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Abstract: We demonstrate how to fully ascribe Raman peaks simulated using ab initio molecular
dynamics to specific vibrations in the structure at finite temperatures by means of Wannier functions.
Here, we adopt our newly introduced method for the simulation of the Raman spectra in which the
total polarizability of the system is expressed as a sum over Wannier polarizabilities. The assignment
is then based on the calculation of partial Raman activities arising from self- and/or cross-correlations
between different types of Wannier functions in the system. Different types of Wannier functions can
be distinguished based on their spatial spread. To demonstrate the predictive power of this approach,
we applied it to the case of a cyclohexane molecule in the gas phase and were able to fully assign the
simulated Raman peaks.

Keywords: Raman spectrscopy; maximally localized Wannier functions; density functional theory;
Car-Parrinello molecular dynamics

1. Introduction

ab initio simulations of vibrational spectra, where the electronic degrees of freedom
are explicitly taken into account, often provide valuable information on the structure and
dynamics of complex systems. Therefore, computer simulations nowadays represent an
invaluable tool for the rationalization of, and as a complement to, experimental mea-
surements. The key quantity in computing the vibrational spectrum of a system is its
dipole moment. The dipole moment of a system can be unambiguously calculated using
maximally localized Wannier functions (MLWFs) [1–3], which allow partitioning of the
total electronic density into individual fragment contributions. In this, one can use the
expectation value of the periodic position operator r̂ in the Wannier representation in order
to find the centers of the localized functions for arbitrary symmetries [4–6]. These Wannier
functions are defined as

wn(r− R) =
V

(2π)3

∫
BZ

dk e−ik·R
J

∑
m=1

U(k)
mn ψmk(r), (1)

where ψmk(r) are Bloch functions, R is a Bravais lattice vector, and V the real-space
primitive cell volume, while the integral is computed over the whole Brillouin zone [7].
The unitary J× J matrix U(k)

mn is periodic with respect to the wavevector k, while ψmk(r) are
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the eigenstates of a system as obtained by an electronic structure method, such as density
functional theory (DFT) [8]. To compute MLWFs, the total spread functional

S = ∑
n

Sn = ∑
n

(〈
wn

∣∣∣r2
∣∣∣wn

〉
− 〈wn|r|wn〉2

)
, (2)

is minimized by appropriately chosen unitary rotations U(k)
mn [6].

By means of ab initio molecular dynamics (AIMD) simulations [9], one can obtain the
isotropic Raman spectrum at finite temperature through the calculation of autocorrelation
between polarizabilities of the system

σ(ν) ∝ ν
∫ ∞

0
dt ei2πνt〈Ā(0)Ā(t)

〉
cl, (3)

where ν is the frequency, Ā = 1
3 Tr[Â] is the mean polarizability, and 〈. . .〉cl denotes the

ensemble average of classical statistical mechanics [10,11]. Although Equation (3) includes
finite temperature effects, the assignment of simulated peaks to Raman-active vibrations
is not always straightforward. Recently, a computational technique was introduced to
efficiently calculate Raman spectra [12,13]. In this, the polarizability is represented as a
sum over Wannier polarizabilities, which are functions of Wannier orbital volumes and,
consequently, their spatial spreads,

Ā =
1
3

Tr[Â] =
1
3

NWF

∑
i

Ai =
1
3

NWF

∑
i

βS3
i , (4)

with Si and Ai being the spread of the ith Wannier function and its associated polarizability,
respectively, whereas β is an empirical proportionality constant [12]. The present Wannier
polarizability method has been employed in various systems, including gas-phase and
liquid systems, and has been tested it for solids [12–15].

On the one hand, in computational methods, which are based on normal mode
analysis [16,17], finite-temperature and anharmonic effects are omitted when simulating
Raman spectra. On the other hand, however, the peak assignment is straightforward.
Compared to these methods, the Wannier polarizability method has the advantage of
including both effects. In addition, as will be demonstrated immediately, it also provides
an attractive way to assign all spectroscopic peaks. In comparison to the other Raman sim-
ulation methods based on polarizability sampling (usually calculated through perturbative
or finite-differences methods) [18–22] during AIMD simulations, the Wannier polarizability
approach has a much lower computational cost. In fact, extending the second-generation
Car-Parrinello method of Kühne et al. to allow for an on-the-fly localization of the elec-
tronic orbitals [23,24], MLWFs are dynamically generated during the AIMD simulation
with negligible additional computational costs [12].

Here, we present a novel scheme to assign the ab initio Raman peaks to vibrations in
the system at finite temperature using partial Raman spectra from individual, or a set of
selected Wannier functions. As a proof of concept, we consider a cyclohexane molecule in
the gas phase due to its simple covalent bonding that allows for a clear interpretation of
its electronic charge distribution within a localized orbital representation. The resulting
Wannier functions are localized along C–C and C–H bonds, which are easily distinguishable
based on their spread. In spite of its simplicity, the cyclohexane molecule has a wealth
of vibrations apart from those attributed to local bond stretching at higher frequencies,
e.g., C–C–C bending, as well as wagging, rocking, scissoring, and twisting of CH2 groups.
Our particular aim is to assess the Wannier polarizability-based peak assignment of these
collective vibrations.

The remainder of the article in organized as follows. In Section 2, we outline the
method we use for the calculation of the partial Raman spectrum. In Section 3, we present
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the fully assigned Raman spectrum of cyclohexane in the gas phase, and our observations
and conclusions are presented in Section 4.

2. Methodology

The definition of the mean polarizability in Equation (4) allows for the calculation of
partial Raman spectra by running the summation in Equation (4) through a selected set of
Wannier polarizabilities {A1, A2, . . . , AM}, namely

Ā =
1
3

M≤NWF

∑
i=1

Ai, (5)

which for M = NWF gives the total Raman spectrum. It also allows for decomposition of
the time-correlation function in Equation (3) into self- and cross-correlations, i.e.,

〈
Ā(0)Ā(t)

〉
=

〈
M

∑
i

Ai(0)Ai(t)

〉
+

〈
M

∑
i

M

∑
j( 6=i)

Ai(0)Aj(t)

〉
. (6)

As the Wannier functions are usually centered on bonds in covalent systems, the
dynamics of the Wannier spreads give a clear picture of changes in the bond polarizability.
Therefore, by calculating the autocorrelation of an individual Wannier polarizability via
an AIMD simulation, one can obtain the contributions of bond stretching modes to the
total spectrum. Similarly, the frequencies corresponding to bending, scissoring, wagging,
and even those modes with higher participation ratios can be obtained by including two
or more Wannier functions in Equation (5). For the calculation of individual stretching
modes, only the self-correlation term in Equation (6) is required. However, in cases where
two or more Wannier polarizabilities are included, the cross terms become important for
the correct assignment of the peaks. Assuming that we are aiming for the assignment of
symmetric and asymmetric stretching modes in a typical molecule, we need to include in
Equation (5) the polarizabilities corresponding to two Wannier functions centered along
two adjacent covalent bonds. This corresponds to set Ā = 1

3 (A1 + A2), where A1 and A2
are the polarizabilities corresponding to Wannier functions w1 and w2 (see Figure 1).

w1 w2

Figure 1. Schematic view of an asymmetric stretching mode of a molecule. Wannier functions w1

and w2, centered along two adjacent covalent bonds, are also shown.

When only one of the Wannier functions is considered, then Ā = 1
3 A1 (or Ā = 1

3 A2),
the self-correlation term in Equation (6) would give rise to two distinct peaks in the
calculated partial Raman spectrum due to symmetric and asymmetric vibrations of single
bonds. However, when both Wannier functions are considered, the cross-term would
eliminate the Fourier component corresponding to the asymmetric stretching mode, due
to the fact that in such a vibration the spatial spread of Wannier functions anti-correlates
with each other. Thus when one has the maximum spread, the other is fully contracted.
This can be explicitly seen by assuming a very simple form for A1 and A2, for example
A1 = c1 sin(2πν) + c2 cos(2πµ) and A2 = c1 sin(2πν)− c2 cos(2πµ), with ν and µ being
the frequency of symmetric and asymmetric stretch, respectively. Anti-correlation would



Micromachines 2021, 12, 1212 4 of 9

result in only one peak in the partial spectrum when Ā = 1
3 (A1 + A2). Therefore, one

can directly assign the peak that disappears to the asymmetric stretching mode. Through
similar processes, all the vibrations can be attributed to Raman-active modes in the total
spectrum, as will be demonstrated later for the case of a single cyclohexane molecule in
chair conformation.

3. Computational Details

The minimum energy structure of a cyclohexane molecule in the chair conforma-
tion was obtained at the DFT level of theory using the mixed Gaussian and plane-wave
code CP2K/QUICKSTEP [25] in conjunction with a molecularly optimized double-zeta
valence polarization Gaussian basis set [26], norm-conserving Goedecker-Teter-Hutter
dual-space pseudopotentials [27], the Perdew-Burke-Ernzerhof exchange and correla-
tion functional [28,29], as well as a semi-empirical correction for the long-range London
dispersion interactions [30]. The electron density was represented on a regular plane-
wave grid with a density cutoff of 280 Ry. To locate the nuclear ground state, the Broy-
den–Fletcher–Goldfarb–Shanno algorithm was employed till all nupositions and force
were converged to 3.0 × 10−3 Bohr and 4.5 × 10−4 Hartree/Bohr, respectively [31–34]. The
trajectory, necessary to compute finite-temperature Raman spectra, were obtained using
the second-generation Car-Parrinello AIMD method of Kühne et al. [9,23], which had been
modified so as to propagate in time not only the nuclei and electron density, but also the
matrix U(k)

mn to automatically maintain the locality of MLWFs with essentially no additional
computational cost [12,24]. The corresponding equations of motion [35], however, require
the on-the-fly computation of nuclear and electronic gradients, as well as what we call
“Wannier forces”. Using this scheme, together with a discretized time step of 0.5 fs, the
system was equilibrated for 20 ps within the canonical ensemble, before the polarizabilities
were sampled every 5 fs in the microcanonical ensemble for again 20 ps.

4. Results and Discussion

The centers of the computed Wannier functions of the geometry optimized cyclohex-
ane molecule, which in its chair conformation has D3d point group symmetry, are shown
in Figure 2.
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Figure 2. Atomic configuration of a cyclohexane molecule in its chair conformation shown by top
(a) and side (b) views. The carbon and hydrogen atoms are shown as gray and white spheres,
respectively. The centers of Wannier functions along C–C (red) and C–H (blue) bonds, are also shown.
The radii of the spheres representing the Wannier functions are set according to their corresponding
polarizabilities. Eventually, the polarizabilities averaged over all AIMD snapshots of the Wannier
functions associated with C–C and C–H bonds are displayed in the inset (c).

The red spheres correspond to the Wannier functions centered along C–C bonds, while
the blue ones represent those along C–H bonds. The radii of the spheres are set according to
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the polarizability, which is shown in Figure 2c for the red and the blue spheres, respectively.
As demonstrated, in the case of the molecule at hand, the Kohn-Sham eigenstates give rise
to two types of Wannier functions which are distinguishable based on their polarizabilities.
The frequencies of the fundamental vibrations of the simulated and experimental [36–38]
Raman spectrum of a cyclohexane molecule in gas phase are listed in Table 1.

Table 1. Simulated Raman-active frequencies (in cm−1) of a cyclohexane molecule. In addition,
experimental results from Ref. [38] are shown for comparison.

No. Simulated Exp. [38] D3d Symm. [36,38]

1 363 383 a1g
2 420 426 eg
3 – 785 eg
4 784 802 a1g
5 1024 1027 eg
6 1140 1157 a1g
7 1258 1266 eg
8 1344 1347 eg
9 1460 1443 eg
10 1480 1465 a1g
11 3022 2852 a1g
12 3038 2897 eg
13 3074 2923 a1g (eg [37])
14 3089 2938 a1g

The fundamental frequency at 789 cm−1, ascribed to CH2 rocking vibrations, would
only be seen for the crystalline phase [38]. It is also worth mentioning that the peak at
2923 cm−1 has been assigned to eg, as well as to a1g vibrations [37]. The agreement of the
simulated frequencies with the experimental results is generally good, with the exception
of the high-frequency range. Even though the usage of a more accurate basis set would
result in a better agreement in the frequency range higher than 2800 cm−1, even at the
employed level of theory, the present method is rather useful for the accurate assignment
of all Raman peaks.

As shown in Figure 3, the two types of Wannier functions illustrated in Figure 2 also
result in Raman activities within two different frequency ranges.
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0 1000 2000 3000

Figure 3. Simulated partial Raman spectra using Wannier functions along C–H (blue dashed) and
C–C (red solid) bonds. Only the results obtained using just one Wannier function are shown for each
type of bonds.

The activities shown in Figure 3 are obtained using typical Wannier functions along C–
C and C–H bonds. Therefore, one needs to keep in mind that not all the activities shown are
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visible in the total Raman spectrum, as some of them might get suppressed when M = NWF
in Equation (5) due to the cancellation of Fourier components caused by a possible anti-
correlation. Naively speaking, one might say that the activities around 3000 cm−1 should
originate from C–H stretching modes, while the frequencies below 1500 cm−1 are due
to C–C and ring vibrations. Although the vibrational spectrum of cyclohexane has been
collected and studied for a long time, there are, even for such a simple molecule, some
discrepancies regarding the assignment of the Raman peaks. For example, the peak at
1029 cm−1 has been ascribed to either CH2 rocking [36], or C–C stretching vibrations [38].
Here, by using Wannier polarizabilities, we can unambiguously assign this peak to C–C–C
bending. In the following, we will assign all of the Raman modes listed in Table 1, one by
one. Hereafter, C–X Wannier functions refer to those centered along C–X bonds.

The peak at 363 cm−1 is only present when single C–H Wannier functions are consid-
ered in Equation (5), but is not visible in the spectrum of single C–C Wannier functions.
Thus, it should be a CH2 vibration. Nevertheless, the peak associated with single C–H
Wannier functions undergoes a loss in intensity when both Wannier functions in a CH2
group are considered, which is a sign of partial anti-correlation arising from the cross
term. Therefore, the mode cannot be a CH2 twisting vibration, since in that case complete
anti-correlation would have been observed. It cannot be a wagging vibration either, since
then two C–H bonds oscillate in-phase, hence the intensity should have been boosted
instead of a partial intensity loss. As such, we attribute it to the rocking vibration of CH2
groups. This peak has been experimentally attributed to C–C–C deformation and C–C
torsion [38], as well as to CH2 rocking vibrations [36].

The second peak at 420 cm−1 is absent in the spectra of single C–H Wannier functions
within the plane of the cyclohexane ring shown in Figure 2a. However, an activity is
observed in the spectra of single C–H Wannier functions above and below the ring plane
(Figure 2b) at 420 cm−1. The activity is also present in the case of single C–C Wannier
functions. Moreover, the peak gets boosted when two adjacent C–C Wannier functions
are considered in Equation (5), which indicates an in-phase vibration. Nevertheless, the
peak vanishes when three adjacent C–C Wannier functions are taken into account. This
clearly indicates that the peak should correspond to a C–C–C bending, where two Wannier
spreads change in-phase with each other, whereas the third Wannier spread is out-of-phase.
At this frequency, the activity within the upper and lower C–H Wannier functions shows
weak coupling of their spread to the motion of carbon atoms in the ring. This peak has
experimentally also been attributed to C–C–C bending vibrations [36,38].

The next peak at 784 cm−1 exists in the spectra of single C–C Wannier functions. It
is also visible when two, three, four, and five consecutive C–C Wannier functions are
considered. In the case of five and six C–C Wannier functions, this peak gets considerably
boosted, which points to the presence of in-phase collective vibrations of the carbon atoms
in the ring. Therefore, it can be ascribed to the breathing mode of the ring. Experimentally,
this peak has been attributed to C–C–C deformations [38], as well as to ring breathing [36].

The peak at 1024 cm−1 should arise from the C–C–C bending, since although it is
visible in the spectra of all single C–C Wannier spreads, it vanishes when three consecutive
C–C Wannier functions are included. It is also weakly present in the spectra of single C–H
Wannier spreads within the ring plane, which arise from coupling between the C–C–C
bending of the ring. It has previously been assigned to the CH2 rocking mode [36], and
also to C–C stretching vibrations [38].

The following peak at 1140 cm−1 is present in the spectra of single C–C Wannier
spreads. It is also visible in the ones of C–H Wannier functions above and below the
plane of the ring, but only weakly present in the spectra of C–H Wannier functions in the
ring plane. Therefore, it cannot be a wagging or a twisting vibration of the CH2 group.
Moreover, it is present when more than one C–C Wannier function is included, so it is
neither a stretching, nor a bending vibration of the ring. Hence, we assign this mode to
ring deformations. Further information can be obtained by considering two C–H Wannier
functions across the ring, one above the ring plane and the other below. The peak also
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appears in this case, which means that the C–H Wannier functions above the ring plane
not only vibrate in an in-phase fashion with each other, they also oscillate in-phase with
the C–H Wannier functions below. This immediately suggests a vibration of all C–H
Wannier functions above and below the ring plane that move towards the center of the ring
synchronously, which is likely accompanied by the movement of carbon atoms to form a
flatter ring structure. This peak has been experimentally assigned to ring [38], and CH2
rocking vibrations [36].

The peak at 1258 cm−1 exists in the spectra of all C–H Wannier functions. Yet, the
intensity of this peak is very low when single C–C Wannier functions are taken into account.
Its intensity becomes even lower when two or three neighboring C–C Wannier functions
are included. Therefore, it should arise from a CH2 group vibration. Moreover, the peak
vanishes when two C–H Wannier functions belonging to single CH2 groups are considered,
which indicates an out-of-phase oscillation of the corresponding C–H Wannier spreads.
Consequently, we ascribe this peak to CH2 twisting vibration. Experimentally, this peak
has indeed been ascribed to a CH2 twisting vibration [38], but it has also been assigned to
CH2 wagging [36].

At 1344 cm−1, the vibration behaves quite similarly to the one at 1258 cm−1. It is
present in single C–H Wannier functions above, below, and in the ring plane. Additionally,
it is visible in single C–C Wannier functions. As in the case of the peak at 1258 cm−1, its
intensity becomes lower as two and three neighboring C–C Wannier functions are included.
However, the peak is also present when two C–H Wannier functions belonging to single
CH2 groups are considered. Therefore, we assign it to CH2 wagging vibrations. This peak
has been experimentally assigned to CH2 twisting [36], and wagging vibrations [38].

In the frequency range between 1400 to 1500 cm−1, there are two distinct peaks
observed in the Raman spectrum, at 1460 and 1480 cm−1, respectively. Both peaks are
present when single C–H Wannier functions in the ring plane are considered. The peak at
1480 cm−1 is also visible in the spectra of single C–H Wannier spreads above and below
the ring plane. However, the peak at 1460 cm−1 can only be detected in the spectrum of
one of the single C–H Wannier functions above and below the ring plane. Also, when two
C–H Wannier functions in CH2 groups are considered, activity is profoundly seen around
1460 cm−1 in the case of two CH2 groups in front of each other across the ring. In the case
of the other CH2 groups, the activity around this frequency is lower in intensity. Therefore,
these two peaks should correspond to CH2 scissoring vibrations. Further investigations
show that the two CH2 groups oscillate synchronously, while the other four CH2 groups
are out-of-phase. It is worth mentioning that this rather complex vibration at 1460 cm−1

does not change the dipole moment of the molecule and is therefore IR-inactive.
The vibration at 1480 cm−1 is similar to the vibration at 1460 cm−1. However, in this

case all CH2 scissoring vibrations oscillate synchronously. The reason is that the peak at
1480 cm−1 is not only present in the spectra of all single C–H Wannier functions, it is also
visible in the spectra of two C–H Wannier functions in all CH2 groups.

The peaks above 3000 cm−1 are only present in the spectra of C–H Wannier functions.
They are observed in the spectra of all single C–H Wannier functions at 3022, 3038, 3074,
and 3089 cm−1, respectively. Hence, they should arise from the stretching mode of the
C–H bonds. The first pair of peaks appear in the spectra of two C–H Wannier spreads in
CH2 groups, while the latter pair vanish. This denotes that the first two correspond to
symmetric (in-phase) stretching vibrations, whereas the latter two are due to asymmetric
stretching. Furthermore, based on momentum conservation, we can assign the peak with
lower frequency in each peak pair to out-of-phase stretching oscillations of CH2 groups
across the ring. Yet, in order to maintain the position of the center of mass of the molecule
in such oscillations, heavier carbon atoms also need to collectively oscillate, whereas in
the in-phase stretching oscillations of CH2 groups, the molecular center of mass remains
nearly fixed in space.
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5. Conclusions

In this work, we have demonstrated the ability of our recently developed Wannier po-
larizability method to assign the Raman-active peaks to particular vibrations in the system.
Here, the assignment has been based on the calculation of partial Raman activities arising
from self- and/or cross-correlations between different Wannier functions in the system,
which are differentiated based on their spatial spread. We have shown the applicability
of this method in the case of a cyclohexane molecule in the gas phase. Yet, more complex
condensed-phase systems can also be directly simulated using the present approach.

This work shows the advantages of the Wannier polarizability method not only in
efficiently simulating the Raman spectra of general systems at finite temperatures [12,13],
but also in unambiguously ascribing the computed Raman activities to specific vibrations.
Therefore, the presented method is expected to be useful in a wide variety of applications.
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