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Abstract: The liquid crystal-based method is a new technology developed for flow visualizations and
measurements at microscale with great potentials. It is the priority to study the flow characteristics
before implementation of such a technology. A numerical analysis has been applied to solve the
simplified dimensionless two-dimensional Leslie–Ericksen liquid crystal dynamic equation. This
allows us to analyze the coupling effect of the LC’s director orientation and flow field. We will be
discussing two classic shear flow cases at microscale, namely Couette and Poiseuille flow. In both
cases, the plate drag speed in the state of Couette flow are varied as well as the pressure gradients in
Poiseuille flow state are changed to study their effects on the flow field distributions. In Poiseuille
flow, with the increase of applied pressure gradient, the influence of backflow significantly affects the
flow field. Results show that the proposed method has great advantages on measurement near the
wall boundaries which could complement to the current adopted flow measurement technique. The
mathematical model proposed in this article could be of great potentials in the development of the
quantitatively flow measurement technology.

Keywords: liquid crystal; shear flow; director field; flow measurement; flow visualization

1. Introduction

Thermotropic liquid crystals (LCs) are a mesophase exhibiting the appearance of an
anisotropic liquid whose molecules represent in rodlike or discotic shape [1]. Its unique
features are the temperature dependent nature, whose phase transitions are controlled by
the temperature. For thermotropic LCs, the liquid crystals in nematic phase attracts tremen-
dous attention [2]. Among them, the rod like molecules with large length-to-diameter ratio,
and no long range order in the molecular centroid are the most common ones. Due to
the presence of the rod-shaped molecules, the fluid translational motion is coupled with
the internal orientational motion of molecules. Hence, their flow properties can be much
richer than simple Newtonian fluids. Conversely, the change of molecular orientation order
affects the flow in return. This coupling has important practical consequences upon the
application of LCs [3]. Therefore, investigations on mechanism of hydrodynamic shear
induced reorientation of the liquid crystal molecules are necessary. The research of the
T.G. Anderson team focuses on the physical change of liquid crystal fluid under microfluid
channel with pressure gradient [4]. The team studies the transformation process of the
two states of liquid crystal fluid by numerical calculation and compares the results of the
transition of the flow state with the experiment of the Sengupta team [5]. The dimensionless
equation is obtained through normalization, which makes the results more intuitive and
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more universal. In addition, the elastic free energy of liquid crystals in different states is
presented. The reasons for the change of liquid crystal flow state are well explained by the
comparison of the elastic free energy [5]. Compared to the fluid flow at marcoscale, flow at
microscale (mostly in microchannels here) is fundamentally different due to the limited
inertial effects and dominating viscous stress and interfacial tension.

In this paper, we choose 4-Cyano-4′-pentylbiphenyl (5CB) as which stays in nematic
phase under room temperature. 5CB is a type of nematic liquid crystal (NLC) called
“calamitics” [6] which represents the rod-like molecular structure. The structure can be
observed experimentally using the polarized microscopy configuration. Recent literatures
have been focusing more on the characteristic response to the electric field [7–10]. The
well-known orientation Fredericks transition has been extensively studied and applied in
practical applications [11]. Furthermore, the combination of the delicate microscale fluidic
control with LCs, especially the nematic LCs has allowed the possibility of topological
studies [12], phase transitions [13–16]and the unique stripe structure [17,18]. More impor-
tantly, it also leads to the diverse application in fields of microfabrications, 3D printing
and bioengineering [12,13,19,20]. Nonetheless, very few works have been reported on
the reorientation influenced by the hydrodynamic pressure at microscale [21–23]. Cur-
rently, the most commonly used model to study directional vector deflection and flow
of nematic liquid crystals is the Leslie–Ericksen equations (L-E equation). We apply the
Leslie–Ericksen formalism for nematodynamics to investigate the shear flow model. First,
we describe the model of the liquid crystal by means of L-E equations [24]. The analysis
is restricted to the steady state deformations of the nematic phase where α3/α2 > 0. The
flow behavior of nematic liquid crystals can be generally categorized into two major types
through the signs of the two Leslie viscosities α2 and α3. If α3/α2 > 0, then the liquid
crystal is flow aligning, otherwise it is flow tumbling [25]. Next, we addressed two typical
steady 2D cases: the shear-driven (Couette) and the pressure-driven (Poiseuille) flow of
nematic liquid crystal in a parallel microchannel respectively. Then we applied justified
assumptions for simplification purpose before solving them numerically. The director
profile is calculated for various pressure gradients and shear stresses. For pressure-driven
flow cases, we find that under the limitation of strong anchoring and weak flow effects,
flow alignment is not presented. In fact, the director field is majorly determined by the
boundary conditions. For other cases, the results clearly show the influence of flow condi-
tion on reorientation of director field, which provide guideline for flow measurements at
microscale [26–28].

2. Mathematical Models

There are two major differences considering the hydrodynamics of simple Newtonian
fluids and that of the LCs. First, LCs’ molecules can be rotated by the pressure gradient due
to its unique geometries. Second, the equilibrium free energy of LCs is more complex. This
coupling between the elastic energy and the flow, which is called backflow, leads to rich
hydrodynamic behaviors. In order to seize the main physical properties of LCs, the details
of the molecules are neglected and the ideal approximation is processed. For example, for
nematic LCs, LC molecules are often idealized as a long rod with a symmetric head and
tail, and hence uniaxial symmetry. As mentioned earlier, LCs molecules are anisotropic,
therefore we need to introduce variables called order parameter to describe the alignment
and orientation of LCs. We adopt the well accepted Leslie–Ericksen model to describe the
director orientation and LC flow. In the continuum theory, we define the orientation of the
LCs at a point by a unit vector n called the director.

The full equation of nematodynamics consists of

Vi,i = 0 (1)

ρ
→
v i = ρFi − (p + WF),i + g̃jnj,i + Gjnj,i + t̃ij,j (2)
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(
∂WF
∂ni,j

)
j

− ∂WF
∂ni

+ g̃i + Gi = λni (3)

Representing mass, energy, and momentum conservations respectively. We consider a
steady 2D plane Poiseuille–Couette flow of nematic liquid crystal in a microfluidic channel
with two parallel boundaries and a thin film geometry. The upper plate travels along the
x direction at a constant speed V (shear-driven flow) or a constant pressure gradient is
applied within the LCs (pressure-driven flow) as shown in Figures 1 and 2 respectively.

Figure 1. Schematics and description of the mathematical model of a nematic liquid crystal in the
Couette flow. The upper plate is moved to the right at a constant velocity.

2.1. Couette Flow

It will be assumed that the director and the velocity take the forms

→
n = [cos θ(z), 0, sin θ(z)] (4)

→
v = [v(z), 0, 0] (5)

We now investigate the coquette flow at a fixed distance, d = 2h where the lower plate
is at rest and the upper plate is moving at a constant velocity V as shown in Figure 1. Three
assumptions are listed as follows (Macsithigh, G. P, and P. K. Currie, 1977):

The one-constant approximation applied to the Oseen–Zocher–Frank elastic free
energy equation. In details K11 = K22 = K33 ≡ K, where K11 is the splay coefficient, K22 is the
twist coefficient, and K33 is the bend coefficient. (Currie, P. K., and G. P. Macsithigh, 1979).

Parodi’s relation [29]
α6 = α5 + α3 + α2 (6)

The zero viscosity coefficient α1 = 0.
From the (2), (3) and the assumptions, it follows that

dv
dz

=
c

g(θ)
(7)

2K
d2θ

dz2 − c
[γ1 + γ2 cos(2θ)]

g(θ)
= 0 (8)

g(θ) =
1
2
[α5 − α2 + α4 + 2(α3 + α2) cos2 θ] (9)

For simplicity we nondimensionalize the equations by using the scaling lengths with
half-width of the channel h, the velocity v with v = V/2, and all viscosities γi αi with α4.
The dimensionless governing equations become:

d2θ

dz2 =
Vhα4

4K
(α5 + 1 + α2 + 2α3)(γ1 + γ2 cos 2θ)

α5 + 1− α2 + 2(α2 + α3) cos2 θ
(10)
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d2v
dz2 =

(α5+1+α2+2α3) sin 2θ

[α5 + 1− α2 + 2(α2 + α3) cos2 θ]2
θ′ (11)

where γ1 = α3 − α2 , γ2 = α6 − α5, the αi are constant viscosities for the NLC. The director
is strongly anchored parallel to the plates at the boundaries (Leslie, F.M. 1979), and that
the solution for Φ is symmetric in z. A more detailed derivation process can be refereed to
Appendices A and B for Couette flow.

We applied the boundary conditions as: v(−1) = 0, v(1) = 2, θ(−1) = θ(1) = P/2.

Figure 2. Schematics and the mathematical description of a nematic liquid crystal in the Poiseuille flow.

2.2. Poiseuille Flow

Here we consider the steady 2D Poiseuille flow in a microfluidic channel −h ≤ z ≤ h
as schemed in Figure 2. To investigate a typical, two-dimensional shear flow behavior, the
director and the velocity take the forms

→
n = [sin φ(z), 0, cos φ(z)] (12)

→
v = [v(z), 0, 0] (13)

In order to simplify the boundary conditions, it is assumed that Φ is the angle between
z axis and the molecule axis (Figure 2). We use the first two assumption α6 = α5 + α3 + α2
and K1 = K3 = K. Therefore, the following formulas can be obtained

dv
dz

=
c

g(φ)
(14)

2K
d2φ

dz2 + c
[γ1 − γ2 cos(2φ)]

g(φ)
= 0 (15)

g(φ) =
1
2
[2α1 sin2 φ cos2 φ + (α5 − α2) cos2 φ + (α3 + α6) sin2 φ + α4] (16)

where γ1 = α3 − α2 , γ2 = α6 − α5, the αi are constant viscosities for the NLC.
To nondimensionalize the equations, we adopted the following strategies: scale the phys-

ical length with the half width of the channel h, the velocity v with v = 2Gh2/3α4 (Anderson,
T. G. et al., 2015), and all viscosities γi, αi with α4. The dimensionless form of the governing
equations become,

dv
dz

= − 3z[
2α1 sin2 φ cos2 φ + (α5 − α2) cos2 φ + (α3 + α6) sin2 φ + 1

] (17)

φ′′(z)
γ1 − γ2 cos 2φ

[
2α1 sin2 φ cos2 φ + (α5 − α2) cos2 φ + (α3 + α6) sin2 φ + 1

]
= gz (18)

where g = Gh3/K is a dimensionless pressure gradient.
It is assumed that the director is strongly anchored vertically and uniform to the plates

at the boundaries before the flow turned on and the solution for Φ is symmetric in z.
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The director profile across the dimensionless channel width −1≤ z ≤ 1 under strong
anchoring and g = 25 is calculated in Figure 3a to compare with the results obtained
by Anderson team (Anderson, T. G. et al., 2015) in Figure 3b. The calculated deflection
angle of liquid crystal is in good agreement with the results in the research content of
Anderson team.

Figure 3. (a) Weak flow director profile across the dimensionless channel width −1≤ z ≤ 1 under
strong anchoring and g = 25 (Anderson, T. G. et al., 2015). (b) The calculated director profile of strong
anchoring at g = 25.

3. Results

We compute solutions of the system by choosing parameters for the liquid crystal 5CB
(Sengupta, A, et al., 2013) in the nematic phase. The dimensionless viscosities chosen are
α1 = −0.1594, α2 = −0.9859, α3 = −0.0535, α5 = 0.7324, α6 = −0.3944, K = 4× 10−12 N;
and γ1 = α3 − α2, γ2 = α6 − α5. Equation is solved using fourth-order Runge–Kutta
integration and the shooting method.

3.1. Couette Flow

In this section, we conducted a systematic parametric investigation on velocity and
director fields of a nematic liquid crystal under the shear controlled by the velocity V of
the upper plate. The height of the channel was setup as 10 µm. The computations were
carried out for different velocities of the upper plane.

Figure 4a shows director profiles when the velocity of the upper plate is 10 µm/s,
100 µm/s, 250 µm/s, and 350 µm/s respectively. It can be seen in Figure 4a that the director
profile is almost an axisymmetric parabola at the center. With increasing of the velocity,
the angle of the director becomes smaller which is more flow orientated. In Figure 4b, the
mid-plane angles ∅m are plotted as functions of velocity V. We found that the mid-plane
angles ∅m tend to ∅c=arctan[(α3/α2)0.5] (∅c= 0.22, in this article) with the increasing
velocity, which agrees with the continuum theory proposed by Leslie and Ericksen [30].
Leslie defined the Leslie angle as: “for which there is no hydrodynamic torque on the
director in simple shear flow of an infinitely thick sample”. It is found in this article that
the Leslie angle still exists in microchannel.

3.2. Poiseuille Flow

Figure 5 shows the solutions at Poiseuille flow with the change of dimensionless
pressure gradient g. It can be found that for both weak flow and strong flow anchoring
boundary conditions the solutions exist for all flow rates (Figure 5). From T.G. Anderson’s
founding on the elastic energies of the two solutions, there is a critical dimensional pressure
gradient g*. The energy is lower when the value of g is lower. Therefore, it explains
that for cases of g < g*, the weak flow would occur, while for the cases of g > g* the
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strong flow solution would be expected. In this part, g* is around 40 for strong anchoring
boundary condition.

Figure 4. (a) Director profiles at different velocities of the upper plate. (b) The maximum directional angle at different
velocities of the upper plate.

Figure 5. Strong and weak flow solutions at different dimensional pressure gradients. (a–d) correspond to the condition of
g = 5, 10, 20, and 25 respectively.

Figure 6 shows weak flow solution at g = 10 and g = 25. We find out that the solution
to the anchoring-dominated case has two regions symmetrically placed around the channel
centerline. Near the walls and at the centerline, the director follows the strong homeotropic
anchoring condition. The velocity profiles are approximately parabolic. The greater the
dimensionless pressure gradient is, the greater the velocity and the perturbation of the
director are.
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Figure 6. Velocity profiles and director fields at strong anchoring condition. (a–c): The solution of strong anchoring at g = 10.
(a) Velocity distributions over the channel width; (b) angle of the director; (c) director distributions over the microchannel.
(d–f): Director and flow distributions within the microchannel under the pressure of g = 25.

Strong flow solutions at g = 50 are plotted in Figure 7, where we see more complex
phenomena. The velocity front is a sharper parabolic shape and the director profile is also
symmetrical. This differs from the weak flow, where the direction filed is mostly aligned
with the flow, regulated by the homeotropic anchoring only near the walls. Therefore, when
the pressure gradient further increases, the nematic profile evolves into a flow-aligned
state where the director field is majorly flow-aligned. For weak flow, the director orientates
normally to the flow orientation at the center w while for strong flow, the director aligns
along the flow direction at the center region.

Figure 7. The solution of strong solution at g = 50. (a) The velocity profile; (b) angle of the director; (c) the distribution of
the director at g = 50.

Above, we discussed two kinds of boundary conditions. However, during numerical in-
vestigations, a third occurrence may happen, arising from the boundary condition Φ(−1) =
π instead of the condition Φ(−1) = −π. The boundary conditions drive the director to
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rotate through an angle + π across the channel, but the flow near the wall pushes the
director in the opposite direction.

4. Discussion

We have calculated the derivative of the directional profile with respect to the channel
positions, which represents the sensitivity of the proposed method for flow measurement,
as shown in Figure 8. The results indicate that for both the Couette flow and Poiseuille
flow, the maximum sensitivity always occurs near the wall boundary (that is the two
plates), where the traditionally adopted tracing particle-based measurement technique
(namely particle image velocimetry) shows vulnerability. In the cases of Couette flow,
we can always find the highest sensitivities near the two plates (see Figure 8a,b) and the
lowest sensitivity in the middle region. Similarly, we obtained the maximum sensitivities
near the two boundaries (Figure 8c,d). However, when it is under the relatively weak
pressure gradient for Poiseuille flow (g = 10~30), Figure 8c indicates a good sensitivity
can be obtained in the middle region while for a strong flow case (Figure 8d) g = 50), we
get a similar conclusion with scenario in (a) and (b) that the method fails to sense the
flow in the center region. Overall, in all of the cases, the region near the boundary favors
the measurement sensitivity hence offering the privilege over conventional particle based
measurement method. We do believe the no slip boundary condition and the homeotropic
anchoring condition near the boundary contribute to the large direct field gradient and
hence the relatively high sensitivity.

Figure 8. Positional sensitivity of the directional profile of the LC flow. (a) and (b) are sensitivities of the LC in Couette flow
at various velocities of the upper plate; (c) and (d) represent the sensitivities at various dimensional pressure gradient in
Poiseuille flow.

5. Conclusions

In this paper, we have numerically studied director field and velocity field of two-
dimensional Poiseuille flow and Couette flow. The director profile was calculated for
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various pressure gradient and shear stress. By solving simplified nondimensional L-E
equations we obtained numerical results of pressure-driven flow and shear-driven flow.

Firstly, for pressure-driven flow, we find that (i) Limited by weak flow effects, flow
alignment does not occur and the director orientation is influenced predominantly by the
boundary conditions. In such cases, the velocity profile is like a parabola and symmetric
about z = 0. (ii) When the pressure gradient arrives at a value, a qualitative change in the
director profile is given explicitly.

Flow alignment occurs and orientational boundary layers exist near the planes. For
shear-driven flow, (i) the results show that if the velocity is less or equal to the threshold, the
director field is similar to a parabola and the velocity field is presented in a linear manner
and the mid-plane angles ∅m tend to ∅c = arctan[(α3/α2)0.5] with the increasing velocity.
(ii) When the velocity exceeds the threshold, the profiles will lose its stability. Vthreshold
is about 10−3–10−4 m/s (depend on different parameters). If the velocity exceeds the
threshold, the director deviates from the plane of shear. The deformation takes a form of
director rotation about the axis perpendicular to the layer plane. As a result, transverse
flow arises. The method of nondimensionalizing and the numerical approach proposed in
this article will be a potential technique in liquid crystal research. The coupling influence
what we analyze is might be able to give clues to the flow dynamics.

Flow measurement by means of the LC reorientation has been proposed recently and
in this article, we have theoretically analyzed the viability of such method in flow sensing.
The results show that the proposed method has great advantages for sensing near the
boundaries which could complement to the technique currently adopted. In this article, we
also showed that the orientation angle of the LC follows a non-linear relationship to the
flow field distribution. The mathematical model proposed here could be of great potentials
when the quantitatively measurement strategy is to be developed for practical applications.
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Appendix A

It will be assumed that the director and the velocity take the forms

→
n = [cos θ(z), 0, sin θ(z)] (A1)

→
v = [v(z), 0, 0] (A2)

Clearly, the constraints (1) are satisfied and because of the dependence of z on n and v,
the governing LE dynamic equations in the absence of any forces F and G become

0 = g̃jnj,i − ( p̃ + WF)i + t̃ij,j (A3)

(
∂WF
∂ni,2

)
,2
− ∂WF

∂ni
+ g̃i = λni (A4)
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where WF is the usual nematic free energy density. The non-zero contribution to the rate of
strain tensor A and vorticity tensor W are

A12 = A21 =
1
2

v′(z), W12 = −W21 =
1
2

v′(z) (A5)

where a prime denotes differentiation with respect to z.

t̃ij = α1nk Akpnpnj + α2Ninj + α3ni Nj + α4 Aij + α5nj Aiknk + α6ni Ajknp (A6)

g̃i = −γ1Ni − γ2 Aipnp (A7)

Equation (7) is
∂

∂x
(P + WF) =

∂t̃12

∂z
(A8)

∂

∂z
(P + WF) = g̃ini,y +

∂t̃22

∂z
(A9)

∂

∂z
(P + WF) = 0 (A10)

It is clear from Equations (12) and (14), and the dependence of t̃12 upon z, that

P + WF = x
∂t̃12

∂z
+ f1(z) (A11)

Inserting (15) into (13) shows that

t̃12 = az + c (A12)

For some constants a and c because the right-hand side of (10) is a function of z only.
(taking the derivative of (12) with respect to z and the derivative of (10) with respect x will
also lead to the same result.) Therefore

P + WF = ax + f1(z) (A13)

It is now seen from (10) and (14) that

f1(z) = p0 + t22 +
∫

gini,jdz (A14)

For some constant p0, and hence, by (12), the pressure takes the form

P = −WF +
∂t̃12

∂z
x + P0 + t̃22 +

∫
g̃ini,zdz (A15)

Using the form for t̃12 given by (7), the result (13) may be formulated conveniently as

g(θ)
dv
dz

= az + c (A16)

where
g(θ) =

1
2
[2α1 sin2 θ cos2 θ + (α5 − α2) sin2 θ + (α3 + α6) cos2 θ + α4] (A17)

Φ is the angle between z axis.
Equation (3) now has been reduced to (17), the pressure being available via (16) to

allow this reduction.
Our attention is now turned to the remaining Equation (4). Using

WF =
1
2
(K1 − K2 − K4)(ni,i)

2 +
1
2

K2ni,jni,j +
1
2

K4ni,jnj,i (A18)



Micromachines 2021, 12, 28 11 of 14

The equations are simplified to

K2n1,22 + (K3 − K2)(n2
2n1,2),2 + g̃1 = λn1 (A19)

K1n2,22 + (K3 − K2)[(n2
2n2,2),2 − n2np,2np,2] + g̃2 = λn2 (A20)

The Lagrange multiplier λ can be eliminated from these two equations by multiplying
(20) by n2, (21) by n1 and then subtracting the resulting equations to produce, after much
tedious algebra, the single equation

K3n2n1,22 − K1n1n2,22 + g̃1n2 − g̃2n1 = 0 (A21)

Further substitutions for gi and ni using (8) and (1) finally reduce this equation to

2 f (θ)
d2θ

dy2 +
d f
dθ

(
dθ

dz
)

2
− c

[γ1 + γ2 cos(2θ)]

g(θ)
= 0 (A22)

where
f (θ) = K1 cos2 θ + K3 sin2 θ ≥ 0 (A23)

This last inequality being valid because K1 and K3 are necessarily non-negative.
The flow v(z) in the z-direction may be induced in a sample of nematic liquid crystal

confined between two parallel plates by the horizontal motion of the upper plate. In this
case, the pressure p given by Equation (16) may be independent of z so that the constant a
can be set to zero. Equations (3) and (4) then become

dv
dz

=
c

g(θ)
(A24)

2 f (θ)
d2θ

dz2 +
d f
dθ

(
dθ

dz
)

2
− c

[γ1 + γ2 cos(2θ)]

g(θ)
= 0 (A25)

where γ1 = α3 − α2, γ2 = α6 − α5, the αi are constant viscosities for the NLC.
These two equations form the key starting point for the two shear problems in the

following problems subsections.

Appendix B

The energy equation is:

ρ
→
vi = ρFi − (p + WF),i + g̃jnj,i + Gjnj,i + t̃ij,j (A26)

And the conservation for the momentum is:(
∂WF
∂ni,j

)
j

− ∂WF
∂ni

+ g̃i + Gi = λni (A27)

We can further simplify the above two equation since we focus on 2D flow and we do not
have the external force Fi and generalized volume force Gi, therefore the equation becomes

0 = g̃jnj,i − ( p̃ + WF)i + t̃ij,j (A28)(
∂WF
∂ni,2

)
,2
− ∂WF

∂ni
+ g̃i = λni (A29)

The term p̃ can be expressed as

p̃ = −WF +
∂t̃12

∂z
x + P0 + t̃22 +

∫
g̃ini,zdz (A30)
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Thus, the energy equation can be obtained as

g(θ)
dv
dz

= az + c (A31)

where
g(θ) =

1
2

[
2α1sin2θcos2θ + (α5 − α2)sin2θ + (α3 + α6)cos2θ + α4

]
(A32)

The Equation (4) can be simplified using the equation(
∂ωF
∂ni,j

)
,j

− ∂ωF
∂ni

= (K1 − K2)nj,ji + K2ni,jj + (K3 − K2)
(

njnkni,k

)
,j
− (K3 − K2)njnk,jnk,i (A33)

Hence, we have

K2n1,22 + (K3 − K2)
(

n2
2n1,2

)
,2
+ g̃1 = λn1 (A34)

K1n2,22 + (K3 − K2)[
(

n2
2n2,2

)
,2
− n2np,2np,2] + g̃2 = λn2 (A35)

We can eliminate the Lagrange multiplier λ by subtraction of Equation (10)*n2 and
Equation (11)*n1, after the simplification process we can have

K3n2n1,22 − K1n1n2,22 + g1n2 − g2n1 = 0 (A36)

By substation of Equation (13)

g̃ =

(
1
2
(γ1 − γ2)v′ sinθ,−1

2
(γ1 + γ2)v′ cosθ, 0

)
(A37)

We can further simplify the momentum equation

2 f (θ)
d2θ

dz2 +
d f
dθ

(
dθ

dz

)2
− c

[γ1 + γ2cos(2θ)]

g(θ)
= 0 (A38)

where
f (θ) = K1cos2θ + K3sin2θ ≥ 0 (A39)

K is the elastic constant for the liquid crystal and c is a constant.
For 2D pressure and slip boundary driven flow, the applied pressure is independent

of x, therefore we can get the two conservative equations in the final form:

dv
dz

=
c

g(θ)
(A40)

2 f (θ)
d2θ

dz2 +
d f
dθ

(
dθ

dz

)2
− c

[γ1 + γ2cos(2θ)]

g(θ)
= 0 (A41)

where γ1 = α3 − α2 , γ2 = α6 − α5, αi represents the viscous coefficients of liquid crystal. To
The above model adopts the following three assumptions

(i) one constant approximation applied to the Oseen–Zocher–Frank elastic free energy
K11 = K22 = K33≡ K, where K11 is the splay coefficient, K22 is the twist coefficient, and
K33 is the bend coefficient

(ii) Parodi’s relationship α6 = α5 + α3 + α2
(iii) The viscous coefficient α1 = 0
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Combining Equations (15)–(17) and the three above assumptions, we can have

dv
dz

=
c

g(Φ)
(A42)

2K
d2θ

dz2 − c
[γ1 + γ2cos(2θ)]

g(θ)
= 0 (A43)

where
g(θ) =

1
2

[
2α1sin2θcos2θ + (α5 − α2)sin2θ + (α3 + α6)cos2θ + α4

]
(A44)

Abbreviations

n Director
Fi External body force per unit mass
Gi Generalized body force
ρ Density
WF Elastic energy density for nematic
λ Lagrange multiplier
p Pressure
tij Viscous stress
gi Vector
K Free energy
αi Viscosity coefficient
v Velocity of director
h Channel half-width
Φ Angle with z axis
c Constan
g Dimensionless pressure gradient
G Pressure gradient
V Velocity of the upper plate in Couette flow
g* Critical dimensional pressure gradient
Vthreshold Threshold velocity of the upper plane
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