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Abstract: In this paper, a tunable absorber composed of asymmetric grating based on a graphene-
dielectric-metal structure is proposed. The absorption of the absorber can be modified from 99.99% to
61.73% in the near-infrared by varying the Fermi energy of graphene, and the absorption wavelength
can be tuned by varying the grating period. Furthermore, the influence of other geometrical parame-
ters, the incident angle, and polarization are analyzed in detail by a finite-difference time-domain
simulation. The graphene absorbers proposed in this paper have potential applications in the fields
of stealth, sense, and photoelectric conversion. When the absorber that we propose is used as a gas
sensor, the sensitivity of 200 nm/RIU with FOM can reach up to 159 RIU−1.

Keywords: graphene; absorber; Fano resonance; Fermi energy; sensor

1. Introduction

Graphene can absorb light over a broad spectrum spanning from the ultraviolet to the
terahertz spectral regime due to its gapless nature and its ability to modulate the absorption
by controlling the inter-band and intra-band transitions [1]. Therefore, graphene is an
ideal material for optoelectronic devices such as photo-detectors [2], filters [3], switches [4],
sensors [5,6], and modulators [7]. However, the absorption of monolayer graphene is
only 2.3%, which is far from meeting the requirements of optoelectronic devices. Recently,
numerous near-infrared absorbers using graphene and silicon gratings have been proposed.
Akhavan et al. designed a graphene absorber, the efficient absorption of light by a graphene
sheet was realized by guided mode resonance [8]. Zheng et al. designed an absorber with a
high absorption efficiency at an incident angle of 0 to 5 degrees by using Fabry-Perot cavity
resonance [9]. Hu et al. proposed a multilayer subwavelength grating structure to adjust
the absorption efficiency by varying the incident angle [10]. Hence, the focus of research
is to improve the absorption of graphene devices via various resonance effects, such as
guided-mode resonance [1], surface plasmon resonance [11], Fabry-Perot resonance [12],
Fano resonance [13], among others.

Fano resonance generates a large electromagnetic field in and around its structure,
exhibiting a sharp asymmetric peak [14], which occurs when a narrow dark mode weakly
couples to a wide bright mode [15,16]. In recent years, Fano resonance has been realized
for different types of micro-nano structures ranging from visible light to far-infrared, and
many efforts have been devoted to its tunability and high efficiency.

In this paper, the proposed absorber is composed of asymmetric periodic grating.
causing the asymmetry absorption spectrum. Demonstrated by the finite-difference time-
domain (FDTD) simulations, it shows that the absorption can be tuned by varying the
Fermi energy of graphene in the structure. In addition, the influences of period, groove
depth, incident angle, and polarization on absorption are also studied. The period is the
main factor affecting the resonance wavelength and the absorber is proven to tolerate a
wide range of incident angles from −15◦ to +15◦. The proposed tunable absorber has
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broad application prospects in detectors, invisibility cloaking, sensors, filters, and energy
harvesting. Therefore, we finally studied the proposed absorber as a gas sensor; and the
sensitivity and FOM of the sensor can reach up to 200 nm/RIU and 159 RIU−1, respectively.

2. Structure and Simulation

Figure 1 presents the schematics of the proposed structure consisting of monolayer
graphene sandwiched between silicon (Si) grating and calcium fluoride (CaF2) film, where
h and t indicate groove depth of the Si grating and the CaF2 film layer, w1 and w2 are the
widths of the two grating ridges in one grating period, d is the distance between the two
grating ridges, and Λ is the grating period. Here, Si and CaF2 are assumed to be lossless
and dispersion-free, with the refractive indexes are of 3.48 and 1.43, respectively. The gold
(Au) film at the bottom of the structure needs to be thick enough to avoid the transmission
of the incident light. The Au film used in the simulation is 300 nm thick, and its refractive
index is from Palik’s handbook [17]. The background refractive index of the structure is
assumed to be 1.00.
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Figure 1. Schematic diagram of the proposed absorber.

The graphene is modeled as a thin dielectric layer with a permittivity, and the permit-
tivity of graphene is calculated by conductivity. Conductivity is calculated as a sum of the
intra-band σintra and inter-band σinter conductivity:

σintra =
ie2kBT

π}2(ω + i/τ)
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)
(2)

σ = σintra + σinter (3)

where e is the electron charge, kB is the Boltzmann constant, T is the temperature, } is
the reduced Planck constant, ω is the angular frequency, E f is the Fermi energy, and τ is
the carrier scattering time [18]. In our simulation, the initial Fermi energy of graphene is
assumed to be E f = 0.55 eV, and the carrier scattering time is chosen as τ = 0.5 ps.

The anisotropic relative permittivity εgraphene of graphene is calculated by the follow-
ing formula:

εgraphene =

 1 + iσ/
(
ωε0tg

)
0 0

0 1 + iσ/
(
ωε0tg

)
0

0 0 1

 (4)

where ε0 is the permittivity in vacuum, and tg is the thickness of graphene, which is
assumed to 0.34 nm in the calculation.
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The optimum structural parameters of the grating were chosen as follows: Λ = 640 nm,
h = 365 nm, t = 300 nm, w1 = 195 nm, w2 = 135 nm, d = 20 nm. First of all, we discuss
the influence of the existence of slit and monolayer graphene on the absorption spectrum.
Under the incidence of TE polarized light, as shown in Figure 2a, when the structure
contaions both graphene and slit, its absorption is as high as 99.99% at 1227.27 nm, and
the schematic diagram of the structure is shown in Figure 2b. For the structure without
graphene, its absorption is shown as the red curve in Figure 2a, and the absorption is only
60.23%, which schematic diagram of the structure is shown in Figure 2c. Even without
graphene, the structure can still absorb part of the incident light. However, structures
with and without slits differ greatly in the absorption. If there are no slits in the structure,
as shown in Figure 2d, there will be no resonance peak in Figure 2a. This is because the
presence of the slit makes the structure asymmetric, resulting in Fano resonance.
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Figure 2. (a) Absorption spectrum at normal incidence for TE polarization at three different configu-
rations. (b) The structure includes monolayer graphene and slit, and the corresponding absorption
curve is black. (c) The structure does not include monolayer graphene but includes a slit, and the
corresponding absorption curve is red. (d) The structure includes monolayer graphene but does not
include a slit, and the corresponding absorption curve is blue.

The local electromagnetic field is the key physical process to generate Fano resonance,
which can be achieved by the interaction of the excited modes. Si with a high refractive
index is used as the ridge of our proposed grating. Therefore, when there are no slits in the
structure, the optical properties of the grating are similar to those of the planar waveguide.
At this time, the structure is symmetrical, so these modes are not coupled to the radiation
modes. As shown in Figure 3a–d, when there are slits in the grating, the grating ridges are
divided into two grating ridges of different widths. Then, the symmetry of the structure
is destroyed, and the two grating ridges with different widths excite the reverse current
distribution, thus forming magnetic dipoles perpendicular to the surface, generating a
narrow-band sub-radiation mode, which is coupled with the radiation mode to form a
Fano resonance.
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plane, (b) at x-y plane. The magnetic field in x-direction normalized to the field amplitude of the
incident light: (c) at y-z plane, (d) at x-y plane.

The electric field distribution at the resonance wavelength is also calculated and
reported in Figure 4a–d. Clearly, a large electric field enhancement appears within the
slit due to the Fano resonance. The maximum enhancement of the field amplitude is
about 30 (see Figure 4a). When different materials surround or are embedded in this
structure, the combination of a sharp absorption response and enlarged fields is ideal for
achieving stronger absorption sensitivity. Therefore, the perfect absorber we proposed can
be operated as a refractive index sensor.

Figure 5 clearly illustrates the relationship between the Fermi energy of graphene and
absorption. It is seen that when the Fermi energy increases from 0.55 eV to 0.70 eV, the
resonance wavelength shifts from 1127.27 nm to 1126.95 nm, and the absorption decreases
from 99.99% to 61.73%. The reason for this blue shift is that an increase in the Fermi energy
of the monolayer graphene requires a high energy to induce the resonance between the
generated electron and the incident electromagnetic wave. This higher energy requirement
results in a decrease in the effective resonance wavelength. Meanwhile, with the increase
in Fermi energy, the imaginary part of the permittivity decreases monotonically, which
leads to the decrease in absorption. The Fermi energy of graphene increases as the gate
voltage increases. Therefore, the tuning of absorption can be conveniently achieved by
controlling the gate voltage.
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Figure 4. The electric field distribution at the peak of the Fano resonance spectral curve, (a) at y-z
plane, (b) at x-y plane. The electric field in y-direction normalized to the field amplitude of the
incident light, (c) at y-z plane, (d) at x-y plane.
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Figure 5. The changes in the absorption spectrum of the structure with the increase in Fermi energy,
and the other parameters are kept constant.

Figure 6a shows the effects of the slit width on the absorption of the structure. The
resonance wavelength shows a blueshift with a slit width that increased from 10 nm to
40 nm, whereas the absorption first increased and then decreased. Moreover, when the
width of the slit is 20 nm, the maximum absorption of the structure is 99.99%. It can be
seen from the figure that the optimal distance d between the two grating ridges is 20 nm.
When d is longer than the optimal distance, the interaction between the two grating ridges
decreases, resulting in the a decrease in absorption.
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The asymmetry parameter δ is defined as the difference in the grating ridges widths
δ = w1 − w2. As shown in Figure 6b, When δ = 0 nm (w1 = w2 = 165 nm), there
is no absorption in the spectrum. This is because there is only one slit in a period of
the structure, the width of the two grating ridges is the same, and the structure is still
symmetrical, so the Fano resonance is not excited. When the δ increases from 40 nm
(w1 = 185 nm, w2 = 145 nm) to 60 nm (w1 = 195 nm, w2 = 135 nm), the resonance
wavelength shifts from 1131.01 nm to 1127.27 nm where the absorption increases from
99.86% to 99.99%. Therefore, we choose a width difference of 60 nm between the two
grating ridges.

Figure 7 illustrates the relationship between absorption spectrum versus the wave-
length with different groove depths of the Si grating. When the groove depths of Si grating
h are changed from 350 nm to 380 nm, the resonance wavelength of the proposed structure
shows a redshift. This is because the equivalent optical thickness of the structure increases
with the increase in groove depth of the Si grating. In addition, altering the groove depth of
the Si grating has a negligible effect on the FWHM of the absorption spectrum. Therefore,
the resonance wavelength can be tuned in the near-infrared by adjusting a suitable groove
depth. Due to the high absorption capacity of the proposed structure, a large error tolerance
can be maintained for the fabrication process imperfections of the groove depth of the
Si grating.
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As is shown in Figure 8, with the increase in the period Λ from 640 nm to 660 nm,
the redshift will occur for the resonance wavelength, which results from the increase in
the effective refractive index of the grating as the period rises. In addition, when the
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resonance wavelength is redshifted, the absorption is maintained at more than 99%. It is
very significant that the enhanced absorption performance can be maintained in a wide
wavelength range. Therefore, the absorption wavelength of the absorber can be linearly
tuned by changing the grating period.
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Figure 8. Changes in absorption while varying the period of the absorber structure.

The above discussion is based on normal incident light, but in the application of
photonic devices, the proposed absorber should work in a wide range of light incident
angles to ensure a high optical absorption efficiency. To study the angular sensitivity of the
absorber, the absorption as a function of angle of incidence and wavelength is shown in
Figure 9a. It can be found that the resonance wavelength blueshifts with varing the incident
angle and the absorption is also changed with the variation of the incident angle. A polar
plot of the absorption at the incident angles of θ = 0◦, θ = ±5◦, θ = ±10◦, θ = ±15◦ is
shown in Figure 9b. It can be seen that their corresponding peak absorptions are 99.99%,
98.02%, 92.36%, 81.75%, respectively. It is clear that the absorption peak slightly decreases
with the increase in the angle of incidence. However, there is a maximum absorption
greater than 80% when the incident angle increases to ±15◦. Obviously, the proposed
absorber can tolerate a wide range of incident angles.
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Because of the nature of the enhancement mechanism, the absorber is also sensitive to
the polarization of the incident light. The polarization-dependent light absorption spectrum
of the structure is shown in Figure 10a, and the absorption peak value at 1127.27 nm is
weakened by the polarization of the polarization from TE to TM. The intensity of the
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absorption peak is different under the illumination of TE and TM polarized normal incident
light. As shown in Figure 10b, with the polarization changes from TE to TM, the resonance
wavelength shifts from 1127.27 nm to 1108.59 nm where the absorption decreases from
99.99% to 78.88%. It can be observed that the polarization of the incident light leads to
a decrease in the absorption of the TM, compared to the TE polarization. This effect can
be attributed to the propagation of the electric field for each polarization, i.e., the TE
polarization electric field induces a higher charge displacement in the graphene sheets,
due to its parallel orientation with respect to the surface, as compared to TM polarization,
where a part of the electric field can propagate loosely (perpendicular part of the electric
field) and the rest is absorbed (parallel part of the electric field) [19].
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Figure 10. (a) Polarization dependent light absorption spectrum of the absorber. (b) Absorption of
the proposed absorber under the illumination of TE and TM polarized normal incident light.

When our proposed absorber is used as a sensor, the grating surface is covered with
gases with a refractive index range from 1.000 to 1.025. The positions of the resonance
wavelength are plotted together as a function of the refractive index of the environment
medium as shown in Figure 11, exhibiting a linear change in the wavelength shift. Sen-
sitivity is an important indicator to evaluate the sensor quality, which is defined as the
change in the resonance wavelength per refractive index unit [20]. By linearly fitting
the data in Figure 11, we can obtain the sensitivity S = 200 nm/RIU. The figure of merit
(FOM = S/FWHM) also reflects the sensing performance directly, which strongly depends
on the resonant bandwidth. For the ultra-narrow band (FWHM = 1.26 nm), the FOM is
159 RIU−1. Based on the above results, the potential applications of the absorbers as sensors
can provide useful insights in future applications.
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Table 1 presents a comparison of the sensitivity and FOM of our work and the pre-
viously published refractive index sensors. We can see that our structure improves both
sensitivity and FOM. Thus, these absorbers are ideal for applications in sensing.

Table 1. Comparison on sensitivity and FOM between this work and previous works.

Reference Structure S (nm/RIU) FOM (RIU−1)

Yan et al. [21] Al-Al2O3-graphene-Al2O3 grating 150 50
Varshney et al. [22] Graphene metamaterial - 53.09

Imas et al. [23] D-shaped fiber 40 114
Lu et al. [24] Glass-Au-SiO2-Au grating 190 25

Zhang et al. [25] Dielectric ring metamaterial 104 21.8
Qian et al. [26] SiO2-Ta2O5 grating 125.89 8.99

This work Asymmetric grating 200 159

3. Conclusions

In this paper, we proposed a type of absorber composed of asymmetric periodic
gratings. A large field enhancement and optical localization can be realized in the slit
between the two grating ridges with different widths. Fano resonance is generated by the
asymmetry of structure. By optimizing the structure, we can obtain a perfect absorber with
a narrow bandwidth, which has an absorption reaching up to 99.99% at 1127.27 nm when
the Fermi energy of graphene is 0.55 eV. Moreover, the simulation results demonstrated
that the absorption resonance peak and operating wavelength can be tuned by varying the
Fermi energy of graphene and the geometrical parameters, as well as the incident angle
and the polarization of light. This absorber can be applied in the design of optoelectronic
devices, filters, and sensors. In the extended design of the proposed absorber, the gas
sensor obtained a sensitivity as high as S = 200 nm/RIU with FOM = 159 RIU−1.
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