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Abstract: Microelectrode arrays (MEAs) enable the recording of electrical activity from cortical
neurons which has implications for basic neuroscience and neuroprosthetic applications. The de-
sign space for MEA technology is extremely wide where devices may vary with respect to the
number of monolithic shanks as well as placement of microelectrode sites. In the present study,
we examine the differences in recording ability between two different MEA configurations: single
shank (SS) and multi-shank (MS), both of which consist of 16 recording sites implanted in the rat
motor cortex. We observed a significant difference in the proportion of active microelectrode sites
over the 8-week indwelling period, in which SS devices exhibited a consistent ability to record
activity, in contrast to the MS arrays which showed a marked decrease in activity within 2 weeks
post-implantation. Furthermore, this difference was revealed to be dependent on the depth at which
the microelectrode sites were located and may be mediated by anatomical heterogeneity, as well
as the distribution of inhibitory neurons within the cortical layers. Our results indicate that the
implantation depth of microelectrodes within the cortex needs to be considered relative to the chronic
performance characterization.

Keywords: microelectrode array; single unit yield; single shank; multi-shank; depth-dependence

1. Introduction

Intracortical microelectrode arrays (MEAs) are capable of recording the electrical
activity of neurons within the cortex with high temporal and spatial resolution for single
unit activity (SUA) [1], thus enabling a variety of brain-machine interface applications [2–7].
Advances in micro-scale manufacturing have enabled a wide design space for these devices
relative to materials, size, and complexity [8–11]. In general, probes fall into one of two
configurations: single shank (SS) or multi-shank (MS). While a SS probe is capable of
stimulating and recording at various depths throughout the cortex, the MS MEAs aim to
spatially distribute the recording sites normal to the insertion plane. By increasing the
number of shanks on the neural microelectrodes however, there is a marked increase in
device volume and altered mechanical coupling to the brain. Szarowski et al. performed a
comprehensive analysis of brain histological responses to devices with varied MEA shank
cross-sectional areas of 16,900, 10,000, and 5000 µm2 (among other physical properties)
and reported that the initial tissue response is proportional to the device size, whereas the
sustained response is most likely a result of tissue-material interactions [12]. Wang et al.
reported that buckling forces for a MS array did not increase proportionally with an
increased number of shanks [13], however the shear forces, quantified during implant
insertion in cortical tissue, increased linearly with a larger number of shanks. This increase
in shear forces, as demonstrated by a recent in vitro study [14], may lead to an increase
in astrocytic cell density and decrease in neurite viability which could have implications
on the local immunological environment surrounding indwelling probes. Numerous
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studies have demonstrated that these contributions to neuronal injury and gliosis in vivo
are also heightened in the presence of larger probes as well [12,15,16], exacerbating the
inflammatory cascade that may lead to a decrease in device performance. While the
histological response to SS and MS MEAs has been well-studied, few studies have directly
compared the device performance outcomes between the two configurations. In this brief
report, we aim to quantify the differences in the electrophysiological and electrochemical
characteristics of SS and MS neural probes implanted in the rat motor cortex. Our results
indicate that SS and MS arrays exhibit a differential decay profile relative to the proportion
of the active microelectrodes, an effect that appears to be related to the microelectrode site
depth within the cortex rather than the number of shanks. These findings have implications
for understanding how different microelectrode array geometries perform under chronic
implantation conditions.

2. Materials and Methods
2.1. Devices

Experiments were carried out using commercially available silicon devices (Neu-
ronexus Technologies, Ann Arbor, MI, USA). SS arrays (A1x16-3 mm-100-177-CM16LP)
were 3 mm in length, 15 µm thick, and a maximum of 123 µm wide at the base of the shank
(Figure 1A). These devices have 16 iridium microelectrodes with a geometric surface area
of 177 µm2 and spaced 100 µm apart, spanning approximately 1.5 mm from the tip of the
shank. MS arrays (A4x4-2 mm-200-200-200-CM16LP) were comprised of 4 shanks, each
2 mm in length, 15 µm thick, and a maximum of 42 µm wide at the base of the shank
(Figure 1B). Each shank contained 4 iridium microelectrodes that were 200 µm2 and spaced
200 µm apart, spanning approximately 0.6 mm from the tip of the shank. MS microelec-
trode sites were activated prior to implantation using a previously established process
consisting of rectangular potential pulsing between −0.6 V and 0.8 V versus Ag|AgCl in
PBS pH 7.4 [17] to reduce impedance, thereby helping to ensure a comparable performance
of the novel custom-designed arrays.
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2.2. Surgical Implantation of Devices

All animal procedures were approved by The University of Texas at Dallas Institu-
tional Animal Care and Use Committee. Adult, female Sprague Dawley rats (Charles River
Wilmington, Laboratories, Inc., Wilmington, MA, USA) were implanted with either a SS
(n = 5) or MS (n = 5) array. Animals were initially anesthetized using an intraperitoneal
injection of a ketamine (65 mg/kg), xylazine (13.33 mg/kg), and acepromazine (1.5 mg/kg)
cocktail (KXA, 0.94 mL/kg), followed by an intramuscular injection of atropine sulfate
(0.093 mL/kg) (Med-Vet International, Mettawa, IL, USA). After deep anesthesia was
achieved, confirmed by tail and toe pinches, the rats’ scalp was shaved to eliminate hair
from the surgical site. Rats were then transferred to a stereotactic frame (Kopf Instruments,
Tujunga, CA, USA) where anesthesia was maintained using a maximum of 2% isoflurane
(Vedco Inc., St Joseph, MO, USA) mixed with 100% oxygen. Alternating rounds of 10% io-
dine and 70% ethanol were used to sterilize the scalp and ophthalmic ointment (Lubrifresh
P.M., Medline, Northfield, IL, USA) was placed over the eyes to prevent drying and irri-
tation. After the initial midline incision and resecting of tissue, 3 anchoring bone screws
(Stoelting Co., Wood Dale, IL, USA) were placed in the quadrants (defined by bregma and
the coronal and sagittal sutures) adjacent to site of implantation as seen in Figure 2A. A
~2 mm × 2 mm craniotomy was created in the left motor cortex centered above the forepaw
representation within the cortex (~2 mm anterior from bregma and ~2 mm lateral from
the midline) (Figure 2A). After the dura was resected, stainless steel ground and reference
wires from the array were wrapped around the bone screws, and the device was inserted to
a depth of 1.5–1.7 mm using an electronically controlled micropositioner (Kopf Instruments,
Actuated Medical, Bellefonte, PA, USA). Collagen-based dural grafts (Biodesign® Dural
Graft, Cook Medical LLC., Bloomington, IN, USA) were placed around the device to serve
as a dura replacement, and the craniotomy was sealed in a topical adhesive. Dental cement
(Stoelting Co., Wood Dale, IL, USA) was then applied on the skull to form a head cap that
encapsulated the device and bone screws, and surgical staples were used to close the initial
midline incision. After surgery, rats were injected with 0.15 mL/kg of buprenorphine
(ZooPharm, LLC., Windsor, CO, USA), 0.05 mL/kg of cefazolin (Med-Vet International,
Mettawa, IL, USA), and ~3 mL of sterilized phosphate-buffered saline (PBS) to aid with
rehydration. Rats were given a follow-up injection of buprenorphine 72 h after surgery.
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2.3. Electrophysiological Recordings and Analysis

Weekly electrophysiological recordings were conducted on anesthetized animals start-
ing one-week post-surgery for 8 weeks per previously established protocol [18]. Wideband
recordings of spontaneous activity within the motor cortex were recorded simultaneously
from all 16 microelectrodes for 10 min at 40 kHz (Omniplex, Plexon, Inc., Dallas, TX,
USA). Data were then processed using a 4-pole, Butterworth high pass filter with a cutoff
frequency of 250 Hz to eliminate local field potential contributions. Individual spike wave-
forms were then extracted using a −4σ threshold from the root mean square (RMS) of the
filtered wide band signal. Single units were then discriminated based on separation in prin-
cipal component space, and whether the collected waveforms contained at least 100 spikes
with a <3% violation of a 1.5 ms minimum refractory period. Only putative units with
Vpp greater than 40 µV were included for further analysis. The signal-to-noise ratio (SNR)
was calculated by dividing the peak-to-peak voltage (Vpp) of each unit by the RMS noise
of the corresponding channel [18]. Microelectrodes on SS devices were also grouped into
upper, middle, and lower thirds to explore potential depth-dependent effects on recording,
and to provide a more direct comparison to the MS arrays, which have microelectrodes
concentrated in the deeper regions of the cortex upon implantation (Figure 1).

2.4. Electrochemical Measurements and Analysis

Electrochemical impedance spectroscopy (EIS) measurements were performed in
anesthetized animals immediately following electrophysiological recordings using either
a Gamry Reference 600 Potentiostat (Gamry Instruments, Warminster, PA, USA) or CH
Instruments 604e series Electrochemical Analyzer/Workstation (CH Instruments Inc.,
Austin, TX, USA). EIS was performed using a 10 mV RMS sinusoidal signal versus external
Pt counter wire and Ag|AgCl reference electrodes. Signals were acquired over a range of
1 to 105 Hz at 10 points per decade. A custom MATLAB script (Mathworks, Natick, MA,
USA) was utilized to extract the impedance magnitude (|Z|) at 1 kHz [19].

2.5. Immunohistochemistry

Immunohistochemistry (IHC) preparation was performed as previously described.
Briefly, animals were euthanized using 200 mg/kg IP injection of sodium pentobarbital.
Toe and tail pinches were used to confirm unconsciousness, and a transcardial perfusion
was performed with PBS and followed by 4% paraformaldehyde (PFA) (Sigma-Aldrich, St.
Louis, MO, USA). Intact brains were extracted and submerged in PFA solution for at least
24 h prior to processing. Afterwards, the brain was sectioned around the implantation site
and placed in a 4% agarose solution (m/V) (Sigma-Aldrich, St. Louis, MO, USA) for better
handling. Axial slicing of the sectioned tissue was performed using a vibratome (VT 1000S,
Leica vibratome, Wetzlar, Germany) and 100 µm thick slices were collected using paint
brushes. Tissue slices were stored in PBS with 0.1% (w/v) sodium azide (Sigma-Aldrich, St.
Louis, MO, USA) at 4 ◦C until staining was performed.

Brain slices were blocked in 4% (v/v) normal goat serum (Abcam Inc., Cambridge,
UK) with 0.3% (v/v) Triton X-100 in 1× PBS with 0.1% sodium azide (Sigma-Aldrich,
St. Louis, MO, USA) for one hour. Afterwards, slices were incubated overnight at 4 ◦C
with primary antibody solutions (buffered solution with 3% (v/v) Triton X-100 in 1× PBS)
that target astrocytes (glial fibrillary acidic protein (GFAP)) and neuronal nuclei (NeuN)
(Abcam Inc., Cambridge, UK) as detailed in Table 1. The next day, slices were washed and
then incubated with blocking solution containing goat anti-chicken IgY (Alexa Fluor 647),
goat anti-rabbit IgG (Alexa Fluor 555) (1:4000 dilution) and DAPI (0.6 µM) (Abcam Inc.,
Cambridge, UK). Slices were then washed and mounted on glass slides with Fluoromount
aqueous mounting medium (Sigma-Aldrich, St. Louis, MO, USA).
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Table 1. Antibody staining.

Primary
Antibodies Dilution Secondary

Antibodies Dilution

GFAP (astrocytes) 1:500 Goat anti-chicken
IgG(Alexa Fluor 647) 1:4000

NeuN (neuronal
nuclei) 1:500 Goat anti-rabbit IgG

(Alexa Fluor 555) 1:4000

Stained slices were viewed under an inverted confocal microscope (Nikon Ti eclipse + A1R,
Nikon Instruments Inc., Tokyo, Japan) and controlled by Nikon Instruments Software
package (version AR 4.40.00). Images were collected at 2048 × 2048 transverse resolution
using a 10× objective. All hardware and software settings were conserved across individual
image acquisitions.

2.6. Statistical Analysis

Statistical analysis was performed in OriginPro 2021 (Origin Lab, Northampton, MA,
USA) and MATLAB R2020a (MathWorks, Natick, MA, USA). Unless otherwise noted, all
statistics were expressed as mean ± standard error of the mean. A test of proportions
z-test was utilized to compare the proportion of active microelectrodes between single
and multi-shank groups, and across depth-based groups (upper, middle, and lower),
respectively. When applicable, data were binned in two-week intervals and averaged
across microelectrodes. Mann–Whitney U tests were used to compare SS vs. MS data at
individual time points whereas the Kruskal–Wallis (nonparametric ANOVA) test was used
to explore depth-related differences between groups. Dunn’s tests were used as a follow
up to determine differences between groups analyzed in the Kruskal–Wallis ANOVA. For
all conditions, a p-value <0.05 was considered statistically significant.

3. Results

To evaluate the differences in recording capabilities between single and multi-shank
devices, electrophysiological data were recorded from rats implanted with either SS (n = 5)
or MS (n = 5) Neuronexus arrays. We observed that immediately following implantation,
approximately 64% of microelectrodes on SS arrays were able to record single unit activity,
whereas nearly all the microelectrodes on MS arrays exhibited activity (Figure 3A; 64%
vs. 99%; test of proportions z-test, p < 0.05). Similarly, MS arrays recorded nearly twice as
many single units from presumptive individual neurons as SS arrays immediately after
implantation (Figure 3B; 22.8 ± 2.2 vs. 12.0 ± 2.9, p < 0.05) and yielded a higher SNR as
well (Figure 3C). Vpp for MS arrays was higher in the initial week, but dropped by almost
four times during the subsequent recording periods (261 ± 29 µV at week 0 vs. 68 ± 9 µV
at week 2; p < 0.05); whereas the Vpp for SS arrays remained consistent throughout the
study period (Figure 3D). Within 4 weeks after surgery, however, MS array recording
performance rapidly declined, whereas SS array performance remained relatively stable.
The proportion of active microelectrode sites for SS arraysremained significantly higher
over the last 4 weeks of the study. While SNR for both types of devices did decrease slightly
over time, there were few differences seen between the two arrays, indicating that the
diminished recorded activity for MS arrays may stem from a lack of nearby active neurons,
rather than an inability to resolve the unit activity.

The electrochemical stability of the devices was evaluated using electrochemical
impedance spectroscopy, wherein the impedance magnitude of all microelectrodes across
all devices was measured weekly. At the 1 kHz frequency, impedance magnitudes were
between 0.4–2 MΩ (Figure 4B), well within the range of values often associated with the
ability for devices to resolve and record SUA. SS microelectrode sites exhibited an increase
in mean impedance at 1 kHz from in vitro (1.24 ± 0.05 MΩ) to 1 week post-implantation
(1.90 ± 0.67 MΩ) which is consistent with prior observations comparing in vitro and
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in vivo impedances [17,20]. Overall, our results are consistent with previous literature
investigating the chronic longevity of Neuronexus probes [21,22].
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Figure 3. Intracortical microelectrode array performance. The proportion of active microelectrodes
(A), number of units (B), signal-to-noise ratio (C) and peak-to-peak voltage (D) of single shank
(black) and multi-shank (blue) arrays. Data for active microelectrodes from both device configu-
rations were represented as a proportion (test of proportions z-test) and the rest of the data was
presented as mean ± SEM (Mann–Whitney U tests). * indicates p < 0.05, ** indicates p < 0.01, and
*** indicates p < 0.001.
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Lastly, we investigated potential depth-related differences in electrophysiological
recordings. SS microelectrodes were divided into upper, middle, and lower thirds based
on their depth upon implantation within the cortex. Because both types of MEAs were
implanted to a depth of ~1.5–2 mm, the lower third of SS microelectrodes corresponded to
the depth at which MS microelectrodes were implanted, approximately situated in layers
V/VI of the cortex [23–26]. Middle third microelectrodes were located roughly in layers
III/IV while the upper third of the microelectrodes were located in layer II–III.

Figure 5A shows that there was a significant difference (test of proportions z-test,
p < 0.05) between groups at all time points, except for Week 1 and Week 3. Immediately
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following implantation (Week 0), the proportion of microelectrodes exhibiting single unit
activity was higher in the middle group, followed by the lower and upper groups, re-
spectively (88% vs. 73% vs. 28%; test of proportions z-test, p < 0.05). Lower and middle
microelectrode groups exhibited higher single unit activity in the initial weeks, but gradu-
ally declined during the 8-week period. Towards the end of the study duration, upper third
microelectrodes showed significantly greater recorded activity than the middle and lower
third microelectrodes. It is important to note the virtually identical decay profiles between
the active MS microelectrode sites compared to the lower group of SS microelectrodes.
This observation suggests a depth-related phenomenon may underly the observed overall
differences between proportion of active microelectrodes from SS and MS arrays. Addi-
tionally, we did not observe notable differences in Vpp at varying depths, other than Week
0 (261 ± 29 µV for MS arrays vs. 106 ± 19 µV for upper group vs. 125 ± 21 µV for middle
group vs. 138 ± 36 µV for lower group; p < 0.05). Noise levels, however, were significantly
higher for the upper third microelectrodes compared to the MS microelectrodes at Week
2 (12.1 ± 0.4 µV vs. 6.4 ± 0.9 µV; p < 0.05) and Week 4 (11.3 ± 1.3 µV vs. 5.1 ± 0.6 µV;
p < 0.05) (Figure 5B), respectively, indicating potential shifts in noise after the resolution of
the acute phase of the foreign body response. Despite the differences in iridium activation
between MS and SS microelectrodes, the noise level for MS microelectrodes was similar to
the lower and middle third of microelectrodes on SS devices.
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Since the tissue response has long been considered a factor in chronic device perfor-
mance, we performed preliminary IHC focusing on the astrocytic (GFAP) and neuronal
nuclei (NeuN) profiles to assess whether or not deeper regions would exhibit more pro-
found tissue damage. For MS arrays, preliminary observations seen in Figure 6 indicate
that the astrocytic response was more prominent at superficial depths from the cortical
surface (~400 µm) as compared to the deeper regions (~1000 µm).

Likewise, the neuronal distribution was slightly more pronounced at superficial
depths as well. While these findings are preliminary, our observations are consistent with
previous studies that examined the foreign body response of silicon-based probes [22,27,28],
where superficial depths tend to show a more pronounced immunohistological response
than deeper regions. Since the MS microelectrode sites are located within deeper regions
in the cortex when implanted, the loss of activity may not be entirely related to a local
tissue response.
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4. Discussion

Efforts in recent years have aimed to improve the functionality and chronic perfor-
mance of intracortical MEAs through a variety of design considerations. Advances in
materials science have enabled devices comprised of soft or softening material [29–32]
or that are coated with biomimetic gels and neuroprotective agents [28,33,34]. Likewise,
innovations in fabrication techniques have facilitated the development of ultrasmall ar-
rays [15,35,36], as well as arrays with increased microelectrode density [37–39] and unique
mechanical/actuation properties. While the effects of these novel design changes have
been at the forefront of investigation for intracortical MEAs, the influence of location of
microelectrode sites has rarely been considered relative to performance. We observed
that while SUA recorded on SS probes remained relatively stable over the 8-week study
duration, activity recorded from MS probes rapidly declined over time. Upon further
analysis, we observed that SS microelectrodes in the lower third of the shank, implanted to
a similar depth as MS probes, exhibited this same severe drop off in activity (Figure 5A).
Our results are in close agreement with observations seen by Golabchi et al., which revealed
a similar depth dependence in active recording sites in the visual cortex [28]. Interestingly,
in that study, coating SS probes with the neuroadhesive protein L1 increased neuronal and
axonal density near the implant while reducing glial activation and effectively eliminated
the prominent decay of recording activity at the deeper implantation region [28]. Our his-
tological results however (Figure 6), suggest that the foreign body response, characterized
by increased concentrations of activated astrocytes, was less pronounced at deeper depths
and revealed the presence of neurons in proximity to the shank. While this observation has
been commonly shown in the literature, given that the geometric dimensions of the shank
taper towards the tip, it does suggest that there may be additional mechanisms involved in
the depth-dependent decrease in recorded activity.

One such pathway may be related to the anatomical inhomogeneity in the cortex.
Studies examining the cellular makeup and organization of the cortex have shown that more
superficial layers (II–III) contain a slightly greater density of neurons, specifically large-
bodied pyramidal neurons, as compared to deeper layers (V/VI) which contain neurons
with a larger number of dendritic extensions [23,26,40]. While our histology images do
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reflect this trend (Figure 6, NeuN), they do not fully explain the decay in recorded activity.
Immediately following implantation, MS arrays significantly outperformed SS arrays in
terms of recording metrics (Figure 3). Furthermore, in this time frame, microelectrodes
located in the lower and middle third of the SS recorded more activity than microelectrodes
situated in the more superficial layers, indicating that the density of neurons within cortical
layers may not entirely correspond to the level of electrophysiological activity that is
being recorded.

It is possible that the relative proportion of excitatory to inhibitory neurons may play
a role in the differences in recorded activity. Beaulieu [23] and Meyer et al. [26] demon-
strated that while the distribution of GABAergic (inhibitory) neurons was inhomogeneous
between layers, there was a concentration of inhibitory neurons in the upper third of
layer II–III and in layer V/VIA. Consequently, microelectrodes located in these zones
of inhibition may have experienced a substantial suppression in the recorded neuronal
activity. Additionally, this GABA-mediated inhibition, particularly in the deeper layers,
may be partially explained by the neuronal response to mechanical perturbation. Literature
investigating the cortical mechanotransduction involved in traumatic brain injury has
shown that a mechanical or stretch injury substantially increased GABA concentrations
in vitro, thereby reducing spontaneous single unit activity [41–43]. While intracortical
MEA implantation may be better modeled as a stab injury, micromotion-induced tissue
strain may produce similar mechanical responses. Because both the SS and MS arrays
are fixed at the skull, individual shanks can therefore be modeled as cantilever beams
where the floating tips (deeper microelectrodes) would be subject to greater displacement
forces [44]. This effect would be differentially observed along the length of the shank due
to the tapering shank geometry, which would potentially translate to a higher, and more
consistent, inhibitory response at deeper microelectrode sites. Furthermore, Magou et al.
demonstrated in vitro that non-injured neurons immediately adjacent to stretch-injured
neurons displayed acute hyperexcitability following injury induction, which may help
to explain the significantly higher proportion of active microelectrode sites of MS arrays
observed immediately after implantation.

5. Conclusions

In this study, we demonstrate that there may be a depth-dependent effect on recorded
single unit activity over time for both SS and MS intracortical MEAs. While numerous
mechanisms may be involved in this decline of activity, our results indicate that the
implantation depth of microelectrodes within the cortex resulting from particular designs
needs to be considered relative to the chronic performance characterization.
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