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Abstract: High precision-controlled movement of microscale devices is crucial to obtain advanced
miniaturized motors. In this work, we report a high-speed rotating micromotor based on two-
dimensional (2D) all-inorganic perovskite CsPbBr3 microplates controlled via alternating-current
(AC) external electric field. Firstly, the device configuration with optimized electric field distribution
has been determined via systematic physical simulation. Using this optimized biasing configuration,
when an AC electric field is applied at the four-electrode system, the microplates suspended in the
tetradecane solution rotate at a speed inversely proportional to AC frequency, with a maximum
speed of 16.4 × 2π rad/s. Furthermore, the electrical conductivity of CsPbBr3 microplates has been
determined in a contactless manner, which is approximately 10−9–10−8 S/m. Our work has extended
the investigations on AC electric field-controlled micromotors from 1D to 2D scale, shedding new
light on developing micromotors with new configuration.

Keywords: perovskites; nanomotor; AC voltage; contactless measurement; nanosheet

1. Introduction

High precision-controlled movements of micro-objects are crucial for achieving ad-
vanced micro- and nanomotors [1–3], which might enable a plethora of various cutting-edge
applications, such as drug delivery for in-vivo treatment [4,5], environmental remedia-
tion [6,7], biosensor and other bio-chemical implementations [8–10]. Current related
research efforts have been mainly based on one-dimensional (1D) nanowires. For instance,
as early as in 2005, a high rotation-speed micromotor prototype made of metal nanowires
was applied to drive a dust particle into controllable circular motion [11]. More recently, an
artificial nanomotor composed of two nickel-nanowire arms with a central gold-nanowire
body has been demonstrated to propel twelve body lengths per second [12]. On the other
hand, a multitude of manners have been developed to drive the nanowire-based motors
via transferring external energy into mechanical motion, e.g., by chemical fuels [13,14],
acoustic [15], magnetic [16,17], optic [18–20] and electric-induced external energy [21].
Among them, the electrically driven technique exhibits benefits that go further than being
applicable for wide spectrum of nanowires, regardless of their metallic or non-metallic
nature and also enabling simultaneous control of lateral alignment and synchronous ro-
tation [22,23]. More importantly, by combining alternating and constant electric fields
via four-electrode configuration, the targeted nanowires can be positioned at an arbitrary
location in between the electrodes [24–26], as well as efficiently carrying out contactless
conductivity measurements [27,28].

However, it is still a significant challenge to precisely control the nanowire-based
micromotors, because the viscous force dominates the motion with nonnegligible Brownian
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motion in the nanometer scale with a very low Reynolds number [29,30]. This reinforces
the necessity of developing miniaturized components in the micrometer scale (>10 µm),
which is required by, for instance, a microrobot with size of several hundred microme-
ters [31,32]. From this perspective, two-dimensional (2D) microplates can be regarded as
ideal candidates in composing the miniaturized motors in micrometer scale. For example,
Enachi et al. developed a micromembrane consisting of TiO2 nanotube arrays, and the mi-
cromembrane with lateral size larger than 100 µm2 demonstrated an effective cargo loading
and transport under UV stimuli [33]. Another planar “pancake-like” micromachine with
diameter of 300 µm has been recently reported, in which light-controlled heartbeat-like
pumping function was realized [34]. It should be clarified that “2D” here not only refers to
a nanosheet with thickness less than 10 nm, but also include other planar configurations, as
long as the lateral size is much larger than the thickness. Aside from the abovementioned
2D micromotors controlled by light stimuli, a diversity of other manners has been applied
to power 2D micromotors, such as fuel-driven and magnetically driven techniques [35–42].
Nevertheless, the experimental work relating to 2D micromotors still lags its 1D-nanowire
counterpart mainly because of two aspects, i.e., suitable 2D material and optimal precisely
controlled technique.

In this work, we have systematically studied high-speed rotating micromotors based
on all-inorganic perovskite CsPbBr3 microplates precisely controlled by external electric
field, and further determined the electrical conductivity of CsPbBr3 microplate in a con-
tactless manner. Firstly, in terms of the 2D material, CsPbBr3 microplates have been
implemented in bewildering variety of different electrical and optoelectronic applications,
owing to its large absorption coefficient, high photoluminescence quantum efficiency, am-
bipolar semiconductor characteristics, gradually improved environment stability [43–48].
Secondly, as for the external stimuli, inspired by the electric-driven nanowire micromo-
tors and assisted by systematic physical simulations, we have applied the four-electrode
configuration to precisely control the rotation speed of the 2D microplates, which reaches
up to 16.4 × 2π rad/s. The electrical conductivity measured using this four-electrode
system is approximately 10−9–10−8 S/m. Our work has extended the investigations on AC
electric field-controlled micromotors from 1D to 2D scale, offering opportunities to develop
micromotors with new configuration.

2. Materials and Methods
2.1. Synthesis of CsPbBr3 Microplates

Firstly, under the condition of stirring magnetically, we injected 0.2 mL precursor
(1 mmol CsBr and 0.5 mmol PbBr2 dissolved in 15 mL DMSO) into 1 mL octadecy-
lamine/acetic acid solution (0.05 g/mL). This is followed by the addition of 15 mL toluene
into the solution with further magnetic stirring. Next, the chemical reaction was stopped
by centrifugation at a speed of 5000 rpm for one minute. The precipitation was eventually
redispersed in toluene and washed once again, and then dispersed in 4 mL of toluene.

2.2. Device Characterization

The dynamic process of the CsPbBr3 microplates suspended in solution were observed
via a Seiwa Optical Microscope coupled with a CCD imaging acquisition device. The alter-
nating electrical field was applied by a RIGOL DG1022U function generator, coupled with a
Agitek ATA-2082 High Voltage Amplifier. Regarding the setup of the four-electrode system,
a 1 mm thick copper plate was firstly cut into rectangular copper strips of 15 mm × 1 mm,
then a glass plate of 30 mm × 20 mm was used as the carrier and four copper strips were
placed on the glass plate in pairs with 1.5 mm in between, as schematically illustrated in
Figure 1a. Afterwards, epoxy resin was poured around the copper strips. A circular area
with a diameter of 10 mm was left in the middle. This process was completed by curing for
60 s at 120 ◦C via a hotplate.
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Figure 1. (a) Schematic illustration of the four-electrode configuration for biasing micromotor, with inset showing the
crystalline structure of CsPbBr3. (b) AFM image of a typical single CsPbBr3 nanosheet. (c) Cross-sectional profile of the
typical single CsPbBr3 nanosheet marked by the straight white line in (b).

3. Results and Discussion

Figure 1a presents the schematic illustration of the four-electrode experimental config-
uration, with inset showing a portion of crystalline unit of CsPbBr3, in which the copper
electrodes are partially covered by epoxy resin, with a glass as the substrate. The CsPbBr3
microplates dispersed in the solution of tetradecane are syringe-dropped in the center area
surrounded by the four-metal electrodes. The dispersed single CsPbBr3 microplate is a pile
of multilayer nanosheets with consistent lattice orientation rather than randomly ordered
thin nanosheets [49]. Figure 1b demonstrates a typical single layer of CsPbBr3 nanosheet,
from which the microplate can be constructed. It can be observed that the height of a
typical CsPbBr3 nanosheet is approximately 15 nm, as shown in the cross-sectional profile
in Figure 1c.

Firstly, to determine the optimized electrode configuration, we have systematically
simulated the electric field distribution in the center of the orthogonal four-electrode system,
both on 2D- and 3D-scale with the help of COMSOL Multiphysics 5.4. The system consists
of four electrodes, which are connected to the external AC circuit, as shown in Figure 1a. In
our simulations, we only simulate the field distribution when the AC circuit is just turned
on, i.e., when t = 0 as described later in Equation (1). On the 2D scale, we have simulated
different electrode shapes to optimize its electrical stability for the contactless conductivity
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measurements elaborated later in this work. The gradient of the electric field can greatly
affect its stability. Therefore, a reasonable design of the electrode to reduce the gradient
of the applied electric field without sacrificing the field strength is of great importance to
the electrical characteristics of the microplates. Figure 2 compares the electric potential
distribution of different electrode shapes, including round electrodes, square electrodes
and concaved electrodes. It can be clearly observed that the round electrodes provide
the optimized electric field distribution, i.e., a relatively strong and uniform electric field
between the electrodes, as demonstrated in Figure 2a.
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Figure 2. (a–c) Electric potential distribution of various electrode shapes, i.e., round electrodes, square electrodes and
concaved electrodes. (length unit: m).

On the 3D scale, we have simulated and measured the electric field stability at different
depths to obtain the most suitable observation depth area. Figure 3 provides the geometric
model on the 3D scale, as well as the electric potential distribution. Through the simulation,
we can conclude that the most suitable observation depth ranges from 50 µm to 180 µm
using round-shape electrodes, which have been selected as the actual biasing configuration
in our experiments.
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Regarding the operating mechanism, a rotating electric field can be generated by
applying alternating-current (AC) voltage to the two sets of orthogonal metal electrodes
with a π/2 phase difference, i.e.,

U1 = U0 cos ωt
U2 = U0 cos(ωt − π

2 )
(1)
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where U0 is the amplitude and ω is the angular velocity. The electric field near the center
exhibits a constant amplitude and rotates at the same angular velocity ω. The amplitude of
the electric field E0 is related to U0 according to Equation (2) as follows:

E0 = α
U0

d
(2)

where d is the spacing between electrode and α is a correction factor, which is typically less
than 1. This rotating electric field can exert a torque T on the microplates governed by the
following equation [50]:

T = −Vε2E2
0 [
(1 − τ1/τ2)ωτ1

1 + (ωτ1)
2 ] (3)

Here, V is the volume of the microplate. τ1 = ε1/σ1 and τ2 = ε2/σ2 are the characteristic
relaxation times of the fluid and the microplate, respectively. εi and σi (i = 1, 2) represent the
corresponding electric permittivity and conductivity, respectively. In this study, the fluid
possesses a very low conductivity, i.e., σ1<< σ2 and its relaxation time is much larger than
that of the microplate, i.e., τ1>> τ2. Based on this relation, Equation (3) can be simplified as:

T = −Vε2E2
0

(ωτ1)
2

1 + (ωτ1)
2 (

1
ωτ1

− 1
ωτ2

) ≈ VE2
0

σ2

ω
(4)

As indicated by Equation (4), the torque T is linearly proportional to the conductivity
of the microplate. In the limit of low Reynolds number, the microplate suspended in the
fluid can rotate at a constant velocity Ω in response to the torque:

γΩ = T (5)

where γ represents the rotational drag coefficient depending on the particle size and shape.
For the microplate with much larger lateral size compared with its thickness, γ can be
determined as [51,52]:

γ =
8η

mπ
V (6)

where η is the viscosity of the fluid and m is the ratio of the thickness and lateral size of the
microplate. Combining Equations (4)–(6), we can eventually obtain a relation governing
the rotating velocity of the microplate, as presented in Equation (7) as follows:

Ω =
mπ

8ηω
σ2E2

0 (7)

Figure 4 demonstrates dynamic process of a rotating CsPbBr3 microplate driven by
AC frequency of approximately 1.5 kHz. By applying AC voltages with different phase
and frequencies in the range of 10 Hz to 100 kHz on the quadruple electrodes, a rotating
AC electric field can be created to drive the CsPbBr3 microplate, as shown in Video S1 and
Video S2 of Supplementary Materials. When a rotating AC electric field is applied to the
four-electrode system, an electrical torque is imposed on the induced dipole moment of the
CsPbBr3 microplates and force it to rotate. The rotation speed of the CsPbBr3 microplates
can be precisely manipulated by adjusting the frequency of the AC electric field.

Due to influencing factors such as dielectric strain and electrolyte shielding effect, to
minimize contact with the substrate to reduce the deviation in characterizing 2D material
becomes increasingly important. Herein, we have obtained the specific conductivity of
the CsPbBr3 microplates in a contactless manner. By processing the rotation of CsPbBr3
microplates through image processing, we can obtain the rotation speed of the CsPbBr3
microplates based on previously derived Equation (7). The conductivity of the CsPbBr3
microplates measured by this contactless manner ranges from 10−9–10−8 S/m. Moreover,
as shown in Figure 5, the rotation speed of the CsPbBr3 microplates decreases with in-
creasing the frequency of the AC electric field. The aforementioned theoretical derivation
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can be used not only for contactless measurement, but also for precise manipulation of
microplates under an external AC electric field. This manipulation principle provides a
feasible way to precisely control the rotation of 2D micromotors.
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4. Conclusions

In summary, we applied AC electric field to precisely control all-inorganic perovskite
CsPbBr3 microplates to rotate with high speed and further determined the electrical con-
ductivity in a contactless manner. Moreover, the specific movement mechanism of the
2D material was systematically analyzed. In addition, the 2D and 3D simulation can
confirm that the round electrode exhibits the optimized stability. Our work extended the
investigations on AC electric field-controlled micromotors from 1D to 2D scale, shedding
new light on developing micromotors with new configuration.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/mi12101228/s1, Video S1: Dynamic rotation of a typical CsPbBr3 microplate at low AC
frequency. Video S2: Dynamic rotation of a typical CsPbBr3 microplate at high frequency.
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Y.G. and X.L. All authors have read and agreed to the published version of the manuscript.
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Funds for the Central Universities (No. 30919011298).
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