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Abstract: To eliminate the noise and temperature drift in an Micro-Electro-Mechanical Systems
(MEMS) gyroscope’s output signal for improving measurement accuracy, a parallel processing model
based on Multi-objective particle swarm optimization based on variational modal decomposition-
time-frequency peak filter (MOVMD–TFPF) and Beetle antennae search algorithm- Elman neural
network (BAS–Elman NN) is established. Firstly, variational mode decomposition (VMD) is op-
timized by multi-objective particle swarm optimization (MOPSO); then, the best decomposition
parameters [kbest,abest] can be obtained. Secondly, the gyroscope output signals are decomposed by
VMD optimized by MOPSO (MOVMD); then, the intrinsic mode functions (IMFs) obtained after
decomposition are classified into a noise segment, mixed segment, and drift segment by sample
entropy (SE). According to the idea of a parallel model, the noise segment can be discarded directly,
the mixed segment is denoised by time-frequency peak filtering (TFPF), and the drift segment is
compensated at the same time. In the compensation part, the beetle antennae search algorithm (BAS)
is adopted to optimize the network parameters of the Elman neural network (Elman NN). Subse-
quently, the double-input/single-output temperature compensation model based on the BAS-Elman
NN is established to compensate the drift segment, and these processed segments are reconstructed
to form the final gyroscope output signal. Experimental results demonstrate the superiority of this
parallel processing model; the angle random walk of the compensated gyroscope output is decreased
from 0.531076 to 5.22502 × 10−3◦/h/

√
Hz, and its bias stability is decreased from 32.7364◦/h to

0.140403◦/h, respectively.

Keywords: MEMS gyroscope; temperature compensation; multi-objective particle swarm optimization
(MOPSO); variational modal decomposition (VMD); beetle antennae search algorithm (BAS); Elman
neural network (Elman NN)

1. Introduction

Thanks to the emergence and progress of Micro-Electro-Mechanical Systems (MEMS)
technology, the research and application of MEMS inertial devices have attracted extensive
attention [1–5]. As one of the outstanding representatives, MEMS gyroscopes are used in
aerospace, consumer electronics and other high-precision control and measurement fields
widely because of low power consumption, small size, easy integration, high reliability,
and high precision [6,7]. Although the MEMS gyroscope has many superior advantages,
its performance is affected by the temperature drift due to its manufacturing process and
inherent structural characteristics, so how to effectively eliminate the influence on the
gyroscope has become a research hotspot [8–18].
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In general, the methods to reduce the influence of temperature drift on gyroscope
performance are classified into two categories: hardware temperature compensation and
software temperature compensation. The hardware temperature compensation method is
used to reduce temperature error from the perspective of device optimization, including
improving the manufacturing process and optimizing the sensor structure and circuit
control system. Many domestic and foreign experts have proposed different hardware
compensation schemes, which have made good progress [9–16]. Cui et al. [9] analyzed
the driving modes and sensing modes of the gyroscope, and they designed a model for
temperature compensation according to the vibration characteristics of the driven mode
using a variable temperature resistor. Fu et al. [10] designed a constant transconductance
high linear amplifier that achieves low phase drift and low amplitude drift interface circuits
over all temperature ranges. Guo et al. [11] designed a resonant MEMS gyroscope with
a self-temperature compensation function to eliminate temperature errors, in which the
gyroscope’s sensing unit is composed of four double-ended tuning forks with symmetrical
distribution. Based on the bipolar temperature compensation method, the sensing mode
closed-loop method for the gyroscope is introduced by Cao et al. [12]. However, hardware
compensation has a long research and development cycle, high consumption, and is not
easy to realize.

Another method is the software compensation; the corresponding relationship be-
tween the temperature input and the gyroscope output is obtained by establishing the
temperature compensation model. In it, a set of experimental temperature and gyro-
scope output obtained in advance are trained as input and output to establish the model.
The temperature compensation model has two problems to solve: one is the noise in the
high-frequency component, and the other is the drift caused by temperature change in
the low-frequency component. Due to the different processing methods, the temperature
compensation model can be divided into serial processing and parallel processing models.
Serial processing is to denoise the entire output signal first and then establish the com-
pensation model to eliminate the temperature drift. The method of first denoising and
then compensation will lead to the loss of useful signals in the original signal, leading to
unsatisfactory compensation results [17–22].

Different from the serial processing model, the parallel processing model is used to
extract the noise component and drift component of the signal and then carry out noise
reduction and compensation processing respectively at the same time and get the final
signal through reconstruction. As two representative adaptive decomposition algorithms,
empirical mode decomposition (EMD) and variational mode decomposition (VMD) are
used in the engineering fields widely. However, mode mixing affects the decomposition
effect of EMD, and VMD has improved the mode mixing by constructing and solving the
variational model [23].

Unfortunately, the proper decomposition parameters of VMD should be selected
before using. When the decomposition number k is set unreasonably, over-decomposition
or under-decomposition will occur. On the other hand, the larger the penalty factor α,
the wider the bandwidth of the intrinsic mode function, and vice versa, which affects the
decomposition accuracy of VMD [24]. Therefore, it is significant to select the appropriate
VMD decomposition parameters [k,a]. Thanks to the emergence of intelligent algorithms
such as swarm optimization algorithms and neural networks, many scholars have used
these algorithms to optimize the VMD [25–27]. These optimization algorithms realize
the purpose of optimization by constructing the single objective function, which only
considers the problem in one aspect, while the multi-objective optimization algorithm
comprehensively considers the optimization of the target from many aspects and can obtain
the global optimal characteristics. As one of the multi-objective optimization algorithms,
multi-objective particle swarm optimization (MOPSO) [28] has been successfully applied
to the engineering fields in view of its simple theory, fast convergence, strong global
optimization ability, flexible parameter adjustment mechanism, and other characteristics.
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In addition, the establishment of a high-precision compensation model is an important
link in the parallel processing model; intelligent algorithms are competent at establishing
corresponding relationships between temperature and gyroscope output. For example,
BP neural network, extreme learning machine (ELM), support vector machine (SVM),
and the improvement of these algorithms have been widely used in temperature compen-
sation and achieved good results [17–21,29]. Among them, Elman neural network (Elman
NN) is a dynamic recursive network with feedback; the increase in feedback layer makes
the network have time-varying adaptive characteristics, thus increasing the global stability
of the network. As an improvement of BP neural network, it also inherits its disadvantages
to some extent, which will lead to local optimization [22]. To improve the processing
accuracy of Elman NN, the beetle antennae search algorithm (BAS) is adopted to optimize
the Elman NN.

Therefore, the parallel processing model for eliminating noise and temperature drift
based on MOVMD–TFPF and BAS–Elman NN is put forward. Firstly, MOPSO is adopted
to determine the optimal decomposition parameters of VMD; then, the gyroscope output
signal is decomposed by MOVMD. Secondly, the intrinsic mode functions (IMFs) obtained
after decomposition are classified by sample entropy (SE) into a noise segment, mixed
segment, and drift segment. Then, the noise segment is discarded directly, the mixed
segment is denoised by TFPF, and the drift segment is compensated by double-input/single-
output temperature compensation model based on the BAS–Elman NN at the same time.
Finally, the final gyroscope output signal can be get through reconstructing the processed
segments, details of the algorithm theory, experimental process, and comparative analysis
are given in the following sections.

2. Introduction of Dual-Mass MEMS Gyroscope
2.1. Dual-Mass MEMS Gyroscope’s Structure

A dual-mass MEMS gyroscope is adopted for the temperature experiments in this
article, and the overall structure is shown in Figure 1 [30]. When the gyroscope works,
there are two main modes: the drive mode and sense mode. Between them, the drive
comb, drive spring, and other parts constitute the drive mode, which is moving on the
X-axis direction; the sense comb, sense spring, and other sections compose the sense mode,
which is moving along the Y-axis. In Figure 1, the two sensitive masses (left and right
masses) are the parts of both modes, which vibrate along the negative direction of the
X-axis. In addition, the two modes of the gyroscope are isolated from each other to avoid
the generation of coupling displacement. When the angular velocity Ωz is input around
the Z-axis, the Coriolis force generated by the vibrating mass is passed to the frame along
the Y-axis and later examined through a monitoring electric circuit.

The gyroscope works on the basis of tuning fork theory. The U-type connecting spring
is connected to the dual-drive mass block, and the drive spring is connected to the dual-
sense mass block. In order to analyze the gyroscope’s working modes, Ansys Software
(ANSYS, Pittsburgh, PA, USA) is adopted to simulate these working modes; the results
are shown in Figure 2 [30]. It can be found that the frequency gap between the first and
the fourth working mode is large, which is more than 1000 Hz, and the fourth mode of
the gyroscope has a quality factor of more than 2000, so the fourth mode is the gyroscope
drive mode. Figure 2a–d show the analysis results of the gyroscope’s four working modes
in turn. The drive in-phase mode is the first mode, in which the vibration direction of the
double mass of the gyroscope is consistent with the X-axis. The second mode is the sensing
in-phase mode, in which the two masses simultaneously vibrate consistent with the Y-axis
direction. The third mode is the sensing anti-phase mode; in this mode, the two mass blocks
oscillate in the opposite direction of the Y-axis. The fourth mode is the drive anti-phase
mode, in which the two mass blocks of the gyroscope oscillate in the contrary direction to
the Y-axis. In addition, the resonant frequencies of these four modes are 2623 Hz, 3342 Hz,
3468 Hz, and 3484 Hz. The fourth mode is not only the drive anti-phase mode but also
the true driving mode. Combined with the above analysis, it can be analyzed that the two
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mass blocks of the gyroscope have two degrees of freedom (X-axis and Y-axis), while the
drive mode and frame has only a single degree of freedom (X-axis or Y-axis).
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Figure 2. The four working modes of gyroscope. (a–d) are the four modes of the gyroscope respectively, and their
corresponding frequencies are w1 = 2623 × 2π rad/s, w2 =3342 × 2π rad/s; w3 = 3468 × 2π rad/s; w4 =3484 × 2π rad/s.

2.2. Gyroscope’s Periphery Circuit

In Figure 3 [31], because the drive circuit is controlled by an AGC closed-loop, the drive
mode can maintain constant amplitude motion at the resonant frequency. Then, the sense
circuit detects the displacement of the sense mode and completes signal processing.

For the drive loop, the drive sense comb is used to measure the shift of the drive frame
x(t), and the x(t) is then converted into a voltage signal Vsdr by a linear transformation of
the X/V converter, which is amplified into Vsd. To satisfy the phase required for the AC
drive signal VdAC = VdACASin(wdt) as much as possible, the phase of Vsd should be delayed
by 90◦. After that, the signal VdACA is extracted through a full-wave rectifier and low-pass
filter, and the extracted signal is contrasted to the reference voltage Vf at the same time.
Then, the control signal VdI can be obtained when the output signal of the comparator
passes through the integrator controller, and VdI is used to modulate VdAC to get the drive
AC signal VAC. Finally, the DC signal VDC is driven to superimpose with VAC to form a
force that can create an excitation for the drive mode.
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For the sense circuit, it is open-loop and uses the same interface as the drive circuit.
The motion signals of the left and right sensitive mass blocks are captured by the

differential detection amplifier, and then, the second differential amplifier is adopted to
process the output signal to generate sense motion signal Vs. Then, Vs is demodulated by
VdAC and then denoised by the low-pass filter to obtain the final sensitive motion signal
Vso; for the signal Vso, the compensation module “B” or compensation algorithms can be
added to compensate it and finally get the compensation signal Vo.

3. Algorithms and Models
3.1. Variational Mode Decomposition (VMD)

The VMD is an effective decomposition method for processing nonstationary signals.
Different from EMD, which decomposes complex signals by recursion-filter decomposition,
VMD decomposes complex signals by non-recursive decomposition and constructing a
variational model. The optimal solution of the variational model is searched through cyclic
iterative processing, which means that the complex signals are decomposed into many
IMFs, and each IMF has the center frequency and limited bandwidth. This enables VMD
to avoid the mode aliasing phenomenon existing in EMD and has better noise robustness.
The decomposition principle of VMD is briefly described as follows [32].

(1) The construction of constrained variational model.

Suppose that any complex signal y(t) is decomposed into k IMFs {uk(t)} = {u1(t), u2(t),
u3(t), . . . , uk(t)} with a center frequency and finite bandwidth; the variational model is
constructed to seek the optimal mode functions so as to minimize the sum of estimated
bandwidths of all intrinsic mode functions. The variational model is constructed as follows:

a. Hilbert transformation is performed on the obtained mode functions to obtain their
analytic signals; the purpose is to get the unilateral spectrum of each mode function.

[σ(t) +
j

πt
] ∗ uk(t) (1)

b. To obtain the constrained variational model, the center frequency of each modal
analytical signal obtained in Equation (1) is initialized; then, the square norm of the
demodulation signal gradient is calculated, and the bandwidth of each IMF is estimated:

min
{uk ,θk}

{
∑
k
‖∂t

[
(σ(t) + j

πt )uk(t)
]
e−jwkt‖

2

2

}
s.t∑

k
uk = y(t)

(2)
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where {θk} = {θ1, θ2, . . . , θk} is the collection of central frequencies of each IMF.

(2) The solution of the constrained variational model.

a. To simplify the constrained variational model, the unconstrained variational model
is constructed by constructing an extended Lagrangian expression. In Equation (3), a and λ
are the penalty factor and Lagrangian multiplication operator.

L({uk} , { θk} , λ) = α∑k ‖∂t

[(
σ(t) + j

πt

)
∗ uk(t)

]
e−jθkt‖

2

2

‖y(t)−∑
k

uk(t)‖2

2
+

〈
λ(t), y(t)−∑

k
uk(t)

〉 (3)

b. The corresponding extremum solution can be obtained by transforming the La-
grangian function obtained by Equation (3) in the time-frequency domain. The expressions
for uk and θk are as follows, respectively:

un+1
k (θ) =

y−∑i 6=k ui(θ) +
λ(θ)

2

1 + 2α(θ − θk)
2 (4)

θn+1
k =

∫ ∞
0 θ|uk(θ) |2dθ∫ ∞
0 |uk(θ) |2dθ

(5)

c. The alternating direction multiplier algorithm is adopted to update the parameters
uk

n+1, θk
n+1, and λn+1, and the updated formula of λn+1 is:

λn+1(θ)← λn(θ) + τ[y(θ)−∑
k

un+1
k (θ)] (6)

In Equation (6), τ is the time constant factor, which affects the update of λ. If the
accuracy is not strictly required, the update can be avoided. In this case, τ = 0.

d. When the condition of Equation (7) is satisfied, the iteration stops, and k intrinsic mode
functions are output. Otherwise, the iteration continues by following the formulas above.

K

∑
k=1

‖un+1
k (θ)− un

k (θ)‖
2
2

‖un
k (θ)‖

2
2

< ε (7)

3.2. Multi-Objective Particle Swarm Optimization

The MOPSO algorithm is a widely used intelligent algorithm, which combines the
particle swarm optimization (PSO) and the grid algorithm; it advances the original single
target optimization to multiple targets. It is based on the predation behavior of birds, and it
has excellent convergence speed and good overall search ability. The reasonable selection
of multiple fitness functions is also the key to MOPSO; fuzzy entropy (FE) and permutation
entropy (PE) are selected as fitness functions of MOPSO to optimize the VMD in this article.

Fuzzy entropy (FE) is an algorithm that can reflect the complex components of the
measured nonlinear signal; the more sparse the signal is, the greater the fuzzy entropy.
At the same time, FE is also an improvement on the approximate entropy; it is less depen-
dent on time series and more robust to noise-containing signals, and the brief introduction
to fuzzy entropy (FE) is as follows [33]:

Step 1. Reconstruct phase space.
For the time series {s(p), 1≤ p≤N}, phase space reconstruction is carried out to obtain

m-dimensional vectors:

Xm
p = {s(p), s(p + 1), . . . , s(p + m− 1)} − s0(p)

p = 1, 2, . . . , N −m + 1
(8)
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Here, Xp
m is m consecutive values of s starting at the pth point and subtracting the

mean s0(p):

s0(p) =
1
m

m−1

∑
q=0

s(p + q) (9)

Step 2. Define the distance between vectors.
Dm

pq is the maximum difference between vector Xm
p and Xm

q, namely:

Dm
pq = d

[
Xm

p , Xm
q

]
= max

k∈(0,m−1)
{|[s(p + k)− s0(p)]− [s(k + q)− s0(q)]|}

(p, q = 1, 2, . . . , N −m, p 6= q)
(10)

Step 3. Compute the membership degree between vectors.
The membership degree of vector Xm

p and Xm
q is defined as µ(dm

pq,θ,ω), which is:

Dm
pq = µ(dm

pq, θ, ω) = e−(
dm

pq
ω )

θ

(11)

In the formula, the fuzzy function is defined as µ(dm
pq,θ,ω), which is an exponential

function, and the gradient and width of its boundary are denoted as θ and ω.
Step 4. Define the function.

Φm(θ, ω) =
1

N −m

N−m

∑
p=1

(
1

N −M− 1

N−m

∑
q=1,q 6=p

Dm
pq) (12)

Similarly, for m + 1 dimension vector, repeat the Formulas (8)–(11); then, the formula
can be obtained:

Φm+1(θ, ω) =
1

N −m

N−m

∑
p=1

(
1

N −M− 1

N−m

∑
q=1,q 6=p

Dm+1
pq ) (13)

Step 5. Define fuzzy entropy.

FE(m, θ, ω) = lim
N→∞

[ln Φm(θ, ω)− ln Φm+1(θ, ω)] (14)

When N is a finite value, Equation (14) is simplified as follows:

FE(m, θ, ω) = ln Φm(θ, ω)− ln Φm+1(θ, ω) (15)

Another fitness function permutation entropy (PE) is introduced as follows.
PE is first proposed by Bandt et al. [34], which can be used to calculate the complexity

and randomness of complex signals. PE is used to measure the noise level of the signal in
this paper, and the principle of PE is as follows:

Step 1. Reconstruct phase space.
For the time series {u(j), 1 ≤ j ≤ N}, phase space reconstruction is carried out to get a

phase sequence:

R =



R(1)
R(2)

...
R(l)

...
R(k)


=



u(1) u(1 + ω) . . . u(1 + (e− 1)ω)
u(2) u(2 + ω) . . . u(2 + (e− 1)ω)

...
... ...

u(l) u(l + ω) . . . u(l + (e− 1)ω)
...

... ...
u(k) u(k + ω) . . . u(k + (e− 1)ω)


(16)
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Here, e is the embedded dimension, k + (e − 1)ω = n, R(l) represents the reconstructed
vector, there are a total of k reconstruction vectors, and the delay time is denoted as ω.

Step 2. Rearrange the reconstructed vectors.
Each reconstructed vector is rearranged according to the size; then, the column indexes of

elements in the vector are obtained to form a set of symbol sequences {h1,h2,h3...,hm}, namely:

s(l + (h1 − 1)ω) ≤ . . . ≤ s(l + (hm − 1)ω) (17)

When hp < hq, that is:

s(l − (hp − 1)ω) ≤ s(l − (hq − 1)ω) (18)

Step 3. The calculation and normalization.
After the rearrangement, calculate the probability of each symbol sequence and denote

them as P1, P2..., Pr, and the calculation formula of permutation entropy is:

Hp(e) = −
e

∑
n=1

pk ln pk (19)

The maximum of permutation entropy is ln e!; normalize the permutation entropy,
that is:

Hp =
Hp(e)
ln e!

Hp ∈ [0, 1] (20)

The normalized permutation entropy can be used to calculate the complexity and
randomness of complex signals: that is, the larger the permutation entropy is, the higher
the complexity and randomness of complex signals will be, and vice versa.

The brief description of the steps of the MOPSO algorithm is as follows [24].
A. Firstly, the key parameters of MOPSO are set, including the total particle number

NP, maximum iteration number M, save set size NR, etc. The number of particles affects the
searching ability of MOPSO. When the number of particles is set too large, the algorithm
has a good global searching ability, but it will affect the speed of the algorithm.

B. Initialize the particle swarm P1: The position P(j) of each particle is randomly
initialized, while its velocity v(j) is set to zero. The fuzzy entropy and permutation entropy
are adopted as fitness functions to evaluate each particle. When the fitness values are
smaller, the corresponding VMD decomposition parameters are better. Meanwhile, the non-
inferior solution in P1 is stored in the save set NP.

C. Update the individual best particle Pbest and the global best particle Gbest, use the
adaptive grid method to find the global optimal particle Gbest, and continuously evolve to
generate the next generation particle population; perform the following steps before the
save set reaches the maximum:

(1). Calculate the density information of the particles in the save set, divide the target
space into small areas by the grid, and measure the density by the number of particles in
each area.

(2). The historical optimal position is updated when the particle’s current position is
better than the best position of the individual history. Then, the global optimal particle
Gbest is selected for the particles in the population, and the selection is based on the density
information of the particles. Specifically, for a particle in the save set, the lower the density
value, the greater the probability of selection.

(3). Update the position and velocity of each particle. In addition, the particles search
for the optimal solution under the leadership of Gbest and Pbest:

vj
i,d+1 = µ(wvj

i,d + c1R1(Pj
i,d − xj

i,d) + c2R2(G
j
i,d − xj

i,d)) (21)

xj
i,d+1 = xj

i,d + vj
i,d+1 (22)
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where d represents the algebra of the current particle evolution, i represents the current
evolutionary particle, c1 and c2 are the learning factors, µ is the contraction factor, R1 and
R2 are the random numbers in the interval [0, 1], and Pj

i,d and Gj
i,d represent the value of the

j-th decision vector of Pbest and Gbest of the particle, respectively. The save set is updated;
after the evolution of the new generation group Pd+1, the non-inferior solutions in Pd+1 are
saved to the save set.

D. If the number of particles in the save set exceeds the set maximum value, the
individuals in the dense range are replaced, and the individuals in the sparse range are
retained to maintain the size of the save set. For a grid with more than one particle, calculate
the number of particles ND to be deleted in the grid according to Formula (23), and then
randomly delete the ND particles in the grid.

ND = Int(

∣∣At+1 − N
∣∣

|At+1|
× Grid[k, 2] + 0.5) (23)

where At is the quantity of particles in the save set, and Gird[k] is the quantity of particles
in grid k.

E. When the stop condition is reached, the iteration is stopped, the particle information
in the storage set is output, and the optimal decomposition parameters [kbest,abest] of VMD
can be obtained.

3.3. Time-Frequency Peak Filtering (TFPF)

TFPF is a noise elimination technology introduced by Mesbah et al. [35]. Thanks to
its ability to extract effective signals in a noisy environment, it has been applied widely in
many engineering fields.

The TFPF algorithm is mainly based on Wigner–Ville distribution (WVD) and in-
stantaneous frequency estimation theory to filter and de-noise signals. Due to its good
time-frequency focusing property, WVD is widely used in engineering. However, when
WVD processes multi-component signals, the resolution of time-frequency distribution of
signals will be reduced due to the generation of cross terms, which leads to the weakening
of time-frequency focusing of WVD. To suppress the cross terms in TFPF, the pseudo-
Wiener–Ville distribution is adopted. According to the principle of TFPF, it is necessary to
encode the noisy signal to make it become the analytic signal of instantaneous frequency
firstly, and the estimated value of the effective signal can be obtained through estimating
its instantaneous frequency.

The gyroscope output signal is mixed with noise:

y(t) = x(t) + n(t) (24)

where x(t) and n(t) represent the useful signal and noise in the gyroscope output respec-
tively, and the steps of TFPF are as follows [36]:

Step 1. Through frequency modulation of signal y(t) containing noise, the analytic
signal z(t) can be obtained:

z(t) = ej2πµ
∫ t

0 y(λ)dλ (25)

Here, µ is the frequency modulation index.
Step 2. The pseudo-Wigner–Ville distribution spectrum of the analytic signal z(t)

is calculated:
PW2(t, f ) =

∫ ∞

−∞
h(τ)z(t +

τ

2
)z∗(t− τ

2
)e−j2π f tdτ (26)

where t stands for time, τ stands for integral variable, f stands for frequency, z* stands for
the conjugated operator of z, the window function is denoted as h(τ), and the window
length is a tradeoff parameter of TFPF.

Step 3. According to the maximum likelihood estimation principle, the peak value of
the PWVD distribution spectrum of the analytic signal is calculated as the instantaneous
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frequency estimation of the analytic signal, and the amplitude estimation of the original
effective signal can be obtained:

fz(t) =
argmax[PWz(t, f )]

µ
(27)

3.4. Temperature Compensation Model Based on BAS–Elman NN
3.4.1. The Framework of Compensation Model

In general, the temperature compensation model is established to study the relation-
ship between temperature and temperature drift in the gyroscope output. Unfortunately,
the general temperature compensation models only consider the temperature itself, which
leads to the unsatisfactory accuracy of the compensation model. To improve the model
accuracy, the temperature change rate is added in this paper to describe the temperature
field. Assume that the observed value of the gyroscope temperature field is M:

M =

[
T

∆T

]
(28)

where T represents the temperature, and ∆T describes the rate of temperature change.
After obtaining the temperature field and combining with the temperature drift in the
gyroscope, the mapping model is established:

S = R(M) = R
{
[T, ∆T]′

}
(29)

where S is temperature drift and R(.) is the prediction function, which is a multi-input/single-
output model established by neural network. The model framework is shown in Figure 4,
and the Elman neural network optimized by the beetle antennae search algorithm is used
as the learner.
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3.4.2. Beetle Antennae Search Algorithm (BAS)

BAS is an efficient intelligent optimization algorithm that is inspired by the principle
of beetles foraging. It does not need to know the specific form and gradient information of
the function, and it only needs one individual in the target search. Due to its simple and
flexible drifts, avoiding local optimal solutions and being suitable for multi-latitude search,
BAS has shown wide applicability and high efficiency in solving complex optimization
problems [37–39]. The basic principle of the BAS algorithm is that when the beetle is
looking for food, it will randomly explore the information intensity in the nearby space
by swinging the long antennae on the sides of its body. When one antenna detects a
higher information intensity than the other, the beetle will move to the side with the higher
information intensity, and it will continue to explore the information intensity at random
until it finds food. The beetle foraging diagram and simplified beetle model are shown in
Figure 5a,b, respectively [40].
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As shown in Figure 5b, the BAS algorithm simplifies the individual beetle and regards
it as a particle that can sense the left and right direction. Since the direction of the beetle
head is random, the right antennae of the beetle will generate a direction vector pointing
to the left antennae to indicate the movement direction of the beetle. The steps of BAS
algorithm are as follows [37,38]:

1. Create a random direction vector that represents the search behavior of beetle antennae:

→
S =

rands(n, 1)
‖rands(n, 1)‖ (30)

Rands(.) is the random function, and n is the dimension of the search space.
2. Create the spatial coordinates of the antennae: xlt = xt − dt

→
S

xrt = xt + dt
→
S

(31)

In Formula (31), xt is the beetle’s spatial position at the t-th search, xlt and xrt respec-
tively represent the spatial positions of the beetle’s left and right antenna at the t-th search,
and dt is the sensing length of the antenna: the larger the sensing length, the stronger the
searching ability of the beetle. Initially, the sensing length of the antennae is long enough
to cover a suitable search area to jump out of the local minimum; then, it gradually decays
over time. The information intensities detected by the left and right antenna are judged
according to the fitness function, and the position of the beetle is updated:

xt+1 = xt + λt·
→
S ·sign[ f (xrt)− f (xlt)] (32)

where xt+1 is the space position of the beetle at t+1-th search, λt is the step size of the beetle’s
movement during the t-th search, sign(.) is a symbolic function, and f (.) is the fitness
function. In addition, the updating rules of dt and λt can be referred to as follows [31]:

dt+1 = 0.95dt + 0.01
λt+1 = 0.95λt (33)

3.4.3. Elman Neural Network (Elman NN)

The Elman NN is a typical dynamic recursive network proposed by Elman; compared
with the three-layer structure of the BP neural network, the input layer of the Elman neural
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network contains context nodes, whose function is to remember the previous activation
of hidden layer nodes, which makes the network have the adaptability of time-varying
characteristics and thus increases the global stability of the network. The structure of the
Elman NN is given in Figure 6 [22].

Micromachines 2021, 12, x FOR PEER REVIEW 13 of 24 
 

 

t t

lt

t t

rt

x x d S

x x d S

 = −


= +

 (31) 

In Formula (31), xt is the beetle’s spatial position at the t-th search, xlt and xrt respec-

tively represent the spatial positions of the beetle’s left and right antenna at the t-th search, 

and dt is the sensing length of the antenna: the larger the sensing length, the stronger the 

searching ability of the beetle. Initially, the sensing length of the antennae is long enough 

to cover a suitable search area to jump out of the local minimum; then, it gradually decays 

over time. The information intensities detected by the left and right antenna are judged 

according to the fitness function, and the position of the beetle is updated: 

1 [ ( ) ( )]t t t

rt ltx x S sign f x f x+ = + −  (32) 

where xt+1 is the space position of the beetle at t+1-th search, λt is the step size of the bee-

tle’s movement during the t-th search, sign(.) is a symbolic function, and f(.) is the fitness 

function. In addition, the updating rules of dt and λt can be referred to as follows [31]: 

1

1

0.95 0.01
0.95

t t

t t

d d
 

+

+

= +
=

 (33) 

3.4.3. Elman Neural Network (Elman NN) 

The Elman NN is a typical dynamic recursive network proposed by Elman; com-

pared with the three-layer structure of the BP neural network, the input layer of the Elman 

neural network contains context nodes, whose function is to remember the previous acti-

vation of hidden layer nodes, which makes the network have the adaptability of time-

varying characteristics and thus increases the global stability of the network. The structure 

of the Elman NN is given in Figure 6 [22]. 

 

Figure 6. The structure of the Elman neural network. 

Referring to the network structure of the Elman NN in Figure 6, the relationship be-

tween input and output is given [22]: 

Figure 6. The structure of the Elman neural network.

Referring to the network structure of the Elman NN in Figure 6, the relationship
between input and output is given [22]:

OI(k) = h(WL1 IC(k) + WL2X(k)− ai)
OH(k) = g(WL3OI(k) + WL4 IH(k)− aj)
Y(k) = f (WL5OH(k)− ak)
IC(k) = OI(k− 1), IH(k) = OH(k− 1)

(34)

where X(k) and Y(k) are the input layer and output layer vectors, respectively, WL1, . . . ,
WL5 are the connection weights, ai, aj, and ak are the thresholds of each layer, h(·), g(·),
and f (·) are the activation functions, and the activation functions h(x) and g(x) adopt a
sigmoid function:

f (x) = g(x) =
1

1 + e−x (35)

3.4.4. Elman Neural Network Based on Beetle Antennae Search Algorithm

Similar to the BP neural network, the initial weights and thresholds of the Elman
NN are generated randomly, which may lead to problems such as local optimum and
slow speed in the search process. This paper adopts the BAS algorithm to optimize the
weights and thresholds of the Elman NN, and the steps of the BAS–Elman NN algorithm
are as follows:

1. According to the structure of the Elman NN, the dimension of the BAS search space
is determined.

2. Create the vector of the beetle antennae’s orientation and the position of the center
of mass.
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3. Determine the fitness function for evaluation, and take the mean square error (MSE)
of the expected and predicted output of training data as the fitness function:

f itness =
1
N

N

∑
i=1

(yp,i − ye,i)
2 (36)

where N is the number of samples used for training, and yp,i and ye,i are the predicted value
and expected value of the ith sample, respectively. When the iteration of the BAS algorithm
terminates, the solution space vector with the smallest fitness value is the optimal solution.

4. The spatial positions of the left and right antennae are calculated, and the fitness
function values of the left and right antennae are compared to update the position of
the beetle.

5. Determine whether the stop condition is met. If not, return to Equation (4) and
continue iterating.

3.5. Parallel Processing Model Based on MOVMD–TFPF and BAS–Elman NN

After introducing the above algorithms, the parallel processing model for eliminating
noise and temperature drift based on MOVMD–TFPF and BAS–Elman NN is put forward.
Figure 7 shows the processing process of the parallel processing model, and the main steps
are as follows.

Step 1. The temperature change and the corresponding gyroscope output are obtained
after the temperature experiment. Firstly, multi-objective particle swarm optimization
is adopted to determine the optimal decomposition parameters [kbest,abest] of the VMD,
and the multi-objective optimized VMD (MOVMD) is obtained. Then, the output signal is
decomposed by MOVMD, and some intrinsic mode functions (IMFs) can be obtained.

Step 2. Secondly, the sample entropy is adopted to classify the obtained IMFs into a
noise segment, mixed segment, and drift segment.

Step 3. For the noise segment, it belongs to high-frequency noise and does not contain
temperature trend and useful signals, so it can be directly discarded. For the mixed segment,
it contains noise and useful components, so TFPF is used for denoising to obtain useful
components. Then, BAS-Elman NN is trained by using the temperature and temperature
change rate of the training set as the input and temperature drift as the output, and it
is applied to predict the drift component in the drift segment to achieve the purpose
of compensation.

Step 4. Finally, the denoised mixed segment and compensated drift segment are
reconstructed to form the final gyroscope output.
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4. Experiment and Analysis
4.1. The Experimental Process

To certify the superiority of the parallel processing algorithm proposed in this paper,
a gyroscope temperature output experiment is carried out. Figure 8 shows the experi-
mental equipment, and Figure 9 shows the structure package and circuit of the gyroscope.
A detection circuit is designed in three PCB boards, respectively; the metal pins not only
connect the electronic signals of the detection circuit but also can be used to connect three
PCBs, which are wrapped with a rubber pad. In addition, after the PCB is wrapped with
a rubber pad, it is placed in the metal shell; such doing can reasonably and effectively
guard the structure of the chip, and it also can avoid severe impact on PCB. To avoid
the interference of the electromagnetic field, the ground signal and the metal shell are
connected. In addition, one of the above three PCBs is connected to the structural chip as a
weak signal interface, and the other two PCB circuits play the role of induction circuit and
drive circuit, respectively.

The experimental equipment is fitted with a temperature-controlled oven (Agilent
34401 A, Agilent, Santa Clara, CA, USA), a multimeter, a signal generator (Agilent 33220 A),
and a DC power supply of ± 10 V (Agilent E3631 A).

The experimental procedure is as follows. First, we turned on the gyroscope and left
it at room temperature for one hour. Later, we quickly heated the temperature-controlled
oven to 60 ◦C to achieve the purpose of making the temperature in the gyroscope housing
consistent with the controlled temperature (60 ◦C), and we maintained it in this state for
one hour. When the temperature control oven dropped 10 ◦C, the gyroscope remained
working in this state for one hour, and when the temperature decreased to –40 ◦C, the gy-
roscope continued working for the last hour, and then the experiment ended. It should
be noted that two groups of experimental data were collected in this paper to train and
test the model, and the subsequent algorithm demonstration and comparative analysis
are based on the test set. The temperature controlling system precision of the oven is
0.1 ◦C, and this work employed a temperature sensor to detect the temperature information
inside the gyroscope and make sure the gyroscope output signal and temperature value
are collected synchronously.
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4.2. The Experimental Results

The experiment results are given in Figure 10; in the experiment, the temperature
varies from 60 to –40 ◦C with time, and the gyroscope output contains rich noise; mean-
while, the output drifts with the temperature, and the influence of drift makes the output
of the gyroscope change from 0.115◦ to 0.15◦. Since the output of the gyroscope is accompa-
nied by drift and noise, a parallel processing model is needed to eliminate these influences.
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Figure 10. Experimental temperature change and the corresponding gyroscope output.

According to the algorithm steps, the experimental signals need to be decomposed
by VMD firstly, and the optimal parameters [kbest,abest] need to be determined by MOPSO
before decomposition. The parameters for MOPSO are set as follows: Np and NR are set at
40, the maximum iteration number M is set at 10, the inertia weight W is set at 0.4, while
the learning factors c1, c2 are both set at 1.5. The optimization range of parameter k and a
are set as [4, 12] and [1000, 10000], respectively. The convergence evolution of particles is
shown in Figure 11, where the Pareto front optimal solution set is marked in red, and the
optimal decomposition parameter [kbest, abest] = [8, 9755].
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Figure 11. The result of particle convergence during the iterative process.

After decomposition, the eight-layer IMFs are obtained, and it is shown in Figure 12
that there is an obvious trend of temperature drift in IMF1, and it is difficult to distinguish
whether IMF2–IMF8 belong to noise or the mixture of drift and noise. So, the sample
entropy [41] is adopted to distinguish these IMFs. Figure 13a,b respectively show the
sample entropy of each IMF and the classification results, and the IMFs are divided into a
drift segment, mixed segment, and noise segment.

Subsequently, the parallel processing model is implemented. For the noisy segment,
it is considered as a useless signal and can be discarded directly. For the mixed segment,
it is a mixture of noise and drift caused by temperature changes. Therefore, TFPF is adopted
here to denoise the mixed segment to preserve useful components. For the drift segment,
it is mainly the drift caused by the temperature change, showing a nonlinear change trend.
In this paper, the temperature compensation model based on the BAS-Elman NN is used to
deal with it.

Figure 14 shows the comparison of mixed segments before and after denoising by
TFPF; then, the denoised gyroscope output signal can be obtained by reconstructing the
denoised mixed segment and the uncompensated drift segment. In Figure 15, the noise in
the gyroscope output signal is basically eliminated.



Micromachines 2021, 12, 1285 18 of 23

Micromachines 2021, 12, x FOR PEER REVIEW 18 of 24 
 

 

Figure 11. The result of particle convergence during the iterative process. 

After decomposition, the eight-layer IMFs are obtained, and it is shown in Figure 12 

that there is an obvious trend of temperature drift in IMF1, and it is difficult to distinguish 

whether IMF2–IMF8 belong to noise or the mixture of drift and noise. So, the sample en-

tropy [41] is adopted to distinguish these IMFs. Figure 13a,b respectively show the sample 

entropy of each IMF and the classification results, and the IMFs are divided into a drift 

segment, mixed segment, and noise segment. 

Subsequently, the parallel processing model is implemented. For the noisy segment, 

it is considered as a useless signal and can be discarded directly. For the mixed segment, 

it is a mixture of noise and drift caused by temperature changes. Therefore, TFPF is 

adopted here to denoise the mixed segment to preserve useful components. For the drift 

segment, it is mainly the drift caused by the temperature change, showing a nonlinear 

change trend. In this paper, the temperature compensation model based on the BAS-

Elman NN is used to deal with it. 

 

Figure 12. The decomposition of gyroscope output by MOVMD. Figure 12. The decomposition of gyroscope output by MOVMD.

Micromachines 2021, 12, x FOR PEER REVIEW 19 of 24 
 

 

 
 

(a) (b) 

Figure 13. (a) Sample entropy of each IMF; (b) Classification results of IMFs. 

Figure 14 shows the comparison of mixed segments before and after denoising by 

TFPF; then, the denoised gyroscope output signal can be obtained by reconstructing the 

denoised mixed segment and the uncompensated drift segment. In Figure 15, the noise in 

the gyroscope output signal is basically eliminated. 

 

Figure 14. The comparison of mixed segments before and after denoising by TFPF. 

 

Figure 15. The comparison of gyroscope output signals before and after denoising. 

Figure 13. (a) Sample entropy of each IMF; (b) Classification results of IMFs.

Micromachines 2021, 12, x FOR PEER REVIEW 19 of 24 
 

 

 
 

(a) (b) 

Figure 13. (a) Sample entropy of each IMF; (b) Classification results of IMFs. 

Figure 14 shows the comparison of mixed segments before and after denoising by 

TFPF; then, the denoised gyroscope output signal can be obtained by reconstructing the 

denoised mixed segment and the uncompensated drift segment. In Figure 15, the noise in 

the gyroscope output signal is basically eliminated. 

 

Figure 14. The comparison of mixed segments before and after denoising by TFPF. 

 

Figure 15. The comparison of gyroscope output signals before and after denoising. 

Figure 14. The comparison of mixed segments before and after denoising by TFPF.



Micromachines 2021, 12, 1285 19 of 23

Micromachines 2021, 12, x FOR PEER REVIEW 19 of 24 
 

 

 
 

(a) (b) 

Figure 13. (a) Sample entropy of each IMF; (b) Classification results of IMFs. 

Figure 14 shows the comparison of mixed segments before and after denoising by 

TFPF; then, the denoised gyroscope output signal can be obtained by reconstructing the 

denoised mixed segment and the uncompensated drift segment. In Figure 15, the noise in 

the gyroscope output signal is basically eliminated. 

 

Figure 14. The comparison of mixed segments before and after denoising by TFPF. 

 

Figure 15. The comparison of gyroscope output signals before and after denoising. Figure 15. The comparison of gyroscope output signals before and after denoising.

Before using the Elman NN for temperature compensation, the beetle antenna search
algorithm is adopted to optimize the network weights of Elman NN to improve its learning
accuracy. Figure 16a,b are the comparison of predicted output of Elman NN before and
after optimization and real output respectively; it can be clearly seen that the prediction
accuracy of the optimized Elman NN has been significantly improved. Figure 17a is
the real output of the drift segment and the predicted output based on temperature and
temperature change rate; Figure 17b is the compensation result of the drift segment.

Then, the denoised mixed segment and the compensated drift segment are recon-
structed to form the final gyroscope output; the noise and temperature drift in the gyroscope
output signal have been well eliminated in Figure 18.
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optimized predicted output and actual output of Elman NN.



Micromachines 2021, 12, 1285 20 of 23

Micromachines 2021, 12, x FOR PEER REVIEW 20 of 24 
 

 

Before using the Elman NN for temperature compensation, the beetle antenna search 

algorithm is adopted to optimize the network weights of Elman NN to improve its learn-

ing accuracy. Figure 16a,b are the comparison of predicted output of Elman NN before 

and after optimization and real output respectively; it can be clearly seen that the predic-

tion accuracy of the optimized Elman NN has been significantly improved. Figure 17a is 

the real output of the drift segment and the predicted output based on temperature and 

temperature change rate; Figure 17b is the compensation result of the drift segment. 

Then, the denoised mixed segment and the compensated drift segment are recon-

structed to form the final gyroscope output; the noise and temperature drift in the gyro-

scope output signal have been well eliminated in Figure 18. 

  

(a) (b) 

Figure 16. (a) Comparison of predicted output and actual output of Elman NN before optimization; (b) Comparison of the 

optimized predicted output and actual output of Elman NN. 

 
(a) (b) 

Figure 17. (a) Predicted output of drift segment; (b) Compensation result of drift segment. Figure 17. (a) Predicted output of drift segment; (b) Compensation result of drift segment.
Micromachines 2021, 12, x FOR PEER REVIEW 21 of 24 
 

 

 

Figure 18. The final gyroscope output signal after denoising and compensation. 

In order to further highlight the superiority of the proposed compensation scheme, 

we compare it with the wavelet threshold denoising (WTD), the BP neural network, and 

the advanced temperature compensation algorithm that combines the empirical mode de-

composition (EMD), wavelet threshold denoising (WTD), and simulated annealing opti-

mized BP neural network. As an error analysis method in IEEE standard [42], Allan vari-

ance analysis is widely used in the stochastic error modeling of inertial devices. In this 

paper, the angle random walk and bias stability of the original gyroscope output and the 

compensated gyroscope output are quantitatively analyzed by Allan variance analysis. 

Comparison results are given in Figure 19; the accuracy of the final signal obtained by 

direct denoising or compensating the gyroscope output signal is very low. Even compared 

with the advanced EMD + WTD + SA-BP algorithm, the proposed scheme is still superior. 

After denoising and compensation of the proposed scheme, the angle random walk of the 

original gyroscope output decreases from 0.531076 to 5.22502 × 10–3°/h/√Hz, and the bias 

stability is reduced from 32.7364°/h to 0.140403°/h; this proves the superior performance 

of the proposed parallel processing model. 

Figure 18. The final gyroscope output signal after denoising and compensation.

In order to further highlight the superiority of the proposed compensation scheme, we
compare it with the wavelet threshold denoising (WTD), the BP neural network, and the
advanced temperature compensation algorithm that combines the empirical mode decom-
position (EMD), wavelet threshold denoising (WTD), and simulated annealing optimized
BP neural network. As an error analysis method in IEEE standard [42], Allan variance
analysis is widely used in the stochastic error modeling of inertial devices. In this pa-
per, the angle random walk and bias stability of the original gyroscope output and the
compensated gyroscope output are quantitatively analyzed by Allan variance analysis.
Comparison results are given in Figure 19; the accuracy of the final signal obtained by
direct denoising or compensating the gyroscope output signal is very low. Even com-
pared with the advanced EMD + WTD + SA-BP algorithm, the proposed scheme is still
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superior. After denoising and compensation of the proposed scheme, the angle random
walk of the original gyroscope output decreases from 0.531076 to 5.22502 × 10−3◦/h/

√
Hz,

and the bias stability is reduced from 32.7364◦/h to 0.140403◦/h; this proves the superior
performance of the proposed parallel processing model.
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5. Conclusions

In this paper, a parallel processing model based on MOVMD–TFFPF and BAS–Elman
NN is established to eliminate the noise and temperature drift in the MEMS gyroscope’s
output signal. Firstly, the multi-objective particle swarm optimization is adopted to deter-
mine the optimal decomposition parameters of the VMD, and the multi-objective optimized
VMD (MOVMD) is obtained. After MOVMD decomposition and SE classification, the gy-
roscope output signal is divided into a noise segment, mixed segment, and drift segment;
then, the noise segment is discarded directly, and the mixed segment is denoised by TFPF.
Subsequently, the double-input/single-output temperature compensation model based on
the BAS-Elman NN is established to compensate the drift segment. Finally, the denoised
mixed segment and compensated drift segment are reconstructed to form the final gyro-
scope output, and the experimental results and comparative analysis verify the validity of
the parallel processing model.

Author Contributions: H.C., F.Z. conceived and designed the experiments; D.H. and Z.L. performed
the experiments; J.L. and Q.K. analyzed the data, Q.C. and F.Z. wrote the paper. All authors have
read and agreed to the published version of the manuscript.

Funding: This work is supported by the National Natural Science Foundation of China (No. 51705477).
The research is also supported by program for the Top Young Academic Leaders of Higher Learning
Institutions of Shanxi, Fund Program for the Scientific Activities of Selected Returned Overseas
Professionals in Shanxi Province, Shanxi province key laboratory of quantum sensing and precision
measurement (201905D121001), Shanxi Province patent promotion and implementation program
of Shanxi Province (2019025), Key Research and Development (R&D) Projects of Shanxi Province
(202003D111004), the Aeronautical Science Foundation of China (2019080U0002), and the Fund for
Shanxi “1331 Project” Key Subjects Construction.

Conflicts of Interest: The authors declare no conflict interest.



Micromachines 2021, 12, 1285 22 of 23

References
1. Shaeffer, D.K. MEMS inertial sensors: A tutorial overview. Commun. Mag. IEEE 2013, 51, 100–109. [CrossRef]
2. Noureldin, A.; Karamat, T.B.; Eberts, M.D.; El-Shafie, A. Performance Enhancement of MEMS-Based INS/GPS Integration for

Low-Cost Navigation Applications. IEEE Trans. Veh. Technol. 2009, 58, 1077–1096. [CrossRef]
3. Brigante, C.; Abbate, N.; Basile, A.; Faulisi, A.C.; Sessa, S. Towards Miniaturization of a MEMS-Based Wearable Motion Capture

System. IEEE Trans. Ind. Electron. 2011, 58, 3234–3241. [CrossRef]
4. Ciuti, G.; Ricotti, L.; Menciassi, A.; Dario, P. MEMS Sensor Technologies for Human Centred Applications in Healthcare, Physical

Activities, Safety and Environmental Sensing: A Review on Research Activities in Italy. Sensors 2015, 15, 6441–6468. [CrossRef]
5. Cao, H.; Zhang, Z.; Zheng, Y.; Guo, H.; Zhao, R.; Shi, Y.; Chou, X. A New Joint Denoising Algorithm for High-G Calibration of

MEMS Accelerometer Based on VMD-PE-Wavelet Threshold. Shock Vib. 2021, 8855878. [CrossRef]
6. Cao, H.; Zhang, Y.; Han, Z.; Shao, X.; Gao, J.; Huang, K.; Shi, Y.; Tang, J.; Shen, C.; Liu, J. Pole-Zero Temperature Compensation

Circuit Design and Experiment for Dual-Mass MEMS Gyroscope Bandwidth Expansion. IEEE/Asme Trans. Mechatron. 2019, 24,
677–688. [CrossRef]

7. Sheng, H.; Zhang, T. MEMS-based low-cost strap-down AHRS research. Measurement 2015, 59, 63–72. [CrossRef]
8. Ma, T.; Li, Z.; Cao, H.; Shen, C.; Wang, Z. A parallel denoising model for dual-mass MEMS gyroscope based on PE-ITD and

SA-ELM. IEEE Access 2019, 7, 169979–169991. [CrossRef]
9. Cui, M.; Huang, Y.; Wang, W.; Cao, H. MEMS Gyroscope Temperature Compensation Based on Drive Mode Vibration Character-

istic Control. Micromachines 2019, 10, 248. [CrossRef]
10. Fu, Q.; Di, X.P.; Chen, W.P.; Yin, L.; Liu, X.W. A temperature characteristic research and compensation design for micro-machined

gyroscope. Mod. Phys. Lett. B 2017, 31, 1750064. [CrossRef]
11. Guo, Z.; Fu, P.; Liu, D.; Huang, M. Design and FEM simulation for a novel resonant silicon MEMS gyroscope with temperature

compensation function. Microsyst. Technol. 2018, 24, 1453–1459. [CrossRef]
12. Cao, H.; Liu, Y.; Zhang, Y.; Shao, X.; Gao, J.; Huang, K.; Shi, Y.; Tang, J.; Shen, C.; Liu, J. Design and Experiment of Dual-Mass

MEMS Gyroscope Sense Closed System Based on Bipole Compensation Method. IEEE Access 2019, 7, 49111–49124. [CrossRef]
13. Prikhodko, I.P.; Trusov, A.A.; Shkel, A.M. Compensation of drifts in high-Q MEMS gyroscopes using temperature self-sensing.

Sens. Actuators A Phys. 2013, 201, 517–524. [CrossRef]
14. Tatar, E.; Mukherjee, T.; Fedder, G.K. Stress Effects and Compensation of Bias Drift in a MEMS Vibratory-Rate Gyroscope.

J. Microelectromech. Syst. 2017, 569–579. [CrossRef]
15. Myers, D.R.; Azevedo, R.G.; Chen, L.; Mehregany, M.; Pisano, A.P. Passive Substrate Temperature Compensation of Doubly

Anchored Double-Ended Tuning Forks. J. Microelectromech. Syst. 2012, 21, 1321–1328. [CrossRef]
16. Leal-Junior, A.G.; Anselmo, F.; Avellar, L.M.; Jose, P.M. Design considerations, analysis, and application of a low-cost, fully

portable, wearable polymer optical fiber curvature sensor. Appl. Opt. 2018, 57, 6927. [CrossRef] [PubMed]
17. Ma, T.; Cao, H.; Shen, C. A Temperature Error Parallel Processing Model for MEMS Gyroscope based on a Novel Fusion

Algorithm. Electronics 2020, 9, 499. [CrossRef]
18. Cao, H.; Cui, R.; Liu, W.; Ma, T.; Zhang, Z.; Shen, C.; Shi, Y. Dual mass MEMS gyroscope temperature drift compensation Based

on TFPF-MEA-BP algorithm. Sens. Rev. 2021, 41, 162–175. [CrossRef]
19. Cao, H.; Zhang, Y.; Shen, C.; Liu, Y.; Wang, X. Temperature Energy Influence Compensation for MEMS Vibration Gyroscope

Based on RBF NN-GA-KF Method. Shock Vib. 2018, 2018, 1–10. [CrossRef]
20. Wang, W.; Chen, X. Temperature drift modeling and compensation of fiber optical gyroscope based on improved support vector

machine and particle swarm optimization algorithms. Appl. Opt. 2016, 55, 6243. [CrossRef]
21. Chang, L.; Cao, H.; Shen, C. Dual-Mass MEMS Gyroscope Parallel Denoising and Temperature Compensation Processing Based

on WLMP and CS-SVR. Micromachines 2020, 11, 586. [CrossRef]
22. Shen, C.; Song, R.; Li, J.; Zhang, X.; Tang, J. Temperature drift modeling of MEMS gyroscope based on genetic-Elman neural

network. Mech. Syst. Signal Process. 2016, 72, 897–905.
23. Liu, H.; Xiang, J. A Strategy Using Variational Mode Decomposition, L-Kurtosis and Minimum Entropy Deconvolution to Detect

Mechanical Faults. IEEE Access 2019, 7, 70564–70573. [CrossRef]
24. Wang, Z.; He, G.; Du, W.; Zhou, J.; Kou, Y. Application of Parameter Optimized Variational Mode Decomposition Method in

Fault Diagnosis of Gearbox. IEEE Access 2019, 7, 44871–44882. [CrossRef]
25. Zhang, X.; Miao, Q.; Zhang, H.; Wang, L. A parameter-adaptive VMD method based on grasshopper optimization algorithm to

analyze vibration signals from rotating machinery. Mech. Syst. Signal Process. 2018, 108, 58–72. [CrossRef]
26. Wang, Z.; Wang, J.; Du, W. Research on fault diagnosis of gearbox with improved variational mode decomposition. Sensors 2018,

18, 3510. [CrossRef]
27. Miao, Y.; Ming, Z.; Jing, L. Identification of mechanical compound-fault based on the improved parameter-adaptive variational

mode decomposition. Isa Trans. 2019, 84, 82–95. [CrossRef]
28. Coello, C.A.C.; Pulido, G.T.; Lechuga, M.S. Handling multiple objectives with particle swarm optimization. IEEE Trans. Evol.

Comput. 2004, 8, 256–279. [CrossRef]
29. Hussain, S.; Mokhtar, M.; Howe, J.M. Sensor Failure Detection, Identification, and Accommodation Using Fully Connected

Cascade Neural Network. IEEE Trans. Ind. Electron. 2015, 62, 1683–1692. [CrossRef]

http://doi.org/10.1109/MCOM.2013.6495768
http://doi.org/10.1109/TVT.2008.926076
http://doi.org/10.1109/TIE.2011.2148671
http://doi.org/10.3390/s150306441
http://doi.org/10.1155/2021/8855878
http://doi.org/10.1109/TMECH.2019.2898098
http://doi.org/10.1016/j.measurement.2014.09.041
http://doi.org/10.1109/ACCESS.2019.2951612
http://doi.org/10.3390/mi10040248
http://doi.org/10.1142/S0217984917500646
http://doi.org/10.1007/s00542-017-3524-4
http://doi.org/10.1109/ACCESS.2019.2909973
http://doi.org/10.1016/j.sna.2012.12.024
http://doi.org/10.1109/JMEMS.2017.2675452
http://doi.org/10.1109/JMEMS.2012.2205903
http://doi.org/10.1364/AO.57.006927
http://www.ncbi.nlm.nih.gov/pubmed/30129579
http://doi.org/10.3390/electronics9030499
http://doi.org/10.1108/SR-09-2020-0205
http://doi.org/10.1155/2018/2830686
http://doi.org/10.1364/AO.55.006243
http://doi.org/10.3390/mi11060586
http://doi.org/10.1109/ACCESS.2019.2920064
http://doi.org/10.1109/ACCESS.2019.2909300
http://doi.org/10.1016/j.ymssp.2017.11.029
http://doi.org/10.3390/s18103510
http://doi.org/10.1016/j.isatra.2018.10.008
http://doi.org/10.1109/TEVC.2004.826067
http://doi.org/10.1109/TIE.2014.2361600


Micromachines 2021, 12, 1285 23 of 23

30. Cao, H.; Xue, R.; Cai, Q.; Gao, J.; Shen, C. Design and Experiment for Dual-Mass MEMS Gyroscope Sensing Closed-Loop System.
IEEE Access 2020, 8, 48074–48087. [CrossRef]

31. Cao, H.; Li, H.; Sheng, X.; Wang, S.; Yang, B.; Huang, L. A Novel Temperature Compensation Method for a MEMS Gyroscope
Oriented on a Periphery Circuit. Int. J. Adv. Robot. Syst. 2013, 10, 1. [CrossRef]

32. Dragomiretskiy, K.; Zosso, D. Variational Mode Decomposition. IEEE Trans. Signal Process. 2014, 62, 531–544. [CrossRef]
33. Chen, W.; Wang, Z.; Xie, H.; Yu, W. Characterization of Surface EMG Signal Based on Fuzzy Entropy. IEEE Trans. Neural Syst.

Rehabil. Eng. 2007, 15, 266–272. [CrossRef] [PubMed]
34. Bandt, C.; Pompe, B. Permutation entropy: A natural complexity measure for time series. Phys. Rev. Lett. 2002, 88, 174102.

[CrossRef]
35. Boashash, B.; Mesbah, M. Signal Enhancement by Time-Frequency Peak Filtering. IEEE Trans. Signal Process. 2004, 52, 929–937.

[CrossRef]
36. Bai, L.; Han, Z.; Li, Y.; Ning, S. A hybrid de-noising algorithm for the gear transmission system based on CEEMDAN-PE-TFPF.

Entropy 2018, 20, 361. [CrossRef]
37. Cai, C.; Qian, Q.; Fu, Y. Application of BAS-Elman Neural Network in Prediction of Blasting Vibration Velocity. Procedia Comput.

Sci. 2020, 166, 491–495. [CrossRef]
38. Wu, Q.; Shen, X.; Jin, Y.; Chen, Z.; Chen, D. Intelligent Beetle Antennae Search for UAV Sensing and Avoidance of Obstacles.

Sensors 2019, 19, 1758. [CrossRef]
39. Fan, Y.; Shao, J.; Sun, G. Optimized PID Controller Based on Beetle Antennae Search Algorithm for Electro-Hydraulic Position

Servo Control System. Sensors 2019, 19, 2727. [CrossRef] [PubMed]
40. Jiang, X.; Li, S. BAS: Beetle Antennae Search Algorithm for Optimization Problems. Int. J. Robot. Control 2017, 1. [CrossRef]
41. Richman, J.S.; Randall, M.J. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol.

Heart Circ. Physiol. 2000, 278, H2039. [CrossRef] [PubMed]
42. Ieee, B.E. IEEE Standard Specification Format Guide and Test Procedure for Single-Axis Interferometric Fiber Optic Gyros; IEEE: Piscataway,

NJ, USA, 1998.

http://doi.org/10.1109/ACCESS.2020.2977223
http://doi.org/10.5772/56881
http://doi.org/10.1109/TSP.2013.2288675
http://doi.org/10.1109/TNSRE.2007.897025
http://www.ncbi.nlm.nih.gov/pubmed/17601197
http://doi.org/10.1103/PhysRevLett.88.174102
http://doi.org/10.1109/TSP.2004.823510
http://doi.org/10.3390/e20050361
http://doi.org/10.1016/j.procs.2020.02.059
http://doi.org/10.3390/s19081758
http://doi.org/10.3390/s19122727
http://www.ncbi.nlm.nih.gov/pubmed/31216632
http://doi.org/10.5430/ijrc.v1n1p1
http://doi.org/10.1152/ajpheart.2000.278.6.H2039
http://www.ncbi.nlm.nih.gov/pubmed/10843903

	Introduction 
	Introduction of Dual-Mass MEMS Gyroscope 
	Dual-Mass MEMS Gyroscope’s Structure 
	Gyroscope’s Periphery Circuit 

	Algorithms and Models 
	Variational Mode Decomposition (VMD) 
	Multi-Objective Particle Swarm Optimization 
	Time-Frequency Peak Filtering (TFPF) 
	Temperature Compensation Model Based on BAS–Elman NN 
	The Framework of Compensation Model 
	Beetle Antennae Search Algorithm (BAS) 
	Elman Neural Network (Elman NN) 
	Elman Neural Network Based on Beetle Antennae Search Algorithm 

	Parallel Processing Model Based on MOVMD–TFPF and BAS–Elman NN 

	Experiment and Analysis 
	The Experimental Process 
	The Experimental Results 

	Conclusions 
	References

