser textured BMG surface using different scanning
speeds was examined by SEM, as shown in Figure 3. The SEM micrographs of the laser
textured BMG surfaces with unidirectional surface patterns and various scanning speeds
can be found in Figure 3a–d, while the SEM micrographs of the laser textured BMG surfaces
with cross-hatch surface patterns and various scanning speeds are shown in Figure 3e–h. It
is clearly seen that as the laser beam irradiated and ablated the BMG substrates, periodic
micro-scale bulge structures were formulated as a result of the strong interaction between
the laser beam and the BMG substrates. The SEM micrographs with high magnification
indicate that there also have been some sub-micron or nano-scale particles covered on the
micro-bulge structures, which can be mainly attributed to the ejection and deposition of
nanoparticles during the laser-material interaction. In addition, it can be found that the
laser-induced periodic surface structure exhibited distinct differences as the scanning speed
increased. When the scanning speed of 20 mm/s was used, solid and defect-free micro-
bulge structures were formed on the laser textured BMG surfaces with both unidirectional
and cross-hatch patterns. As the scanning speed further increased, the surface structure
gradually changed, which was illustrated by the variation of the micro-bulge height and the
appearance of concave sections. Especially when the scanning speeds reached 60 mm/s and
80 mm/s, the concave structure became more distinct along the laser scanned line profiles
for both surface patterns. The difference of the surface structure formation when varying
the scanning speed should result from the time duration of laser–material interaction.
When the lower scanning speed was utilized, the laser beam travelled relatively slowly
along the scanned profile, and the number of pulses per irradiation point is higher, which
would ensure adequate interaction between the laser beam and the BMG substrate and
facilitate the formation of solid micro-bulge structures [44]. However, as the scanning
speed increased, the laser beam moved faster and resulted in the decrease in the number of
pulses per irradiation point. This would significantly weaken the impact of the laser beam
on the BMG substrate. Consequently, due to the insufficient interaction time between the
laser beam and the BMG substrate, fewer sub-micron or nano-scale particles and concave
structures occurred on the laser textured surface with higher scanning speeds.

The effect of laser power on the surface morphology of the laser textured BMG surface
was further examined by SEM, as shown in Figure 4. The SEM micrographs of the laser
textured BMG surfaces with unidirectional surface patterns and various laser powers can
be found in Figure 4a–e, while the SEM micrographs of the laser textured BMG surfaces
with cross-hatch surface patterns and various laser powers are shown in Figure 4e–h. From
the SEM micrographs, it is evident that laser power can dramatically affect the formation
of laser-induced structures on the BMG surface. By using higher laser powers (15.0 W
and 13.5 W), clear concave microgrooves formed on the BMG surface, demonstrating
strong vaporization of the material during the laser surface texturing process. As the laser
power decreased (12.0 W and 10.5 W), the microgroove structure became less pronounced,
only with some holes left on the laser scanned profiles. This indicated that less material
evaporated from the substrate, and there appeared to be a restructuring on the laser
textured surface. As the laser power kept decreasing (9.0 W), the concave structure almost
disappeared, and the convex micro-bulge structure dominated. Similar trends could be
observed for the laser textured BMG surfaces with both unidirectional and cross-hatch
surface patterns. As clearly pointed out by Feng et al. [45,46], the laser-induced surface
structure is a key factor that will affect the surface functionality, i.e., wettability, reflectivity,
and hardness, and the laser processing parameters must be carefully chosen to ensure
the formation of proper laser-induced structure, thus enabling the realization of desirable
surface functionalities.
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3.2. Surface Wettability

Surface wettability of the BMG surfaces with different surface patterns and treatment
methods were evaluated via contact angle measurements. It can be found that the untreated
BMG surface exhibited a θw of 87.4 ± 1.8◦, as shown in Figure 5a, indicating that the
untreated BMG surface is hydrophilic. Immediately upon laser surface texturing using
the processing parameters of a laser power of 12 W, a repetition rate of 30 kHz, and a
scanning speed of 40 mm/s, the laser textured BMG surfaces with both unidirectional
(Figure 5b) and cross-hatch (Figure 5c) surface patterns exhibited a θw of 0◦. This clearly
indicates that the laser textured BMG surfaces are in a saturated Wenzel regime when being
treated in the oxygen-containing atmosphere, which agrees well with the experimental
results in [47]. After heat treatment for 1 h, the θw measurements indicated that the laser
textured BMG surfaces with unidirectional and cross-hatch patterns exhibited θw values of
145.5 ± 1.9◦ and 145.7 ± 2.5◦, respectively, indicating that a 1 h heat treatment rendered the
laser textured BMG with high hydrophobicity. With a 2 h heat treatment, the laser textured
BMG surfaces with both unidirectional and cross-hatch patterns became superhydrophobic,
with θw values of 154.3 ± 1.9◦ and 153.7 ± 1.1◦, respectively.



Micromachines 2021, 12, 1322 7 of 18Micromachines 2021, 12, x FOR PEER REVIEW 7 of 19 
 

 

 
Figure 4. SEM micrographs of the laser textured BMG surfaces using different powers: (a–e) unidi-
rectional surface patterns with the laser powers of 15.0 W, 13.5 W, 12.0 W, 10.5 W, and 9.0 W; (f–j) 
cross-hatch surface patterns with the laser powers of 15.0 W, 13.5 W, 12.0 W, 10.5 W, and 9.0 W. 

3.2. Surface Wettability 
Surface wettability of the BMG surfaces with different surface patterns and treatment 

methods were evaluated via contact angle measurements. It can be found that the un-
treated BMG surface exhibited a θw of 87.4 ± 1.8°, as shown in Figure 5a, indicating that 
the untreated BMG surface is hydrophilic. Immediately upon laser surface texturing using 
the processing parameters of a laser power of 12 W, a repetition rate of 30 kHz, and a 
scanning speed of 40 mm/s, the laser textured BMG surfaces with both unidirectional (Fig-
ure 5b) and cross-hatch (Figure 5c) surface patterns exhibited a θw of 0°. This clearly indi-
cates that the laser textured BMG surfaces are in a saturated Wenzel regime when being 
treated in the oxygen-containing atmosphere, which agrees well with the experimental 
results in [47]. After heat treatment for 1 h, the θw measurements indicated that the laser 
textured BMG surfaces with unidirectional and cross-hatch patterns exhibited θw values 
of 145.5 ± 1.9° and 145.7 ± 2.5°, respectively, indicating that a 1 h heat treatment rendered 
the laser textured BMG with high hydrophobicity. With a 2 h heat treatment, the laser 

Figure 4. SEM micrographs of the laser textured BMG surfaces using different powers: (a–e) uni-
directional surface patterns with the laser powers of 15.0 W, 13.5 W, 12.0 W, 10.5 W, and 9.0 W;
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Figure 6 shows θw measurement results for the laser textured BMG with varied
laser powers and scanning speeds. As shown in Figure 6a, the untreated BMG surface
showed a hydrophilic nature with a θw of 84.4 ± 1.2◦. For the laser texturing experi-
ments, the following laser processing parameters were utilized: a laser power of 10.5 W,
a repetition rate of 30 kHz, and a scanning speed of 60 mm/s. The θw measurement
results (Figure 6b,c) confirmed the saturated Wenzel regime for the laser textured surfaces
with both of the unidirectional and cross-hatch patterns. Subsequently, it can be found
that a 1 h heat treatment turned the laser textured surfaces with both patterns highly
hydrophobic, with θw values of 144.7 ± 1.1◦ and 146.5 ± 1.7◦, respectively (Figure 6d,e).
A 2 h heat treatment ensured that both of the laser textured surfaces reached superhy-
drophobicity, with θw values of 155.9 ± 1.2◦ and 154.5 ± 1.9◦, respectively (Figure 6f,g).
As discussed in the previous section, low-temperature heat treatment with an annealing
temperature of ~150 ◦C has been proved to be an efficient approach to achieve wettability
transition from superhydrophilicity to superhydrophobicity for various metallic materials
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such as aluminum, copper, stainless steel, and titanium [28–36]. However, this wetting
state transition approach has never been utilized and confirmed for BMG. To the authors’
best knowledge, this work represents the first attempt to achieve wettability transition
from superhydrophilicity to superhydrophobicity on BMG surfaces using the facile laser
surface texturing technique combined with low-temperature annealing. The underlying
processing mechanisms associated with the wettability will be explained in detail in the
following sections.
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(b,c) after heat treatment for 2 h.
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Figure 6. Contact angle measurement results for (a) untreated BMG surface; (b) laser textured BMG surface using the power
of 10.5 W, the repetition rate of 30 kHz, the scanning speed of 60 mm/s, and a unidirectional surface pattern; (c) laser
textured BMG surface using the power of 12 W, the repetition rate of 30 kHz, the scanning speed of 40 mm/s, and a
cross-hatch surface pattern; (d,e) laser textured BMG surfaces in (b,c) after heat treatment for 1 h; (f,g) laser textured BMG
surfaces in (b,c) after heat treatment for 2 h.
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3.3. Surface Chemistry

Farasi et al. [48] pointed out that the surface chemical composition of metallic materials
can be modified via material vaporization and oxidation during laser surface texturing,
and Ngo et al. [31,49] believed that the increase in carbon content during heat treatment
indicates the deposition of more hydrophobic functional groups on the laser textured
surface, thus leading to the transition of surface wettability. Therefore, to explore and
understand the variations of chemical compositions on the BMG surface and to further
correlate surface wettability with surface chemistry, the laser textured BMG surfaces before
and after heat treatment were analyzed by EDAX, as shown in Figure 7. The laser textured
surfaces (with and without heat treatment) considered for the surface chemistry analysis
were treated with the average laser power of 12.0 W, repetition rate of 30 kHz, pulse energy
of 0.4 mJ, and power intensity of 2.08 GW/cm2. From Figure 7, it can be clearly seen that all
the core elements can be detected on the three different types of surfaces. While compared
with the untreated surface, the intensity of the Zr peak for the laser textured surface
decreased, which is mainly a result of material vaporization during laser texturing. In the
meantime, the O peak shows a notable increase in the laser textured surface compared
with that of the untreated surface, indicating the BMG surface has been oxidized along
with the formation of a periodic surface structure. As indicated in [50], as the electronic
structure of metal oxide facilitates the formation of hydrogen bonds and increases the
surface energy, the laser textured surface typically exhibited superhydrophobicity. For
the laser textured surface with heat treatment, subtle increases in C and Si peaks can be
detected, indicating that hydrophobic functional groups, including –CH2–, –CH3, C=C as
well as thin PDMS layer, should have been absorbed and deposited onto the laser textured
BMG surface, rendering the heat-treated surface with superhydrophobicity [33,49].

The EDAX mapping data were also obtained to reveal the elemental distribution of all
the core elements (Zr, Ti, Be, Cu, Ni, Si, C, and O) on each surface, as shown in Figure 8.
From EDAX mapping, it can be clearly observed that all the core elements were uniformly
distributed on the untreated surface. For the laser textured surfaces, more black areas can
be observed, suggesting a reduction of the Zr, Ti, Be, Cu, and Ni elements, corresponding
to the material removal during laser surface texturing. Distinct increases for the amount
of O can be seen on the EDAX mapping as well, which strongly supports the oxidation
during laser surface texturing. For the elemental distribution of C and Si, no clear change
can be observed, which will be further examined using XPS.

Given the fact that EDAX is mainly a qualitative analysis method that could not
provide conclusive results for the evaluation of the BMG substrate after laser texturing and
heat treatment, XPS analysis was further employed to investigate the chemical changes
on the surfaces that have been tested by EDAX. The XPS full spectra of the BMG surfaces
considered for EDAX analysis and the corresponding atomic percentage of different ele-
ments are shown in Figure 9. It can be seen from the XPS full spectra of the untreated BMG
surface (Figure 9a) that carbon and oxygen were detected as the major elements, which can
be attributed to the contamination and oxidation of the BMG surface. For the constituent
elements of the BMG Vitreloy 1 used in this work, small peaks of Zr 3d and Be 1s were
observed on the untreated BMG surface, while the content of other elements (Ti 2p, Ni 2p,
and Cu 2p) was negligible. Upon laser texturing, the atomic percentage of oxygen increased
from 26.88% to 47.85% (Figure 9b). This clearly indicates that the laser textured BMG sur-
face has been oxidized along with the formation of periodic surface structure during laser
texturing. As the hydrogen bonds tend to form on the metal oxide, which also increases the
surface energy [50], the laser oxidized BMG surface exhibited superhydrophilicity. After
heat treatment, a clear atomic percentage increase in carbon from 30.85% to 37.80% can be
observed on the laser textured BMG surface with heat treatment (Figure 9c). The increase in
carbon content demonstrated that several different types of functional groups that exhibit
hydrophobicity could have been absorbed onto the laser textured BMG surface during heat
treatment, which rendered the heat-treated BMG surface highly hydrophobic [33,49]. In
addition, the element Si was also detected on the heat-treated BMG surface, as shown in
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Figure 9c. The appearance of Si might represent the formation of a thin Si-based PDMS
layer on the laser textured BMG surface during heat-treatment, which further increased
the hydrophobicity of the laser textured BMG surface. The experimental findings in this
work agree well with the results of Ti alloy using a similar method [36], and it is believed
that the increase in carbon and the appearance of a thin PDMS layer contribute to the
superhydrophobicity of the laser textured BMG surface after heat treatment.
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Figure 8. SEM/EDAX element mapping for (a–i) untreated BMG surface; (j–r) laser textured BMG
surface; (s–aa) laser textured BMG surface followed by heat treatment. (a,j,s) are SEM micrographs
representing the corresponding analyzed regions; (b–i,k–r,t–aa) are the EDAX maps showing the
qualitative elemental distributions of Zr, Ti, Be, Cu, Ni, Si, C, and O.
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Core elemental analyses were also performed for C, O, and Si elements, as shown
in Figure 10. The core elemental analysis for C element can be found in Figure 10a–c. In
Figure 10a, it is clearly shown that C element can be detected, confirming the contamination
of the untreated BMG surface. For the laser textured BMG surfaces, it can be observed
in Figure 10b and c that after heat treatment, the proportion of C–C and C–H peaks
significantly increased, which helped to verify that hydrophobic functional groups with
nonpolar C–C or C–H bonds should have been deposited onto the heat-treated BMG
surface, inducing hydrophobicity on the surface. The core elemental analysis for O is
shown in Figure 10d–f. It is clear that functional groups of (OH)− and O2− were detected
on all of the BMG surface, while the proportion of O2− on the laser textured BMG surfaces
both with and without heat treatment was higher than that of the untreated BMG surface,
proving that oxidation occurred during the laser texturing process. Finally, Figure 10g
shows the core elemental analysis for Si element, revealing the appearance of the peaks
for three functional groups Si–O, Si–C, and –Si– on the laser textured BMG surface after
heat treatment. This should be attributed to the thin PDMS layer deposited on the laser
textured BMG surface during heat treatment, which is derived from the silicone component
on the furnace used in this work, as indicated in [32]. The underlying mechanism will be
explained with details in the following section.
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(g) the high-resolution core elemental spectra of silicon on the laser textured BMG surface followed by heat treatment.

3.4. Surface Microhardness

The microhardness measurement results of the untreated BMG surface, the laser tex-
tured BMG surface with unidirectional pattern, and the laser textured BMG surface with
cross-hatch pattern can be found in Figure 11. The laser textured surfaces considered for
the surface microhardness analysis were treated using the same processing parameters
as those used for surface chemistry analysis. The experimental results indicated that the
microhardness of the untreated BMG surface was 514.4 ± 4.9 HV. By laser surface texturing
using the unidirectional surface pattern, the microhardness of the textured surface was
increased to 564.9 ± 5.2 HV, representing an increase rate of 9.8% compared with the
untreated surface. Meanwhile, the microhardness of the laser textured BMG surface with
the cross-hatch pattern was further enhanced up to 596.7 ± 5.8 HV, indicating an increase
rate of 16.0% compared with the untreated surface. As evident from the SEM micrographs
shown in Figures 3 and 4, the laser surface texturing process created a combination of
micro-scale, sub-micron, and nano-scale structures on the BMG substrate, which have
generated much finer grains on the surface. As indicated by the Hall–Petch relationship,
finer grains will result in higher mechanical strength [51,52]. More grain boundaries can be
generated using finer grains, and the resistance to hinder dislocation motion will increase,
leading to the increase in surface microhardness. In addition, compared with the laser
textured surface with the unidirectional pattern, one more laser scan from the vertical
direction would significantly increase the density of surface structures at all scales on
the BMG substrate, which would contribute to the further enhancement of microhard-
ness [53]. The microhardness measurement results indicate that the developed laser-based
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surface texturing process can effectively enhance the surface mechanical strength of the
BMG substrate.
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3.5. Processing Mechanism Analysis

The underlying mechanism for the wettability transition of BMG surface during laser
texturing and heat treatment is schematically depicted in Figure 12. As shown in Figure 12a,
nanosecond laser surface texturing not only generated periodic surface structures on the
BMG substrate but also oxidized the surface in the ambient air with the existence of
water vapor [35,47]. Consequently, formation of oxide and hydroxide layers would occur
simultaneously on top of the BMG substrate, which will drastically increase the surface
energy and lead to superhydrophilicity [28,54]. During heat treatment, the wettability
transition from superhydrophilicity to superhydrophobicity can be ascribed to two aspects:
on the one hand, it is proposed that the organic compounds existed in air with nonpolar
C–C and C–H bonds that have been absorbed onto the laser-induced micro-bulge or
groove structures, and this process has been accelerated as the heat treatment temperature
increased. The heat treatment helped to eliminate the hydrophilic –OH functional group
from the laser textured BMG surface and created more active sites on the surface for
the subsequent absorption of organic compounds [55]. As a result, more hydrophobic
functional groups, such as –CH2– and –CH3, have been attracted onto the laser textured
BMG surface, leading to the increase in surface hydrophobicity. On the other hand, the
XPS analysis confirmed the existence of Si element on the laser textured BMG surface,
indicating that a thin PDMS layer could have been deposited on the surface. The source of
the Si element was originated from the silicone seal on the furnace, which was partially
vaporized and deposited onto the laser textured BMG surface, as shown in Figure 12c.
Since the silicon-based organic polymer PDMS is known to be hydrophobic, it could
help to further enhance the hydrophobicity of the laser textured BMG surface, leading to
superhydrophobicity eventually. It is thus believed that absorption of hydrophobic airborne
organic compounds and generation of the thin PDMS layer both contributed to the surface
wettability transition on the laser textured BMG surface during heat treatment. Therefore,
from an initial contact angle of ~85◦ on the untreated BMG surface, the surface wettability
was converted to superhydrophilicity (~0◦) after laser texturing, and superhydrophobicity
(>150◦) after heat treatment, as shown in Figure 12b.
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Figure 12. Schematic for the mechanism of wettability transition for the laser textured BMG surface after laser texturing
and heat treatment: (a) alteration of surface chemistry; (b) alteration of surface wettability; (c) demonstration of the silicone
seal on the furnace used in this work; (d) SEM micrograph of the untreated BMG surface; (e) contact angle measurement
results for the untreated BMG surface before and after heat treatment.

In the meantime, although surface chemistry plays a key role for the wettability
transition, it is proposed that the laser-induced surface structure is equally critical for
achieving the target wettability condition. This could be verified by what has been observed
on the untreated BMG surface before and after heat treatment. Figure 12d shows the
SEM micrograph of the untreated BMG surface, indicating that there are only grinding
marks without any distinct periodic surface structures. The contact angle measurement
results indicated that the initial θw was 84.4 ± 1.2◦ on the untreated BMG before heat
treatment, and the θw was measured to be 88.9 ± 0.8◦ after heat treatment. This clearly
indicates that alteration of surface chemistry alone could not render the BMG material with
superhydrophobicity. Surface structure and surface chemistry should be modulated and
controlled spontaneously to achieve the desired surface functionality.

4. Conclusions

In this work, a facile and efficient laser-based surface texturing method was developed
to modulate and control the surface functionalities of Zr-based BMG. The following findings
can be summarized:

(1) The developed laser-based surface texturing technique consists of two steps: laser
texturing and heat treatment. Laser texturing generated the periodic surface structures
and oxidized the BMG surface, while the subsequent heat treatment accelerated the
absorption of hydrophobic airborne organic compounds and deposited a thin PDMS
layer on the laser textured BMG surface.

(2) It is found that the untreated BMG surface is hydrophilic with a θw of 84.4 ± 1.2◦.
Immediately upon laser texturing, the laser textured BMG surface exhibited a θw of
0◦, indicating the surface turned superhydrophilic. After a heat treatment of 2 h, the
laser textured BMG surface became superhydrophobic with a θw higher than 150◦.

(3) Through careful experimental validation and analysis, it is believed that the laser-
induced surface texture and modified surface chemistry are equally important for
achieving the desirable wettability condition.

(4) The microhardness of the laser textured BMG surface is also notably increased due to
the higher microstructure density and more grain boundaries generated on account
of the laser surface texturing process.
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This method will provide a feasible and highly efficient solution for regulating and
controlling the surface functionalities of BMG, which will render more practical and
important applications.
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