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Axial and Nonaxial Migration of Red Blood Cells in a Microtube
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Abstract: Human red blood cells (RBCs) are subjected to high viscous shear stress, especially
during microcirculation, resulting in stable deformed shapes such as parachute or slipper shape.
Those unique deformed RBC shapes, accompanied with axial or nonaxial migration, cannot be
fully described according to traditional knowledge about lateral movement of deformable spherical
particles. Although several experimental and numerical studies have investigated RBC behavior in
microchannels with similar diameters as RBCs, the detailed mechanical characteristics of RBC lateral
movement—in particular, regarding the relationship between stable deformed shapes, equilibrium
radial RBC position, and membrane load—has not yet been fully described. Thus, we numerically
investigated the behavior of single RBCs with radii of 4 µm in a circular microchannel with diameters
of 15 µm. Flow was assumed to be almost inertialess. The problem was characterized by the capillary
number, which is the ratio between fluid viscous force and membrane elastic force. The power (or
energy dissipation) associated with membrane deformations was introduced to quantify the state
of membrane loads. Simulations were performed with different capillary numbers, viscosity ratios
of the internal to external fluids of RBCs, and initial RBC centroid positions. Our numerical results
demonstrated that axial or nonaxial migration of RBC depended on the stable deformed RBC shapes,
and the equilibrium radial position of the RBC centroid correlated well with energy expenditure
associated with membrane deformations.

Keywords: red blood cells; axial migration; lattice-Boltzmann method; finite element method;
immersed boundary method; computational biomechanics

1. Introduction

The flow behavior of human red blood cells (RBCs) in capillaries has been intensively
studied from various points of view, including shape, deformability, and physiological
functions such as oxygen transport. Due to the large number of blood cells, the temporal
shapes of individual RBCs during flow are of fundamental importance both in micro- and
macro-scale hemorheology [1–3]. Especially in the microcirculation, where flow can be
assumed to be almost inertialess, RBCs are subjected to high viscous shear stress, resulting
a bistable shape ( parachute or slipper shape) in capillaries [4–6]. Recent numerical analysis
further showed that the asymmetrical slipper shape of RBCs was observed not only in
circular microchannels, but also in narrow rectangular microchannels, whose width was
comparable to the thickness of an RBC [7]. The unique flow behavior of RBCs, which is
often accompanied by axial or nonaxial migration, cannot be described using the traditional
framework regarding lateral movement of deformable spherical particles, as originally
reported in [8]. In this framework, a deformable spherical particle tends to move toward the
channel axis and remains there. Assuming that the stable shape of RBCs under flow results
from the force balance between internal/external hydrodynamic shear force and inner
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elastic force on the membrane, model analysis will provide insight into the mechanical
background of both stable shape and equilibrium radial position.

So far, the impact on the stable RBC shape of various mechanical conditions, including
flow speed, membrane elasticity, channel confinement, and cell volume–surface ratio,
has been investigated using a 2D elastic spring model [9], a 2D vesicle model [1,2,10,11],
3D models such as vesicle model [12], a mesoscopic molecular dynamics model [13],
and a capsule model [5,6]. These investigations showed that RBCs tend to form a stable
parachute shape in a circular microchannel with a diameter comparable to that of an RBC
(≤10 µm) [6,12,13]. This shape was also observed in a narrow rectangular microchannel
with a width comparable to the thickness of an RBC ≤ 3.5 µm [7]. In a slightly larger
microchannel (≥12 µm), shape bistability became significant [5,13]. Guckenberger et al.
(2018) further showed the effect of the initial position of the RBC centroid on the stable
deformed configuration in Stokes flow for different capillary numbers Ca, which defines
the ratio between a fluid viscous force and a membrane elastic force [5]. Despite these
efforts, the relationships between those stable deformed shapes, the equilibrium radial
positions of RBCs, and the membrane load have not yet been fully described.

Along with the aforementioned numerical studies, recent microfluidic techniques
have allowed us to conduct high-throughput measurements of single-cell behavior under
confined channel flow [14–17]. Since the stable shape of an RBC under flow is highly reliant
on cell mechanical properties, quantifying cell shapes in microfluidic systems will be useful
for understanding cell states—including the ability of RBCs to function as oxygen carriers—
and might be extended to the diagnosis of blood diseases [18,19]. In particular, patients
with sickle cell anemia have a high hemoglobin concentration that results in abnormal
rheology [20–22]. Hence, alternations in membrane elasticity and the relationship between
viscosity ratio and the steady shape of RBCs are clinically important. If the stable shape of
RBCs is changed depending on viscosity ratios of the internal to external fluids of RBCs, the
shape would be a hallmark to identify the cell state, or be useful in cellular-level diagnoses
for blood diseases.

Therefore, the objective of this study is to reveal the relationship between stable
deformed RBC shapes, their equilibrium radial positions, and the membrane loads of
flowing RBCs in a microtube. We numerically investigated the behavior of a single RBC
with a major diameter of 8 µm in a straight circular microchannel with 15 µm-diameter.
The RBC was modeled as a biconcave capsule, whose membranes followed the Skalak
constitutive (SK) law [23]. Internal and external fluids were modeled as an incompressible,
Newtonian viscous fluid. The problem was characterized by Reynolds number and the
capillary number Ca. The flow was assumed to be almost inertialess. The power (or energy
dissipation) associated with membrane deformations was considered to quantify the state
of membrane loads. Simulations were performed for different capillary numbers and
viscosity ratios, as well as different initial positions of the RBC centroid.

2. Methods
2.1. Flow and RBC Model

We consider a cellular flow consisting of an external fluid (plasma), internal fluid
(cytoplasm), and RBC with radius a in a circular channel of diameter D (2R), with a
resolution of 16 fluid lattices per radius of RBC. This resolution was also applied in studies
of channel flows [24,25] and the rheology of RBC suspensions [3]. The channel length is set
to be 20a. The same computational length was also applied in the numerical analysis in [13].
In this study, we focused on the transition of RBC shape, especially from parachute shape to
slipper shape [5,13], which usually occurs for D ≥ 12 µm assuming a = 4 µm [5,13,24]. Thus,
we set the channel diameter to be D = 15 µm. The RBC is modeled as a biconcave capsule,
or a Newtonian fluid enclosed by a thin elastic membrane, with a major diameter d = 8 µm
(2a) and maximum thickness 2 µm (a/2) [26]. The RBC is placed in a computational
domain and is shown in Figure 1, where material points at the initial concave node point
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are represented by green dots, and those at the initial edge node point are indicated by
blue dots.
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Figure 1. Simulation setup: a single RBC with radius of 4 µm is placed with random orientation
in a circular channel with diameter of 15 µm and length of 80 µm. Periodic boundary conditions
are imposed on the flow (z-direction) and no-slip conditions are employed for the wall (x- and
y-direction). Green dots represent material points at the initial concave node point, and blue dots at
the initial edge node point.

The membrane is modeled as an isotropic and hyperelastic material following the SK
law [35]. The strain energy w of the SK law is given by

w =
Gs

4

(
I2
1 + 2I1 − 2I2 + CI2

2

)
, (1)

where Gs is the surface shear elastic modulus, C is a coefficient representing the area
incompressibility, I1(= λ2

1 + λ2
2 − 2) and I2(= λ2

1λ2
2 − 1 = J2

s − 1) are the first and second
invariants of the Green-Lagrange strain tensor, λi (i = 1 and 2) are the two principal in-plane
stretch ratios, and Js = λ1λ2 is the Jacobian, which expresses the ratio of the deformed
to reference surface areas. In this study, we set C = 102 [2]. Bending resistance was also
considered [24], with a bending modulus kb = 5.0× 10−19 J [31]. By mimicking a previous
stretch experiment involving RBCs [36], the surface shear elastic modulus and the area
incompressibility coefficient of RBCs at Re = 0.2 are determined to be Gs = 4.0 µN/m
and C = 102, respectively [38,42]. These membrane parameters successfully reproduced
the deformation of RBCs in shear flow [38,42] and also the thickness of the cell-depleted
peripheral layer in circular channels [38]. We define the initial shape of RBCs as biconcave.

Neglecting inertial effects on membrane deformation, the static local equilibrium
equation of the membrane is given by

∇s·T + q = 0, (2)

Figure 1. Simulation setup: a single RBC with radius of 4 µm is placed with random orientation
in a circular channel with diameter of 15 µm and length of 80 µm. Periodic boundary conditions
are imposed on the flow (z-direction) and no-slip conditions are employed for the wall (x- and
y-direction). Green dots represent material points at the initial concave node point, and blue dots at
the initial edge node point.

The membrane is modeled as an isotropic and hyperelastic material following the SK
law [23]. The strain energy w of the SK law is given by

w =
Gs

4

(
I2
1 + 2I1 − 2I2 + CI2

2

)
, (1)

where Gs is the surface shear elastic modulus; C is a coefficient representing the area
incompressibility; I1 (λ2

1 + λ2
2 − 2) and I2 (λ2

1λ2
2 − 1 = J2

s − 1) are the first and second
invariants of the Green–Lagrange strain tensor; λi (i = 1 and 2) are the two principal
in-plane stretch ratios; and Js = λ1λ2 is the Jacobian, which expresses the ratio of the
deformed to reference surface areas. In this study, we set C = 102 [27]. Bending resistance
was also considered [28], with a bending modulus kb = 5.0× 10−19 J [29]. By mimicking a
previous stretch experiment involving RBCs [30], the surface shear elastic modulus and the
area incompressibility coefficient of RBCs at Re = 0.2 were determined to be Gs = 4.0 µN/m
and C = 102, respectively [3,24]. These membrane parameters successfully reproduced
the deformation of RBCs in shear flow [3,24] and also the thickness of the cell-depleted
peripheral layer in circular channels [24]. We define the initial shape of RBCs as biconcave.

Neglecting inertial effects on membrane deformation, the static local equilibrium
equation of the membrane is given by

∇s·T + q = 0, (2)

where ∇s((I − nn) · ∇) is the surface gradient operator, n is the unit normal outward
vector in the deformed state, and T is the in-plane elastic tension that is obtained from the
SK law (1).

It is known that the usual distribution of hemoglobin concentration in individual RBCs
ranges from 27 to 37 g/dL corresponding to the internal fluid viscosity being µ1 = 5–15 cP
(5–15 mPa·s) [31], while the normal plasma viscosity is µ0 = 1.1–1.3 cP (1.1–1.3 mPa·s) for
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plasma at 37 °C [32]. Hence, the physiologically relevant viscosity ratio can be taken as
λ(µ1/µ0) = 4.2–12.5 if the plasma viscosity is set to be µ0 = 1.2 cP. Hence, in our study, the
physiological relevant viscosity ratio is set to be λ = 5–10. The fluids are modeled as an
incompressible Navier–Stokes equation, with a governing equation of fluid velocity v:

ρ

(
∂v
∂t

+ v · ∇v
)
= −∇p−∇ · τ + ρ f , (3)

∇ · v = 0, (4)

where p is the pressure, ρ is the fluid density, f is the body force, and τ is the stress tensor
of liquids and can be expressed by

τ = −µ
(
∇v +∇vT),

= −{(1− α)µ0 + αµ1}
(
∇v +∇vT), (5)

where α is volume fraction of the inner fluid, which is in the range of 0 ≤ α ≤ 1. The
dynamic condition requires that the load q must be equal to the viscous traction jump
across the mechanics:

q = (τout − τin) · n. (6)

The problem is characterized by Reynolds number Re and the capillary number Ca:

Re =
ρDV∞

max
µ0

, (7)

Ca =
µ0γ̇ma

Gs
=

µ0V∞
max

Gs

a
4R

, (8)

where V∞
max (2V∞

m ) is the maximum plasma velocity in the absence of any cells and γ̇m
(V∞

m /D) is the mean shear rate. Especially for the human microcirculation, flow can be
assumed as inertialess, and is represented by Re = 0.2 (corresponding to particle Reynolds
number Rep(ργ̇ma2/µ0 = (a2/(2D2))Re) ≈ 0.007) in this study. Although such a finite
but low Re accurately represents the capsule dynamics solved by the boundary integral
method (BIM) in Stokes flow [3,24,33], we further tested a capsule deformation including
large Ca (≥1) (see also Appendix A). The condition defined by Ca = 0.05 (and Re = 0.2)
corresponds to a typical venular wall-shear rate of 333 s−1 [34], and Ca = 0.1 corresponds to
an arteriolar wall-shear rate of 670 s−1 [35] if the surface shear elastic modulus is considered
as Gs = 4 µN/m. Increasing Re under constant Ca corresponds to increasing Gs, namely,
a harder RBC. Unless otherwise specified, we show the results obtained with Re = 0.2
(Rep ≈ 0.007).

2.2. Numerical Simulation

We used the D3Q19 LBM [36] coupled with the finite element method (FEM) [37].
Based on the virtual work principle, the above strong form (2) can be rewritten in weak
form as ∫

S
û · qdS =

∫

S
ε̂ : TdS, (9)

where û and ε̂ =
(
∇sû +∇sûT) are the virtual displacement and virtual strain, respectively.

The FEM is used to solve Equation (9) and obtain the load q acting on the membrane [37].
FEM and LBM were coupled by the immersed boundary method [38]. All procedures were
fully implemented on a GPU to accelerate the numerical simulation. The flow was driven
by a pressure gradient. Periodic boundary conditions were imposed on the inlet and outlet
(z-direction). No-slip conditions were employed for the walls (x- and y-directions). The
mesh size of the LBM for the fluid solution was set to be 250 nm, and that of the finite
elements describing the membrane was approximately 250 nm (an unstructured mesh
with 5120 elements was used for the FEM). This resolution has been shown to successfully
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represent single- and multicellular dynamics [24]; further, the results of multicellular
dynamics are not changed by using twice the resolution for both the fluid and membrane
meshes [24].

2.3. Analysis

To quantify the effect of the radial position of the RBC centroid and the deformed
cell shape on fluid flow, the power (or energy dissipation) associated with membrane
deformations is considered, and is given by

δWmem =
∫

q̂ ·
(

v(m) − V ∞(r)
)

dS, (10)

→ δW∗mem =
2

µ0DV∞2
max

∫
q̂∗ ·

(
v(m)∗ − V ∞∗(r)

)
dS∗,

=
2

µ0DV∞2
max

∫ [
q̂∗xv(m)∗

x + q̂∗yv(m)∗
y + q̂∗z

(
v(m)∗

z −V∞∗
z (r)

)]
dS∗, (11)

where V∞(r) =
(
0, 0, V∞

max
[
1− (r/R)2]) is the fluid flow velocity without cells, q̂ is the

load acting on the membrane and includes the contribution of bending rigidity, r is the
membrane distance from the channel center, v(m) is the interfacial velocity of the membrane,
and S is the membrane surface area. Here, nondimensional variables are defined as
q̂∗ = q̂/(µ0γ̇m), v(m)∗ = v(m)/V∞

max, V ∞∗ = V ∞/V∞
max and S∗ = S/D2.

3. Results
3.1. Effect of Capillary Number Ca on RBC Shapes

First, we investigated the behavior of RBCs with a viscosity ratio λ = 5 for different Ca
and different initial radial positions of the RBC centroid r0. Figure 2a–d show examples
of snapshots of flowing RBCs in a steady state (γ̇mt = 800, see also Videos S1–S4). Initially
off-centered RBCs (r0/R = 0.4) subjected to the lowest Ca (0.05) gradually migrated toward
the channel center and exhibited a non-tank-treading (non-TT) discoidal shape, as shown in
Figure 2a (see also Video S1). This occurred even when the initial position was set to be the
channel center (Figure 2c, see also Video S3). Initially off-centered RBCs that were subjected
to the highest Ca (1.2) exhibited a TT slipper shape [5,13], as shown in Figure 2b (see also
Video S2). Since initially centered RBCs exhibited a non-TT parachute shape (Figure 2d,
see also Video S4), the stable shape of RBCs subjected to a higher Ca depends on the
initial position of the RBC centroid, which qualitatively agrees with previous experimental
and numerical results in the rectangular microchannel [5]. Our numerical results further
showed that a non-TT discoidal shape was observed for Ca ≤ 0.1, which shifted to a
non-TT parachute shape for 0.4 ≤ Ca ≤ 0.8, regardless of initial position. Bistable shapes
(non-TT parachute shape and TT slipper shape) were only observed for Ca = 1.2. Note
that at Ca = 1.2, a non-TT parachute shape was observed for r0 ≤ 1.5 µm (i.e., r0/R ≤ 0.2),
while a TT slipper shape was observed for r0 ≥ 2 µm (i.e., r0/R ≥ 0.27) (see also Figure A2
in Appendix B).

Figure 2e shows the time history of the radial position of each RBC centroid r, nor-
malized by the channel radius R. Spherical capsules uniformly exhibited axial migration
independent of Ca (Figure A3 in Appendix C, see also Videos S5 and S6), which is consistent
with classical principles regarding the axial migration of deformable spherical particles [8];
however, RBCs exhibited well-centered and off-centered migration depending on Ca and
the initial radial position. In this study, we hereafter define axial migration as having
an order of magnitude O(〈r〉/R) ≤ 10−2, and nonaxial migration as having an order of
magnitude O(〈r〉/R) > 10−2, where 〈·〉 denotes the time average. The time-averaging
was performed for data after γ̇mt = 200 based on Figure 2e. The non-TT discoidal shape,
obtained with Ca = 0.05 (Figures 2a,c), flowed near the channel axis (blue and black lines
in Figure 2e). The TT slipper shape, obtained with Ca = 1.2 and r0/R = 0.4 (Figure 2b),
exhibited nonaxial migration with temporal fluctuations (red line in Figure 2e). The non-TT
parachute shape, obtained with Ca = 1.2 and r0/R = 0 (Figure 2d), showed stable flow near
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the channel axis (orange line in Figure 2e). Note that the equilibrium radial position of
each RBC was independent of its initial orientation, which was randomly determined (data
is not shown).

γ
m
t

r
/R

0 200 400 600 800
0.0

0.1

0.2

0.3

0.4

0.5

Ca = 1.2,   r
0
/R = 0.4

Ca = 1.2,   r
0
/R = 0

Ca = 0.05, r
0
/R = 0.4

Ca = 0.05, r
0
/R = 0

•

(e)

Figure 2. Snapshots of flowing RBCs in steady state (γ̇mt = 800) for (a,c) Ca = 0.05 (see also Videos S1 and S3) and
(b,d) Ca = 1.2 (see also Videos S2 and S4). The right side is the axial view and the left side is the lateral view; the
flow direction is from left to right. For each Ca, the initial position of the RBC centroid is set to be (c,d) r0/R = 0 and
(a,b) r0/R = 0.4. (e) Time history of the radial position of the RBC centroid r/R for different Ca and r0/R. The results were
obtained with λ = 5.

Figure 3 shows the time average of the radial position of the RBC centroid as a
function of Ca, where the error bars represent standard deviations of the time axis. RBCs
exhibited axial or nonaxial migration depending on Ca and the initial radial position. For
relatively low Ca ≤ 0.1, RBCs with a non-TT discoidal shape were located slightly away
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from the channel center regardless of initial position. For 0.4 ≤ Ca ≤ 0.8, RBCs with a
non-TT parachute shape were much closer to the channel axis. For larger Ca (1.2), RBCs
exhibited axial migration with a non-TT parachute shape and nonaxial migration with a TT
slipper shape. Hence, the equilibrium radial position depends on the stable deformed RBC
shape, which in turn, is related to Ca and the initial position. Note that aforementioned
stable deformed shapes (i.e., non-TT discoidal, non-TT parachute, and TT slipper shapes)
remained consistent even at high Re = 10, as did the equilibrium position (orange/black
dots at Ca = 0.05 and Ca = 1.2).

Ca

〈r
〉/

R

10
­2

10
­1

10
0

0.0

0.1

0.2

0.3

r
0
/R = 0.4, Re = 10

r
0
/R = 0, Re = 10

r
0
/R = 0.4, Re = 0.2

r
0
/R = 0, Re = 0.2

non­TT discoidal

  non­TT
parachute

TT slipper

Figure 3. Time average of the radial position of the RBC centroid 〈r〉/R as a function of Ca for initial
position r0/R = 0 (triangles) and r0/R = 0.4 (inverse triangles), where 〈·〉 denotes time average. The
error bars represent standard deviations on the time axis. The results at Re = 10 for low Ca (0.05) and
high Ca (1.2) are also plotted, with black squares for r0/R = 0.4 and orange circles for r0/R = 0. The
results were obtained with λ = 5.

Figure 4a shows the time average of the volumetric flow rate 〈Q〉with a RBC measured
in simulations and normalized by the flow rate Q∞ (πR2V∞

m ) without a RBC as a function of
Ca. The result also represents the change in flow resistance because the apparent viscosity
is inversely proportional to the volumetric flow rate. Thus, the decrease of 〈Q〉 means
the increase of the apparent viscosity. 〈Q〉/Q∞ was the largest with the TT slipper shape
(red dot at Ca = 1.2 in Figure 4a)—i.e., the flow resistance was the smallest—because
the projected area of the deformed RBC to the cross-sectional area of the channel (x-y
plane) Axy was the smallest, as shown in Figure 4b, where Axy is normalized by the initial
projected RBC area with maximal length, i.e., πa2. Since fluid drag force can be described
as a proportion of the projected area, the TT slipper shape with small projected area Axy
leads to a smaller flow resistance than the other two shapes (non-TT discoidal/parachute
shape) (Figure 4a). A reduction in the flow resistance, accompanied with the transition
from non-TT discoidal/parachute shapes to TT slipper shapes with the increases of Ca, is
consistent with [13].

The powers associated with membrane deformations 〈δW∗mem〉 are shown in Figure 4c.
The results of 〈δW∗mem〉 were not always correlated with those of 〈Q〉 and 〈Axy〉. 〈δW∗mem〉
obtained with r0/R = 0.4 tended to increase for Ca = 0.8, but abruptly decreased for further
large Ca (>0.8) (red dots in Figure 4c). 〈δW∗mem〉 obtained with r0/R = 0 tended to increase,
at least for Ca ≤ 1.2 (blue dots in Figure 4c). Since it was expected that 〈δW∗mem〉 would
represent a more precise membrane load state than 〈Q〉 or 〈Axy〉, we replotted 〈δW∗mem〉 as
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a function of 〈r〉/R, as shown in Figure 4d. The result reflected the finding that 〈δW∗mem〉
was not affected by the initial position of Ca, but instead, was large for the near-center
position with 〈r〉/R ≤ 10−2 and small for the off-centered position with 〈r〉/R > 10−2

(Figure 4d).
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10
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Figure 4. (a) Time average of the volumetric flow rate 〈Q〉/Q∞, (b) projected area of the RBC to the cross-sectional area of
the channel (x-y plane) 〈Axy〉/(πa2), and (c) powers associated with membrane deformations 〈δW∗mem〉 as a function of Ca
for different initial positions r0/R (0 and 0.4). (d) Replotted data of 〈δW∗mem〉 as a function of equilibrium radial position
〈r〉/R for different Ca. The error bars represent standard deviations on the time axis. The results were obtained with λ = 5.

3.2. Effect of Viscosity Ratio λ on RBC Shapes

Next, we investigated the effect of viscosity ratio λ on the behavior of RBCs. Figure 5a
shows snapshots of flowing RBCs subjected to low and high Ca in steady state for different
λ. The simulations were started from the off-centered position at r0/R = 0.4. RBCs subjected
to low Ca (0.05) uniformly exhibited the non-TT discoid shape regardless of λ (bottom row
in Figure 5a). In contrast, the stable shape of RBCs subjected to high Ca (1.2) changed from
non-TT parachute shape for λ ≤ 2 to TT slipper shape for λ ≥ 5 (top row in Figure 5a).
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λ

〈r
〉/
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0.0

0.1

0.2
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Ca = 1.2

Ca = 0.05
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Figure 5. (a) Snapshots of flowing RBCs in steady state at Ca = 0.05 (bottom row) and Ca = 1.2 (top row) for different λ.
(b) Time average of the radial position of the RBC centroid 〈r〉/R as a function of λ for Ca = 0.05 (blue inverse triangles) and
Ca = 1.2 (red triangles). The results were obtained with an initial off-centered position at r0/R = 0.4.

Figure 5b shows the time average of the radial position of the RBC centroid 〈r〉/R as a
function of λ. As described previously in Figure 3, non-TT parachute shapes, obtained with
high Ca (1.2) and λ ≤ 2, approached the channel axis much more closely than the non-TT
discoidal shape obtained with low Ca (0.05). The TT slipper shape, which was only found
for high Ca (1.2) and λ ≥ 5, clearly exhibited nonaxial migration (i.e., O(〈r〉/R) > 10−2).
Furthermore, comparing the results of 〈r〉/R between λ = 5 and λ = 10, a higher viscosity
ratio allowed RBCs to be positioned away from the channel center (Figure 5b).

Figure 6a shows the time average of the volumetric flow rate 〈Q〉 as a function of λ.
The non-TT discoidal shape, obtained with Ca = 0.05, was associated with a near-center
position (Figure 5b) and a relatively large projected area Axy (Figure 6b), resulting in large
flow resistance, i.e., small 〈Q〉/Q∞ (Figure 6a). Although the non-TT parachute shape
obtained with Ca = 1.2 and λ ≤ 2 was also associated with a large Axy, 〈Q〉/Q∞ was
larger than with the non-TT discoidal shape (Figure 6a). The values of Axy for the TT
slipper shape, which was obtained with Ca = 1.2 and λ ≥ 5, were smaller than for the
other two shapes (Figure 6b). Further, with the TT slipper shape, the value of 〈Q〉/Q∞

was relatively large except for λ = 10 (Figure 6a). These results suggest that the projected
area Axy is not always correlated with flow resistance represented by 〈Q〉/Q∞, and hence,
a more precise description of membrane dynamics is necessary to better understand the
relationship between stable shapes and equilibrium radial positions.
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Figure 6. (a) Time average of the volumetric flow rate 〈Q〉/Q∞, (b) projected area of the RBC 〈Axy〉/(πa2), and (c) powers
associated with membrane deformations 〈δW∗mem〉 as a function of λ for different Ca (0.05 and 1.2). (d) Replotted data
of 〈δW∗mem〉 as a function of equilibrium radial position 〈r〉/R for different λ. The results were obtained with an initial
off-centered position r0/R = 0.4.

Figure 6c shows the powers associated with membrane deformations 〈δW∗mem〉 as a
function of λ. The results of 〈δW∗mem〉 at Ca = 0.05 consistently had a relatively small order
of magnitude, while those at Ca = 1.2 started to decrease as λ increased to be >1 (Figure 6c).
These trends are consistent with those in the equilibrium position 〈r〉/R described in
Figure 5b. Although the results of 〈δW∗mem〉 did not correlate with those of 〈Q〉/Q∞, as
previously described in Figure 4a,c, they did correlate well with the equilibrium position
〈r〉/R regardless of λ and Ca, as shown in Figure 6d.

4. Discussion

Various numerical models have been used to systematically investigate the behav-
ior of a single RBC at low Re in microchannels whose scale is comparable to the cell
size [5,12,13]. For instance, Fedosov et al. (2014) performed simulations of RBC behavior
for a fixed viscosity ratio λ (1) in circular microchannels and showed a phase diagram of
stable RBCs as a function of shear rates and size ratios in the range of 0.3 < d/D < 0.8 [13].
Guckenberger et al. (2018) also performed simulations of RBCs for a viscosity ratio λ = 5
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in a rectangular microchannel of width W = 12 µm and height H = 10 µm (i.e., d/H = 0.8
and d/W = 0.67), and showed a phase diagram of stable RBCs as a function of cell velocity
and initial position [5]. However, it has not yet been fully determined how these shapes
at equilibrium position contribute to fluid flow. In this study, we further investigated
energy expenditure due to membrane deformation of RBCs in a circular microchannel
with a diameter of D = 15 µm, i.e., d/D = 0.53, and found that it correlated well with the
equilibrium position of the RBC regardless of Ca, λ, and the initial position of the RBC
centroid (Figures 4d and 6d). The results are summarized in Figure 7, which consists of
replotted data from Figures 4d and 6d. The results suggest that the equilibrium radial
position of the RBC centroid is determined by the stable deformed shape, due to differ-
ent energy expenditures associated with various membrane deformations. The non-TT
parachute shape allows the RBC to approach the channel axis with an order of magnitude
O(〈r〉/R) ∼ 10−2, while the radial position of the non-TT discoidal shape is shifted slightly
away from the channel center with 10−2 < 〈r〉/R < 10−1 (Figure 7). The TT slipper shape
always demonstrates nonaxial migration with 〈r〉/R > 10−1 (Figure 7). This shape was
only observed in limited conditions: Ca = 1.2, λ ≥ 5, and an initial off-centered position
r0/R = 0.4. Such high Ca (1.2) corresponds to a higher wall shear rate in a circular channel
γ̇wall(8γ̇m) = 8 × 103 s−1, which is over 10 times greater than human arterial wall shear
rates [35]. Therefore, it is expected that the TT slipper shape with an off-centered position
will be found in in vitro systems with artificially high shear rates except for pathological
vascular regions, e.g., arterial stenosis [39]; hence, this shape may be a hallmark in cell
sorting techniques using microfluidics. Furthermore, at high Ca (1.2), the parachute shape
was found instead of the TT slipper shape for λ ≤ 2 (Figure 5a). Thus, the parachute
shape may also be useful as an indicator for identifying cytoplasmic viscosity. Since we set
the channel diameter to be 15 µm, it would be interesting to study how the off-centered
position 〈r〉/R depends on stable deformed shape changes in larger microtubes.
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non­TT discoidal
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TT slipper

Figure 7. Powers associated with membrane deformations 〈δWmem〉 as a function of equilibrium
radial position 〈r〉/R for different shapes. The results are replotted from Figures 4d and 6d.

The motion of a TT slipper shape in this study may be redefined as a snaking motion
(periodic oscillation of the shape in the form of a snake motion), according to previous
numerical analyses using a 2D vesicle model [40–42]. However, in this study, we focused
on stable deformed RBC shapes, and did not rigorously differentiate between TT slipper
shape and snaking motion, following from previous numerical studies [5,43]. Although we
have shown that our numerical models successfully reproduce not only the deformation of
single RBC but also the thickness of the cell-depleted peripheral layer due to multicellular
interactions [24], comparisons in flowing RBC shapes between numerical results and
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experimental observations in microtubes have not yet been conducted, which is our future
study. As in many numerical studies, e.g., [5,43], we also neglected membrane viscosity,
which has been introduced only in a few continuum model analyses [44–46]. Hence,
it would be also interesting to study how such fluid deformable surfaces changes the
stable deformed RBC shape relative to a pure elastic membrane. Although we performed
simulations for a wide range of Ca and λ, we are unsure what factors cause RBCs to adopt
a stable shape under specific equilibrium positions. Considering the finding that flow
resistance characterized by the volumetric flow rate 〈Q〉/Q∞ is not always described by the
projected area of the RBC to the cross-sectional area of the channel Axy (Figures 4b and 6b),
membrane dynamics need to be more precisely investigated to clarify this problem. In
the future, we will report the precise mechanical characteristics of the stable deformed
RBC shapes, as well as the relationship between these stable shapes, the equilibrium radial
positions of RBCs, and the membrane load.

5. Conclusions

We numerically investigated the dynamics of translating RBCs in a circular microchan-
nel with a diameter of 15 µm for different capillary numbers Ca and viscosity ratios λ. The
flow was assumed to be almost inertialess. Our results demonstrated that the presence
of axial or nonaxial migration depends on the stable deformed RBC shapes, and that the
equilibrium radial position of the RBC centroid correlated well with the energy expenditure
associated with different membrane deformations. The non-TT parachute shape, obtained
with high Ca and low λ, allowed RBCs to approach the channel axis, while the non-TT
discoidal shape, obtained with low Ca, shifted the radial position of RBCs slightly away
from the channel center. The TT slipper shape, obtained with high Ca and high λ, was
always accompanied by obvious nonaxial migration. The energy expenditure decreased
in the following order: non-TT parachute shape, non-TT discoidal shape, and TT slipper
shape. In the near future, we will examine the shape stability of deformed RBCs in more
details to clarify precise mechanical characteristics of the stable shapes, and report the
relationship between these stable shapes, the equilibrium radial position of RBCs, and the
membrane load.

Supplementary Materials: The following materials are available online at https://www.mdpi.com/
article/10.3390/mi12101162/s1. Video S1: non-TT discoidal shape, obtained with Ca = 0.05 and
r0/R = 0.4. Video S2: TT slipper shape, obtained with Ca = 1.2 and r0/R = 0.4. Video S3: non-TT
discoidal shape, obtained with Ca = 0.05 and r0/R = 0. Video S4: non-TT parachute shape, obtained
with Ca = 1.2 and r0/R = 0. Videos S5 and S6: numerical results of a spherical capsule initially placed
at r0/R = 0.4 for Ca = 0.05 and Ca = 1.2, respectively. These numerical results were obtained with
Re = 0.2 and λ = 5.
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Abbreviations
The following abbreviations are used in this manuscript:

RBC Red blood cell
LBM Lattice-Boltzmann method
FEM Finite element method
IBM Immersed boundary method
GPU Graphics processing unit
(non-)TT motion (non-)tank-treading motion

Appendix A. Deformation of a Spherical Capsule

To validate our numerical models, we tested the deformation of a single spherical cap-
sule for different Ca (≤2.5) and different λ (0.2, 1, 5, and 10) under shear flow in a cubic do-
main of size with 8a× 8a× 8a. Particle Reynolds number was set to be Rep (ργ̇a2/µ0) = 0.2.
The shear flow is drive by moving the top and bottom walls located at y = ±H/2 (H = 8a).
Periodic boundary conditions are imposed on the two homogeneous directions (x and
z directions). The resolutions of the fluid and membrane meshes are the same as in the
analysis above. The capsule deformation is quantified by the Taylor parameter defined as
D12 = |a1− a2|/(a1 + a2), where a1 and a2 are the lengths of the semimajor and semiminor
axes of the deformed capsule, and are obtained from the eigenvalues of the inertia tensor
of an equivalent ellipsoid approximating the deformed capsule [47]. Time average starts
after the nondimensional time γ̇t = 60 to reduce the influence of the initial conditions,
and continues to γ̇t ≥ 100. Our numerical results are compared with previous numerical
results obtained with the BIM [48]. For reasonable comparison with previous numerical
studies [48], the same parameters are considered and the membrane is modeled with the
SK law (1) with the area dilation modulus C = 1 and without bending resistance. Figure A1
shows that our numerical results are in good agreement with those of [48].

Ca

D
1
2

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.2

0.4

0.6

0.8

1.0
λ = 0.2 (Foessel et al. 2011)

λ = 1 (Foessel et al. 2011)

λ = 5 (Foessel et al. 2011)

λ = 10 (Foessel et al. 2011)

This study; λ = 0.2

This study; λ = 1

This study; λ = 5

This study; λ = 10

Figure A1. Time-averaged Taylor parameters D12 of an SK spherical capsule as a function of Ca
for different viscosities λ (0.2, 1, 5, and 10); previous numerical results of Foessel et al. [48] are also
displayed. The inset represents a tank-treading spherical capsule at Ca = 1.0 and λ = 1. The results
were obtained with Rep = 0.2.

Appendix B. Effect of Initial Position of RBC on Stable Deformed Shapes

To clarify the reproducibility of the stable shapes of a deformed RBCs, we investigated
the effects of the initial position of RBC centroid (0 < r0/R < 0.4) as a potential perturbation.
Figure A2 shows snapshots of flowing RBCs in steady state at Ca = 1.2 for different
initial positions r0. Initially 1.5-µm-off-centered RBCs (i.e., r0/R ≤ 0.2) attained a non-TT
parachute shape, while initially 2-µm-off-centered RBCs (i.e., r0/R ≥ 0.27) attained a TT
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slipper shape (Figure A2). Although the effect of the initial position on the final stable shape
would depend on Ca, more strict examinations about shape stability will be discussed in
our future study.

Figure A2. Snapshots of flowing RBCs in steady state at Ca = 1.2 for different initial positions r0 (0,
1 µm, 1.5 µm, 2 µm, and 3 µm). The results were obtained with Re = 0.2 and λ = 5.

Appendix C. Behavior of a Spherical Capsule in a Circular Channel

We preliminarily tested the behavior of a spherical capsule with the same radius as
an RBC (i.e., a = 4 µm) at Re = 0.2, and confirmed that an initially off-centered sphere
(r0/R = 0.4) exhibited axial migration for both low Ca (0.05) and high Ca (1.2), as shown in
Figure A3 (see also Videos S5 and S6). The speed toward the channel center was slightly
higher for a more deformable capsule with Ca = 1.2 than for a less deformable capsule with
Ca = 0.05 (Figure A3). This result was consistent with experimental study using a circular
channel at low Re (�1) [8].
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Figure A3. Time history of radial position of capsule centroid for different Ca (0.05 and 1.2),
where the insets are the snapshots of flowing spherical capsule at steady state for each Ca (see
also Videos S5 and S6). The results were obtained with Re = 0.2 and λ = 5.
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