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Abstract: With the k-ε renormalization group turbulence model, the drag reduction mechanism of
three- dimensional spherical crown microstructure of different protruding heights distributing on the
groove surface was studied in this paper. These spherical crown microstructures were divided into
two categories according to the positive and negative of protruding height. The positive spherical
crown micro-structures can destroy a large number of vortexes on the groove surface, which increases
relative friction between water flow and the groove surface. With decreasing the vertical height of
the spherical crown microstructure, the number of rupture vortexes gradually decreases. Due to the
still water area causes by the blocking effect of the spherical crown microstructure, it was found that
the shear stress on the groove surface can be reduced, which can form the entire drag reduction state.
In another case, the spherical crown microstructures protrude in the negative direction, vortexes can
be generated inside the spherical crown, it was found that these vortexes can effectively reduce the
resistance in terms of pressure and friction. In a small volume, it was shown that the surface drag
reduction rate of spherical crown microstructures protrudes in negative directions can be the same as
high as 24.8%.

Keywords: turbulence intensity; vortex; microstructure; drag reduction rate; frictional resistance

1. Introduction

Nowadays microfluidics has been used in a wide range of areas, such as health detec-
tion [1], chemical pharmacy [2,3], precision sensors [4], etc. It is important to investigate
the property of microfluidics.

It is often found that using microstructure can provide better performance improve-
ment [5]. Past researches showed the resistance of a moving object at high speed in a fluid
is largely affected by the flow resistance of the object. The frictional resistance between
the surface of Airbus A340–300 and the air takes up to 48% in total resistance [6], which
reduces the energy efficiency. In order to reduce energy loss from the friction of a fluid,
some microstructures have been proposed to reduce the flowing resistance. In the 1980s, it
was first discovered that the non-smooth groove structures on the skin of sharks have a
positive effect on the surface drag reduction [7]. Since then, scientists from different disci-
plines have been investigating the microstructure surfaces inspired by some fast-swimming
animals [8], and studying the drag reduction mechanism of that microstructure.

In recent years, micro-riblets on the skin of Shark were found to be effective in the
reduction of flowing resistance. It was observed that these riblets on the surface of objects
can hinder the horizontal translation of vortexes through the surface, and reduced vortex
jets and outer turbulence [9,10] in the turbulent boundary layer of the surface. For these
riblets on the surface, the outer side decreases the exchange of momentum from the twisting
of vortexes in the outer layer of the boundary layer, and reduces the turbulent energy of
lateral flow vortexes [11]. Similarly, the riblet microstructure on the surface of objects can
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lift vortexes off the surface and keep them above the riblet tip. As a result, the area of the
surface with riblet microstructure which exposes in high-speed flowing fluid is limited,
and the turbulent flowing energy at the bottom of the riblet plate is significantly lower than
that of the whole riblet plate on the surface. Subsequently, a laminar layer is formed in the
riblet plate on the surface. It was showed that many factors are beneficial to reducing the
surface shear stress between flowing fluid and the surface structure of objects [12–14].

After decades of continuous exploration, the surface drag reduction technology using
bionic surface microstructure has been applied in many fields. Choi et al. [14] studied
the hydrodynamic mechanism of drag reduction with V-shaped grooves with numerical
simulation methods, and Figure 1 shows three kinds of micro-groove models. Lee [13]
focused on the wall flow state of a turbulent boundary layer in a semicircular groove, and
Samni et al. [15] also simulated the blade-shaped groove surface against a low Reynolds
number turbulent groove. From these results, it was found that the drag reduction rate of
the trench could reach a maximum of 11% when the trench height and clearance ratio is
around 0.5. In the research work on the fan-shaped grooves with different h/s, Bechert
et al. [16] observed that the best rate of drag reduction approximates to 6.5% when the
scale of h/s is 0.7.
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Due to their simple lateral interface structure, some typical two-dimensional groove
surfaces, such as V-shaped grooves, fan-shaped grooves, and blade-shaped grooves are
selected to thoroughly study surface microstructure models of their grooves in the flowing
direction [10]. However, the drag reduction rate of these surface microstructure models is
not very prominent. In order to improve the surface drag reduction rate, the effect of surface
hydrophobicity is proposed. Neihuis et al. [17,18] studied the surface microstructures of
300 kinds of plants, found spherical crown structures and waxy substances of micro-scale
exist on the rough surface of plants. The surface microstructure of plant surfaces shows
obvious hydrophobicity. Watson et al. [19] studied the microstructure of termite and cicada
wings, and found spherical crown-like protrusions are distributed on their wings. Those
microstructures of spherical crown-like protrusions can be proposed in a new direction to
improve the surface drag reduction rate.

In this paper, a new model combining the traditional V-shaped groove surface with a
uniformly distributed spherical crown structure was proposed, the turbulent drag reduc-
tion mechanism of these microstructures was analyzed in the following paper.

2. Materials and Methods
2.1. Theoretical Calculation Methods

It is generally believed that the valley bottom of the groove can effectively limit the
turbulence of the fluid flows and reduce the energy exchange between the fluid and the
wall, the V-shaped groove can achieve a good drag reduction effect. However, due to the
vortices that formed from the fluid flows through the tip of the V-shaped groove, the drag
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reduction effect of the entire structure will weaken. In this work, the RNG k-εmodel was
used to accurately simulate the influence of the vortices at the bottom of the groove.

The RNG k-ε is a model derived from the instantaneous Naiver-stokes equation with
the method of the re-normalization group [20]. Compared with other turbulence models,
the RNG k-εmodel has the following advantages:

1. The RNG k-εmodel has a more accurate description of the dissipation rate of turbulent
kinetic energy

2. The RNG k-ε model considers the influence of eddy currents on turbulence and
improves the accuracy of vortices flow

3. The RNG k-ε model provides an analytical formula for the turbulent Prandtl number,
which can more accurately simulate the problem of turbulent boundary layer flow.

The N-S equation is expressed as [21]:

∂

∂t
(ρui) +

∂

∂xj

(
ρuiuj

)
= − ∂p

∂xi
+

∂τij

∂xj
+ ρ fi, (1)

where ρ is the fluid density, p is hydrostatic pressure, ui and uj are velocity component
of a fluid element, τij is sheer stress, fi is unit mass force, xi and xj are components of
displacement, t is the time.

The RNG k-ε model has an improvement based on the standard k-ε equation. This equa-
tion has more components to be analyzed and the effect of turbulent vorticity is considered.

In the RNG k-ε model, the turbulent kinetic energy equation (k equation) is [21]:

∂

∂t
(ρk) +

∂

∂xi
(ρkui) =

∂

∂xj

[(
µ0 +

µt

σk

)
∂k
∂xj

]
+ Pk + ρε, (2)

where k is turbulent kinetic energy, µt is molecular viscosity coefficient, Pk is turbulence
generation term.

The turbulent energy dissipation rate equation (ε equation) is [21]:

∂

∂t
(ρε) +

∂

∂xi
(ρεui) =

∂

∂xj

[(
µ0 +

µt

σε

)
∂ε

∂xj

]
+ Cε1

ε

k
Pk − Cε2ρ

ε2

k
− Rε, (3)

where the turbulent viscosity coefficient is

µt = ρCµ
k2

ε
, (4)

where RNG k-ε model-specific tuning parameters:

Rε =
Cµρη3(1 − η/η0)

1 + βη3
ε2

k
. (5)

These constants in Equations (2) and (3): σk = 1.39, σε = 1.39, Cε1 = 1.42, Cε2 = 1.68,
Cµ = 0.0845, η0 = 4.38, β = 0.012 [22].

2.2. Surface Microstructure Modeling

In this paper, a special groove microstructure was selected for investigating the surface
drag reduction mechanism, which is a number of spherical crowns set on the surface of the
V-shaped groove. This special groove microstructure with the crown was improved from a
typical V-shaped groove similar to the triangular groove structure of shark skin size.

The dimensions of the V-shaped groove used in this paper were measured by other
researchers [23]. Based on these measurements, an averaging process was conducted.
In the following of this paper, the depth “h” of a special V-shaped groove is 16µm, and
the width “s” of a special V-shaped groove is 48 µm. To avoid overly damaging basic
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V-shaped groove from the spherical crown, the radius of the spherical crown on the surface
of the special V-shaped groove is set to be 4 µm in this paper. Bechert et al. [9] discovered
staggered three-dimensional blade grooves could be a better function of drag reduction. In
this paper, the layout of spherical crowns on the surface of V-shaped grooves is considered
in modeling the special groove structure. The model of spherical crowns with a radius of
4 µm are staggered and uniformly distributed on the surface of special V-shaped grooves at
a pitch of 30 µm. The height of the complete crown is defined as r, and the r is 4 µm. A series
of special V-shaped grooves are formed by changing the height of spherical crowns, and
Figure 2 shows ten different heights of crowns on the surface of special V-shaped grooves.
Each height of the crown constitutes a three-dimensional spherical crown microstructure.
When modeling, those bulge-like spherical crowns with positive protrusion height are set
to be positive, and the concavity like spherical crowns with negative protrusion height is
set to be negative at the same time.
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Figure 2. Ten different heights of spherical crowns used in this paper show in this illustration, the
heights of these crowns are from +4 µm to −4 µm. Each height of the crown constitutes a three-
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The flow region illustration in modeling about the special groove microstructure with
spherical crowns shows in Figure 3, coordinate axes Z, Y are the downstream direction and
vertical entry direction respectively, X is the direction of expansion of V-shaped groove
surface, and the scale of X:Y:Z is 288:640:900.
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The flow region with two different surface shows in Figure 3. The entire flow region
can be approximately regarded as a hexahedron, all boundary conditions can be set in the
six directions of the hexahedron [24]:

(1) The upper wall and the lower wall of this flow region are set as smooth surface,
because these two surfaces simulate the groove surface which needs to be smooth.
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(2) Two surfaces in the Z-direction are set as the inlet surface and the outlet surface.
The boundary condition at the inlet surface is set as a velocity condition, and the outlet
surface is set as free flow.

(3) The last two surfaces which perpendicular to the flow direction are set as the
symmetrical boundary.

This model simulates a small region in the entire flow field, using a symmetrical
boundary can ensure that the simulated region reflects the characteristics of the entire
flow field.

In order to evaluate the effect of V-shaped groove surface with a spherical crown
on the drag reduction mechanism, different flowing velocity is selected to calculate and
analyze with a finite element method, while the height of spherical crowns on V-shaped
groove surface would be changed. So, the turbulent kinetic energy and surface shear stress
on this grooved surface can be obtained and explored in detail [25].

3. Results and Discussion

In this paper, it is focused on discriminate the influence of the spherical crown groove
structure with different heights on the overall drag reduction rate of the surface. The
turbulent kinetic energy and the surface shear stress on the V-shaped groove surface with
a spherical crown of different height can be achieved, the drag reduction mechanism of
positive spherical crowns and negative spherical crowns will be respectively discussed,
and some difference about the drag reduction mechanism of two models can be defined.

3.1. Positive Spherical Crown Structure

The drag reduction rate of the traditional V-shaped groove model from the shark skin
surface is generally about 6.5%, which is undesirability. Based on this, the two-dimensional
V-shaped groove structure is partially modified in this model, which distributes positive
spherical crowns of different heights on the surface of the V-shaped groove. For the
spherical crown structure of the V-shaped groove surface, when the protruding direction
of the spherical crown is positive, the curve of the drag reduction rate with the flow
speed is shown in Figure 4. From this curve, the characteristic of drag reduction is a very
obvious correlation with the water flow velocity on the surface of a positive spherical crown
structure. For a V-shaped groove structure with a positive crown microstructure, it has
some small drag reduction effects in low flow speed. However, from the curve of Figure 4,
it can be observed that a V-shaped groove structure with positive crown microstructure
behaves counteraction for flowing liquid with a high speed, in this case, those positive
crowns produce and increase the resistance of flowing liquid.
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The drag reduction potential of the groove is determined by the effective penetration
height of the crowns on the surface [10]. Figure 5 shows the situation with a complete
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crown. Figure 5a is a contour of velocity near the groove surface. In this contour, it can
see that there are the same burst vortexes on the top of the crown. Figure 5b iconifies the
turbulent kinetic energy on the groove surface, it can be seen that the position of large peaks
coincides with the position of triangular groove, and the two small tips on each large peak
coincide with the position of two protruding spherical crowns on the surface of V-shaped
groove structure. From the contour of velocity and curve of turbulent kinetic energy near
the groove surface, it can be determined that those positive spherical crowns cause a burst
of flow vortexes, which result in a large number of secondary vortexes. These vortexes
increase the interaction between the fluid and the surface of the wall, which induces an
increase in the frictional resistance of the wall surface.
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In addition, due to the blocking effect of the spherical crown on the water flow, there is
a still water area within a certain range behind the crown, which shows in Figures 6 and 7,
the flow velocity in this still water area decreases sharply, and the surface shear stress
also decreases accordingly. Because of the low turbulent kinetic energy, it can be judged
that the turbulent motion of water stabilizes than another place. In this area, the frictional
resistance plays a key role, and the wall shear stress here is obviously reduced, which
decreases frictional resistance.
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Figure 7. The velocity on the groove surface, and partially enlarges the contour of one crown.

In Figures 6 and 7, the drag reduction rate of the positive spherical crown is determined
by both the pressure resistance from the blocking of flow and the frictional resistance which
performance as the area of the still water area. When the flow velocity becomes slow, the
frictional resistance begins to be the main factor affecting the drag reduction rate. In this
situation the still water area is always large, so a V-shaped groove structure with a positive
spherical crown has relatively higher drag reduction. When the flow velocity increases, the
effective height of the spherical crown plays a crucial role in blocking the vortex on the
surface, which increases the pressure resistance, and the drag reduction rate of the groove
structure enters into the stage of increasing flowing resistance in Figure 4.

The influences of different height of positive spherical crown on V-shaped groove sur-
face have some difference for the flow velocity and the drag reduction rate, Figure 8 shows
the relationship between groove surface and the drag reduction ratio of spherical crowns
with different positive protruding heights. The different height of positive spherical crowns
mainly affects the ability of the groove to breaking vortexes, and its specific manifestation
is the intensity of the turbulent kinetic energy on the groove surface. Stronger the turbulent
kinetic energy, the greater the friction between broken vortexes and groove wall surface,
and the greater its friction resistance is. The prominent turbulent kinetic energy generates at
the top position of the complete hemispherical crown structure, which shows in Figure 9a,
indicates that there are a large number of broken vortexes. these vortexes can increase
the frictional resistance on the surface. As crowns’ height decreases, the turbulent kinetic
energy shows in Figure 9 decreases, which means there are not many broken vortexes
to create frictional resistance. The still water area behind the crown dominates the drag
reduction processing of the V-shaped groove structure with a positive spherical crown, so
the drag reduction rate of the groove can be gradually increasing.
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3.2. Negative Spherical Crown Structure

To compare with the positive spherical crowns’ microstructure, the drag reduction
effect of the V-shaped groove structure with the concavity microstructure named negative
spherical crown is explored. When the protruding spherical crown on the surface of the
V-shaped groove becomes concavity as the negative spherical crown, the drag reduction
effect is completely different from the positive spherical crowns’ microstructure at the
same flowing speed. The curve of the drag reduction rate with the flow velocity shows
in Figure 10. It is very clear that the drag reduction rate decreases with the speed increasing,
and has positive dependence on the flowing velocity. Comparing with the groove surface
of the positive crown, the value of the drag reduction rate of the V-shaped groove structure
with the negative spherical crown is much higher at the same flowing speed. In Figure 10,
when the flow velocity approaches 8 m/s, the drag reduction rate is close to the maximum
of 25%. From a general point of view, after this maximum value, the drag reduction rate
decreases with the flow velocity increasing but still maintains a high drag reduction rate.
The drag reduction rate of a V-shaped groove structure with a negative spherical crown far
exceeds the conventional V-shaped groove.
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negative coronal protrusions.

In order to investigate the drag reduction effect of the negative spherical crown on
the groove surface, an observation line which the position as same as Figure 11 is set
along the direction of the water flow, and it is used to observe various parameters of the
water flow after passing through the negative spherical crown. The way negative spherical
crowns affect the flow vortexes near the surface is very different from the traditional V-
shaped groove surface. The intensity of turbulent kinetic energy and water flow velocity is
observed by the observation line. It can be clear that vortexes play an important part in
the drag reduction effect. Figure 11 shows the vortex at the location of the negative crown
microstructure on the V-shaped groove surface. When the water with some speed flows
through the negative spherical crown, vortexes form in the spherical crown. A part of the
water flows through vortexes and reflows with the main fluid. When two parts of the fluid
combine to a flow velocity peak, which shows in Figure 12a, the turbulent kinetic energy
can also be used to comprehend the state of flowing water on the surface of the negative
crown microstructure. Figure 12b translates the relationship between turbulent kinetic
energy with the flow direction. Combining Figures 11 and 12, in the position of the negative
spherical crown, the flow velocity roses sharply and the turbulent kinetic energy has a
sharp decline. The sharply decreasing turbulent flow energy shows the water flow near the
negative spherical crown has been converted from turbulent to laminar. This mechanism
plays a crucial role in the drag reduction effect of negative crown microstructure.
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In the field of hydrokinetics, it is well known that the wall surface resistance is mainly
composed of two aspects of friction of vortexes with the surface and the pressure resistance
of the water with the surface. Because of the existence of riblets, vortexes locate above the
groove, interacting only with the peak of the grooved surface, and lateral flow velocity
pulsation in the groove is much smaller than the lateral flow of riblets’ top [13]. In this
paper, the flowing water in the groove valley is relatively close to the state of laminar flow.
Due to the existence of a negative spherical crown, the momentum exchange at the bottom
of the groove valley further reduces, which led to the reduction of friction resistance on the
groove surface. In addition, vortexes form in negative spherical crown effectively convert
the sliding friction between water flow and the wall surface into rolling friction, which also
reduces the friction resistance from another aspect.

It is generally believed that the increase in wetting area in the groove surface structure
increases the pressure resistance [10], but this mechanism has been changed due to the
negative crown microstructure on the surface of the V-shaped groove. It is also mentioned
earlier that the turbulent kinetic energy on the surface with a spherical crown indicates the
boundary layer is conformable to the laminar structure. According to Bernoulli’s theorem,
for the flowing water which is on the near-surface, the higher the velocity, the lower the
pressure. In the situation of the negative crown, the pressure resistance is much smaller
than the theoretical growth pressure resistance which is caused by the increase in the
effective contact area. So, the negative spherical crown microstructure on the surface of
the V-shaped groove effectively reduces the resistance from both the frictional resistance
and the pressure resistance. Because of this, the drag reduction effect of the negative crown
microstructure is beyond expectations in this paper.

The negative spherical crown microstructure of the V-shaped groove structure has a
very clear effect of drag reduction, and Figure 13 shows the relationship between the flow
velocity and the drag reduction rate on the groove surface of the negative spherical crown
structure with different depths. The negative protrusion depth of the spherical crown
mainly affects the size of the vortex created inside the crown. The interaction between
vortexes and negative spherical crown is rolling friction, which is much smaller than sliding
friction. As the depth of the crown gradually decreases, In Figure 14 it can be seen that
the size of vortexes gets smaller following the decrease of the depth of the crown. When
the depth of the crowns decreases to a critical depth just like Figure 14e, vortexes could
completely disappear. During this process, the rolling friction of vortexes also transform to
sliding friction. This transformation increases the friction between the water flow and the
wall. As for the pressure resistance of the water with the surface, the pressure increases
when the depth of the negative crown decreases. The contour of the pressure of the surface
shown in Figure 15 indicates the increase of drag reduction rate of negative crown V-shaped
groove microstructure.
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Figure 14. From (a–e) the longitudinal height of the negative crown is arranged in order from deep
to shallow. It can be seen that as the longitudinal height decreases, the size of vortexes in the crown
gradually decreases. Surface drag reduction.
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4. Conclusions

In this paper, the flow characteristics of water in different V-shaped groove surface
structures with the spherical crown microstructure was investigated. The effect of different
spherical crown structures on drag reduction rates was analyzed by comparing the surface
Reynolds shear stress, fluid velocity, near-wall turbulent kinetic energy and the distribution
of intensity of vortexes. it leads to the following conclusions:

(1). Both the positive and negative protrusions of the spherical crown structure
contribute similarly to reducing surface resistance, but there are also some differences. Two
kinds of protrusions have a higher drag reduction effect for the flowing liquid with a low
speed, and the drag reduction rate of two microstructures decreases with the increasing
speed of flow water.

(2). The drag reduction effect of the negative spherical crown is generally better than
the positive spherical crown microstructure.

(3). The microstructure of the spherical crown is protruding positive, the surface drag
reduction rate of the spherical crown which the crown height +4µm is the lowest. As the
height of the spherical crown decreases, the drag reduction rate of the groove surface also
increases.

(4). The structure of the spherical crown is protruding negative, the surface drag
reduction rate of the spherical crown which the crown height −4µm is the highest. As
the height of the spherical crown increases, the drag reduction rate of the groove surface
also increases. The negative spherical crown structure has good surface drag reduction
characteristics, and the highest drag reduction rate can reach 24.8%.
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