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Abstract: The bonding of glass substrates is necessary when constructing micro/nanofluidic devices for
sealing micro- and nanochannels. Recently, a low-temperature glass bonding method utilizing surface
activation with plasma was developed to realize micro/nanofluidic devices for various applications,
but it still has issues for general use. Here, we propose a simple process of low-temperature
glass bonding utilizing typical facilities available in clean rooms and applied it to the fabrication
of micro/nanofluidic devices made of different glasses. In the process, the substrate surface was
activated with oxygen plasma, and the glass substrates were placed in contact in a class ISO 5 clean
room. The pre-bonded substrates were heated for annealing. We found an optimal concentration
of oxygen plasma and achieved a bonding energy of 0.33–0.48 J/m2 in fused-silica/fused-silica
glass bonding. The process was applied to the bonding of fused-silica glass and borosilicate
glass, which is generally used in optical microscopy, and revealed higher bonding energy than
fused-silica/fused-silica glass bonding. An annealing temperature lower than 200 ◦C was necessary
to avoid crack generation by thermal stress due to the different thermal properties of the glasses.
A fabricated micro/nanofluidic device exhibited a pressure resistance higher than 600 kPa. This work
will contribute to the advancement of micro/nanofluidics.
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1. Introduction

The field of microfluidics has rapidly developed to realize various applications, including chemical
analysis and synthesis, medical diagnosis, and tissue engineering [1–3]. Recently, the field has been
further downscaled to nanofluidics, exploiting volumes of attoliters to femtoliters where surface effects
are dominant [4]. Novel applications have been reported such as single-molecule sorting [5] and
analysis [6], high-efficiency separation utilizing solid/liquid [7] and liquid/liquid phases [8], single-cell
proteomics [9], and autonomous solar-light-driven fuel cells [10]. To realize these devices, micro/nano
fabrication technologies are important. Recently, the direct writing technologies, such as 3D printing
using polymer materials, has rapidly developed to realize easy and high-throughput production [11–13].
However, the fabrication of nanostructures like nanopillars and nanochannels is still difficult. Currently,
polydimethylsiloxane (PDMS)-based fabrication technologies are most widely used. Microchannels
can be easily fabricated by replica molding technique (soft lithography) [14]. PDMS-made devices have
optical transparency suitable for detections, and surface chemical modification utilizing surface silanol
groups is available. However, maintaining the shape of nanostructure is difficult due to its softness,
and the material’s solubility to organic solvents and gas permeability restrict its use. On the other hand,
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glass-based fabrication technologies are challenging compared with others, but can achieve glass-made
devices with mechanical robustness suitable for realizing nanostructures, chemical stability to organic
solvents, optical transparency for detections and availability of surface chemical modification.

Fabrication methods for micro/nanofluidic devices made of glass have been reported. Micro-
and nanochannels are usually fabricated on a glass substrate by wet etching and plasma etching,
respectively, after the channel patterns are formed by lithography [15,16]. Surface modification
of micro- and nanochannels is performed by treating with reagents [7,10] or by patterning [6,8].
The methods for bonding glass substrates are essential to construct devices by sealing microchannels
and nanochannels on a substrate with another substrate. The strongest form of bonding is by thermal
fusion of glass substrates at high temperatures (1080 ◦C in the case of fused silica, 550 ◦C in the
case of borosilicate) [17–19]. Glass bonding at room temperature by surface pre-treatment with a
solution of hydrofluoric acid has been reported [16,20]. Anodic bonding method at temperatures
of 300 to 500 ◦C has been used for bonding of borosilicate glass substrates with a conductive
interlayer [19,21,22]. These bonding methods are problematic for the fabrication of micro/nanofluidic
devices integrating various functional materials. Most of the functional materials utilized, such as
self-assembled monolayers, catalysts and modified electrodes in micro- and nanochannels, do not
tolerate the extremely high temperatures needed for thermal fusion. Using hydrofluoric acid, which is
a typical etchant for glass, can damage micro/nanostructures fabricated on the glass substrate.
The conductive interlayer required for anodic bonding often reduces the chemical tolerance of
the devices.

In order to solve these problems in bonding, recent studies have developed a method for bonding
glass substrates by surface treatment with plasma and heating at low temperatures [23,24]. In this
method, the glass surface is treated with oxygen plasma containing fluorine atoms for surface activation
with moderate hydrophobization. After bringing the glass surfaces into contact, the substrates are
heated at relatively low temperatures for annealing while pressing at 5000 N. The bonding strength
was sufficient for endurance during driving fluids by pressures in micro- and nanochannels on the
order of 1000 kPa. The low-temperature glass bonding method has contributed to the realization of
micro/nanofluidic devices integrating various functional materials, as reported in recent studies [6,8–10].
In addition, detachable glass bonding with controlled bonding strength was realized by optimizing
the bonding conditions [25]. Besides the methods utilizing oxygen plasma containing fluorine atoms,
a sequential plasma activation process consisting of oxygen reactive ion etching plasma and nitrogen
radical plasma was developed for room-temperature bonding of Si/glass and glass/glass wafers [26].
To decrease damages to the surface, a low-temperature bonding process utilizing surface activation by
ultraviolet/ozone was also developed to achieve bonding of Si/Si and quartz/quartz wafers [27].

However, the low-temperature glass bonding method still has issues for general use.
Adding fluorine atoms into oxygen plasma and heating the substrates while pressing with a controlled
pressure requires the use of customized facilities in some cases. Furthermore, the bonding of different
types of glass has not been achieved. Previous studies have verified the low-temperature bonding of
fused-silica glass substrates [23–25,28], which is identical to the glass material used for semiconductor
fabrication. However, since microscope objective lenses are optimally designed for borosilicate cover
glass (refractive index: 1.52), the use of micro/nanofluidic devices made of fused-silica glass (refractive
index: 1.46) results in reduced spatial resolution during microscopic observation, as reported in a
previous study [29]. Thus, the bonding of fused-silica and borosilicate glass substrates is important for
combining micro/nanofluidic devices and microscopic optical detection.

In the present study, we developed a low-temperature glass bonding process utilizing typical
facilities available in clean rooms, and applied the process to fabrication of micro/nanofluidic devices.
A bonding process with surface activation by oxygen plasma and without pressing substrates during the
annealing was proposed. The oxygen plasma and heating temperature conditions were investigated,
and the bonding of fused-silica glass substrates was verified by measuring the bonding energy.
The verified bonding process was applied to the bonding of fused-silica and borosilicate glass
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substrates. The bonding energy of fused-silica/borosilicate glass substrates was evaluated. In addition,
the pressure resistance of a micro/nanofluidic device made of fused-silica and borosilicate glass was
evaluated by investigating liquid leakage from a nanochannel. This work provides a simple and easy
low-temperature glass bonding process for the fabrication of micro/nanofluidic devices.

2. Materials and Methods

2.1. Materials

Fused-silica glass substrates with thicknesses of 0.25 and 0.70 mm (70 mm × 30 mm, VIO-SILSX,
Shin-Etsu Quartz Co., Ltd., Tokyo, Japan) and borosilicate glass substrates with thicknesses of 0.17 and
0.25 mm (70 mm × 30 mm, Matsunami Glass Ind., Ltd., Osaka, Japan) were prepared. The 0.17-mm
borosilicate glass is used as a standard cover glass for microscopy. The Young’s modulus of fused-silica
glass and borosilicate glass was 7.38 × 1010 Pa and 7.29 × 1010 Pa, respectively, according to the
manufactures. The surface roughness of glass substrates was less than 0.3 nm.

For the confirmation of liquid leakage from nanochannels, a fluorescent aqueous solution,
including 0.1-mmol/L fluorescein and phosphate-buffered saline was prepared.

2.2. Fabrication of Micro/Nanofluidic Devices

Micro/nanofluidic devices were fabricated by the top-down fabrication of micro- and nanochannels
on glass substrates, based on reported methods [8,30,31]. Nanochannels with sizes of 100 to 1000 nm
were fabricated by electron beam lithography and dry etching. In the electron beam lithography
process (F5112+VD01, Advantest Corp., Tokyo, Japan), ZEP-520A (Zeon Corp., Tokyo, Japan) was used
as the resist. After forming the channel pattern, dry etching (NLD-570, ULVAC Co., Ltd., Kanagawa,
Japan) was performed using a mixture of gaseous CHF3 and SF6. To fabricate nanochannels of 10
to 100-µm width and 100 to 1000-nm depth, the channel pattern was formed by photolithography
using THB-111N (JSR Corp., Tokyo, Japan) as a photoresist. On the other hand, microchannels were
fabricated by photolithography and dry etching. KMPR®1035 (Kayaku Co., Ltd., Tokyo, Japan) was
used as a photoresist for micrometer-scale dry etching using a mixture of gaseous C3F8, CHF3 and
Ar. Inlet holes with a diameter of 0.7 mm were produced on the substrate using a diamond-coated
drill. After fabricating the channels and inlet holes, the device was constructed by the low-temperature
bonding of the glass substrates as described in the following section.

2.3. Low-Temperature-Bonding of Glass Substrates

In the present study, we propose a process of low-temperature glass bonding utilizing typical
facilities available in clean rooms. Figure 1 illustrates schematics of the bonding process. In a class
ISO 7 clean room, washing and activation of the surfaces of the glass substrates were performed.
In the washing step, the substrates were immersed in a three-to-one mixture of sulfuric acid and
hydrogen peroxide for 8 min. After cleaning the substrates by ultrasonication for 8 min and air-drying,
the substrate surface was activated by irradiation with an oxygen plasma for 40 s at a power of 200 W,
utilizing a gas plasma reactor (PR510, Yamato Scientific Co., Ltd., Tokyo, Japan). Then, the substrates
were immersed in pure water to prevent contamination by particles in the atmosphere and transported
to a class ISO 5 clean room. After washing the substrates with running pure water and air-drying,
the substrates were brought into contact for pre-bonding. In this step, air often remained in the bonding
interface and generate voids. In such case, air in the bonding interface was ejected by manual pressure.
Finally, the pre-bonded substrates were heated for annealing in an electric furnace (FO200, Yamato
Scientific Co., Ltd., Tokyo, Japan) at a constant temperature for 5 h with a heating rate of 100 ◦C/h.



Micromachines 2020, 11, 804 4 of 12

Micromachines 2020, 11, x FOR PEER REVIEW 4 of 12 

 

 
Figure 1. Schematic diagram of low-temperature bonding process for glass substrates utilizing typical 
facilities in clean rooms. 

2.4. Evaluation of Bonding Strength 

The bonding strength of glass substrates was measured by a crack-opening test [32], which is a 
standard method for evaluating bonding. A stainless-steel blade with a thickness of 0.1 mm (Hi-
Stainless, Feather Safety Razor Co., Ltd., Osaka, Japan) was used. As shown in Figure 2a, the stainless 
blade was inserted at the bonding interface, and the crack propagation length, L, was measured. The 
bonding energy, γ, between substrate 1 and substrate 2 is given by: 

𝛾𝛾 = 3𝑡𝑡𝑏𝑏
2𝐸𝐸𝑠𝑠1𝑡𝑡𝑠𝑠13 𝐸𝐸𝑠𝑠2𝑡𝑡𝑠𝑠23

16𝐿𝐿4�𝐸𝐸𝑠𝑠1𝑡𝑡𝑠𝑠1
3 +𝐸𝐸𝑠𝑠2𝑡𝑡𝑠𝑠2

3 �
 , (1) 

where tb is the thickness of the blade, ts is the thickness of the glass substrate, and Es is Young’s 
modulus [28]. As shown in Figure 2b, the blade was inserted into the bonding interface between glass 
substrates, and the crack propagation length was measured. 

 
Figure 2. (a) Principle of crack-opening test and (b) photograph of bonded glass substrates with a 
blade inserted into the bonding interface. 

The pressure resistance of the micro/nanofluidic device was examined by observing the leakage 
of a fluorescein solution from a nanochannel. The fluorescence was observed by an inverted 
fluorescence microscope (IX71, Olympus Corp., Tokyo, Japan) combined with an objective lens (20×, 
NA = 0.75), a 1.6× magnification lens, and a complementary metal-oxide-semiconductor (CMOS) 
camera (C11440-36U, Hamamatsu Photonics K. K., Hamamatsu, Japan). The pixel size of the CMOS 
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Figure 1. Schematic diagram of low-temperature bonding process for glass substrates utilizing typical
facilities in clean rooms.

To optimize the proposed bonding process, the effects of the pressure in the plasma reaction
chamber and the heating temperature used for annealing on the bonding strength were investigated.
The pressure in the reaction chamber was set to 40, 51 and 60 Pa by providing oxygen at a flow rate of
45, 70 and 100 mL/min, respectively, with evacuation by a vacuum pump. The heating temperature
was set at 20 (room temperature), 50, 110, 200, 300 and 400 ◦C.

2.4. Evaluation of Bonding Strength

The bonding strength of glass substrates was measured by a crack-opening test [32], which is a
standard method for evaluating bonding. A stainless-steel blade with a thickness of 0.1 mm (Hi-Stainless,
Feather Safety Razor Co., Ltd., Osaka, Japan) was used. As shown in Figure 2a, the stainless blade was
inserted at the bonding interface, and the crack propagation length, L, was measured. The bonding
energy, γ, between substrate 1 and substrate 2 is given by:

γ =
3t2

bEs1t3
s1Es2t3

s2

16L4
(
Es1t3

s1 + Es2t3
s2

) , (1)

where tb is the thickness of the blade, ts is the thickness of the glass substrate, and Es is Young’s
modulus [28]. As shown in Figure 2b, the blade was inserted into the bonding interface between glass
substrates, and the crack propagation length was measured.
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Figure 2. (a) Principle of crack-opening test and (b) photograph of bonded glass substrates with a
blade inserted into the bonding interface.

The pressure resistance of the micro/nanofluidic device was examined by observing the leakage
of a fluorescein solution from a nanochannel. The fluorescence was observed by an inverted
fluorescence microscope (IX71, Olympus Corp., Tokyo, Japan) combined with an objective lens
(20×, NA = 0.75), a 1.6×magnification lens, and a complementary metal-oxide-semiconductor (CMOS)
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camera (C11440-36U, Hamamatsu Photonics K. K., Hamamatsu, Japan). The pixel size of the CMOS
camera was 5.86 µm, and the exposure time was set at 70 ms. The fluorescein solution was injected into
the device by air pressure generated by a pressure controller (Institute of Microchemical Technology
Co., Ltd., Kanagawa, Japan).

3. Results and Discussion

3.1. Bonding of Fused-Silica/Fused-Silica Glass Substrates

Figure 3 shows photographs of fused-silica glass substrates bonded by low-temperature bonding
according to the process shown in Figure 1. The pressure in the plasma reaction chamber and the
annealing temperature were set at 51 Pa and 400 ◦C, respectively. As shown in Figure 3a, the glass
substrates were bonded without residual voids at the interface between the substrates. The bonding
process was applied to the fabrication of a micro/nanofluidic device made of fused-silica glass. As shown
in Figure 3b, the device included nanochannels of 400 µm wide and 900 nm deep, which were interfaced
with microchannels of 1.7 mm wide and 30 µm deep. As well as the bonding of glass substrates without
any fabrication, the bonding of glass substrates with fabricated micro- and nanochannels was realized.
We note that, among the bonding process (Figure 1), when we conducted processes of “washing with
running water” and “pre-bonding” in a class ISO 7 clean room, the substrate surface was contaminated
by a large number of particles from the atmosphere, and the bonding failed. This result suggests the
importance of using a class ISO 5 clean room during these processes to achieve successful bonding.
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fused-silica glass substrates with microchannels and nanochannels.

In order to evaluate the bonding strength of the fused-silica glass substrates, we performed a
crack-opening test. Figure 4a shows the bonding energy as a function of the heating temperature for a
different plasma reaction chamber pressure conditions. For each condition, we repeated experiments
at least four times and obtained standard deviation. The bonding energy increased with increasing
heating temperature. We found that a moderate concentration of oxygen plasma with the pressure of
51 Pa could achieve high bonding energies ranging from 0.33 to 0.48 J/m2 with heating temperatures
ranging from 200 to 400 ◦C, which are comparable to that corresponding to a pressure resistance
on the order of 100 kPa, as reported previously [23–25]. Therefore, in case of bonding fused-silica
glass substrates, we verified the process of low-temperature glass bonding utilizing typical facilities
available in clean rooms.

We also investigated the effects of surface activation by oxygen plasma on the bonding energy.
Figure 4b shows a comparison of the bonding energy at different plasma powers (0 and 200 W).
The pressure in the reaction chamber was set at 51 Pa. At a heating temperature of 200 ◦C, the bonding
energy with surface activation for a power of 200 W increased 1.7 times compared to that without
surface activation (power: 0 W). At a heating temperature of 400 ◦C, the bonding energies at powers of
0 and 200 W became comparable. The results indicate that, for lower heating temperatures, the bonding
strength is increased by activating the surface.
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The results were evaluated to consider the mechanism involved in low-temperature glass bonding,
which is not yet fully understood. Recently, Wang et al. [28] experimentally investigated surface
properties during bonding by contact angle measurement, atomic force microscopy, Raman scattering
spectrometry and X-ray photoelectron spectroscopy, and proposed the following bonding mechanism.
Upon activation by oxygen plasma, the oxygen free radicals break the covalent bonds of siloxane
(Si-O-Si) on the glass surface and produce dangling Si-O- groups by the reaction, Si-O-Si + O*→ Si- +

Si-O-. After activation, water molecules are adsorbed on the surface to form silanol groups (Si-OH)
by the reaction, Si- + Si-O- + H2O→ Si-OH + Si-OH, and the hydrophilicity of the surface increases.
During the annealing after the pre-bonding, a dehydration reaction of silanol groups between the pair
of substrates occurs to form covalent bonds of siloxane, according to Si-OH + Si-OH→ Si-O-Si + H2O.
As a result, the bonding of the substrates is achieved. Xu et al. [23,24] and Ohta et al. [25] indicated
that an increase in bonding energy could be achieved by adding fluorine plasma in the activation
process. They suggested that moderate hydrophobicity of the surface is necessary for the ejection of
residual water molecules from the bonding interface to enhance the bonding. The results obtained in
the present study basically support the models considered in these previous studies, and provide new
insights to understand the bonding mechanism. Namely, finding the optimal concentration of oxygen
plasma as shown in Figure 4a suggests that strong bonding can be achieved by an optimal balance
between the amount of hydrophilic silanol groups (Si-OH) to produce bonding and that of hydrophobic
siloxane (Si-O-Si) to eject water molecules from the bonding interface. In addition, the result shown in
Figure 4b suggests that the effect of increased Si-OH due to surface activation on the bonding strength
is significant at 200 ◦C, while it becomes insignificant at 400 ◦C because the dehydration reaction
of Si-OH for bonding is sufficiently accelerated at temperatures higher than 200 ◦C, as reported in
previous studies on the surface chemistry of silica [33].

At the optimized pressure in reaction chamber of 51 Pa, we further investigated the heating
temperature for annealing. Figure 4c shows the results of a crack-opening test to measure the bonding
energy as a function of heating temperature ranging from 20 (room temperature) to 400 ◦C. The bonding
energy significantly decreased when the heating temperature decreased to 110 ◦C, probably because
of the insufficient dehydration reaction of silanol groups. Therefore, in case of bonding fused-silica
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glass substrates, the heating temperature higher than 200 ◦C is necessary to obtain a sufficient bonding
energy for nanofluidic devices, based on previous studies [23].

3.2. Bonding of Fused-Silica/Borosilicate Glass Subsrates

Based on the results shown in Figure 4, the low-temperature glass bonding method with an
optimized pressure of 51 Pa was used to bond fused-silica and borosilicate glass substrates. Figure 5
shows the results of bonding at different heating temperatures. The 0.17-mm borosilicate glass substrate,
which is a standard cover glass for microscopy, was used. In the case of substrates without any
fabrication (Figure 5a), the bonding was successful at heating temperatures of 200 and 250 ◦C. However,
at a heating temperature of 300 ◦C, cracks were generated owing to the thermal stress caused by the
order of magnitude difference in thermal expansion coefficients between fused-silica (0.5 × 10−6 K−1)
and borosilicate (7.2 × 10−6 K−1). On the other hand, in the case of substrates with micro- and
nanochannels (Figure 5b), cracks were generated even at a temperature of 250 ◦C, probably because
of stress concentration at the places where the channels were fabricated. At a temperature of 200 ◦C,
we succeeded in fabricating a micro/nanofluidic device containing microchannels (width: 500 µm,
depth: 10 µm) and nanochannels, as shown in Figure 5c. The results suggest that the fabrication of
micro- and nanochannels affects an appropriate heating temperature for bonding different glasses due
to the concentration of thermal stress. Therefore, to fabricate micro/nanofluidic devices by bonding
fused-silica and borosilicate glass substrates, using a heating temperature lower than 200 ◦C is important
to avoid crack generation due to the thermal stress.
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Figure 5. Low-temperature bonding of fused-silica glass substrate (thickness: 0.7 mm) and borosilicate
glass substrate (thickness: 0.17 mm). (a) Photograph of bonded fused-silica and borosilicate glass
substrates. (b) Photograph of micro/nanofluidic device fabricated by the bonding of fused-silica substrate
with micro- and nanochannels and a borosilicate glass substrate. (c) X-shaped nanochannel of 4000 nm
wide and 2000 nm deep fabricated in a boxed area indicated on the photograph of micro/nanofluidic
device (Figure 4b).

Since the borosilicate glass substrate with a 0.17-mm thickness was too fragile to perform a
crack-opening test, we instead used the borosilicate glass substrate with a 0.25-mm thickness to
examine the bonding energy at the heating temperature lower than 200 ◦C. The bonding energies
of fused-silica/fused silica, fused-silica/borosilicate and borosilicate/borosilicate glass substrates at a
heating temperature of 110 ◦C are shown in Figure 6. To confirm the effect of the substrate thickness,
a fused-silica glass substrate with a thickness of 0.25 mm was also used. The results suggest that
the bonding energy is independent on the substrate thickness but dependent on the glass material.
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When the borosilicate glass was used, the bonding energy was more than three times higher than that
in case of fused-silica/fused-silica glass bonding. The bonding energies of fused-silica/borosilicate
and borosilicate/borosilicate glass substrates were around 0.5 J/m2 at a heating temperature of 110 ◦C,
which is sufficient for nanofluidic devices based on previous studies [23]. We note that, at a heating
temperature of 200 ◦C, we could not insert the blade without breaking the glass because of further
increased bonding energy. Therefore, in case of bonding fused-silica/borosilicate glass substrates,
the heating temperature lower than 200 ◦C is an appropriate condition for nanofluidic devices.
Several reasons for the increased bonding energy by using borosilicate glass can be considered, such as
a different density of silanol group on the surface and B2O3 or other cations included in borosilicate
glass. The previous study revealed that washing the substrate with calcium acetate solution can enhance
the low-temperature bonding of borosilicate/borosilicate glasses [34]. Strong borosilicate/borosilicate
glass bonding without annealing was also achieved by washing substrates with sulfuric acid and
high-flow-rate tap water [35]. Although the mechanism is still not understood, the higher bonding
energy of borosilicate glass compared with that of fused-silica glass may support the validity of these
previous studies on the low-temperature bonding of borosilicate glass.
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borosilicate glass substrates at a heating temperature of 110 ◦C, measured by crack-opening test.

Finally, we examined the pressure resistance of a micro/nanofluidic device by fluorescence
microscopy, which previous studies have employed to evaluate the bonding strength [23–25]. Figure 7a
shows the experimental setup. The device was fabricated by bonding a fused-silica glass substrate
with microchannels (width: 500 µm, depth: 10 µm) and nanochannels (width: 50 µm, depth: 390 nm),
as shown in Figure 7b, and a 0.17-mm borosilicate glass substrate without any patterning. In the
bonding process, the heating temperature was set at 200 ◦C. A fluorescein solution was injected into
the nanochannels via the microchannel. Since the pressure loss in microchannels is negligibly small
compared to that in nanochannels, an external pressure applied to the device generated by the pressure
controller was regarded as that applied to the nanochannels. Fluorescence images of the nanochannel
at applied pressures of 150 and 600 kPa were obtained, as shown in Figure 7c.

Figure 7d shows profiles of the fluorescence intensity of the nanochannel. The area of the
nanochannel shows bright fluorescence, while that outside the nanochannel is dark, with an image
intensity similar to the background. In addition, the image intensity outside the nanochannel was
constant even when the applied pressure was increased from 150 to 600 kPa. These results indicate
that no detectable leakage of the fluorescein solution from the nanochannel occurred and bonding
of the glass substrates was achieved. Therefore, it is concluded that the proposed bonding process
was successfully applied to the micro/nanofluidic device made of fused-silica and borosilicate glass,
and the device had a pressure resistance higher than 600 kPa. Micro/nanofluidic devices fabricated
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by the proposed bonding process can be used for various microfluidic applications [1,2], nanofluidic
applications with pressure-driven flows generated by high external pressures on the order of 100 kPa,
such as single-molecule immunoassays [6], femtoliter solvent extraction [8], and single-cell target
proteomics [9], and other nanofluidic applications such as electrophoretic single-molecule sorting [5]
and miniaturized fuel cells [10]. In addition, the construction of devices made of fused-silica and
borosilicate glass enables a combination of micro/nanofluidics and advanced optical microscopy such
as super-resolution microscopy [36,37] without a reduction in performance.
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4. Conclusions

We developed a simple process for low-temperature glass bonding utilizing typical facilities
available in clean rooms and applied it to the fabrication of micro/nanofluidic devices by the bonding
of fused-silica/fused-silica glass substrates and fused-silica/borosilicate glass substrates. The proposed
bonding process was verified, and the bonding energy for fused-silica/fused-silica substrates at the
annealing temperature of 200–400 ◦C was 0.33–0.48 J/m2, which is comparable to that reported in
previous studies. We found that a moderate concentration of oxygen plasma with a pressure of 51 Pa for
activating the surface of glass substrates could achieve strong bonding. The enhancement of bonding
strength by activating the surface with oxygen plasma was significant for annealing at 200 ◦C, while it
was insignificant at 400 ◦C. These results provide new insights to help understanding the bonding
mechanism. The optimized bonding process was applied to the fabrication of micro/nanofluidic devices
made of a fused-silica glass substrate and a borosilicate glass substrate (0.17 mm thick), which is
generally used for microscopic optical measurements. In the bonding process, using an annealing
temperature lower than 200 ◦C was important to avoid crack generation by thermal stress due to the
difference in thermal expansion coefficients between fused silica and borosilicate. At an annealing
temperature of 110 ◦C, the bonding energy was around 0.5 J/cm2 and three times higher than that of
fused-silica/fused silica glass bonding. The results suggest that the bonding energy depends on the glass
material and increases in case of using borosilicate glass. We succeeded in device fabrication, and the
fabricated micro/nanofluidic device had a pressure resistance higher than 600 kPa, which is sufficient
for various micro/nanofluidic applications. In previous studies [23–25], conditions of low-temperature
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bonding for fused-silica/fused-silica glass substrates utilizing oxygen plasma with fluorine atoms were
investigated to achieve bonding energy of 0.45–1.00 J/m2, which corresponds to pressure resistance
of nanochannels on the order of 100–1000 kPa. In the present study, we developed conditions of
low-temperature glass bonding utilizing oxygen plasma without fluorine atoms and verified bonding
of fused-silica/fused-silica and fused-silica/borosilicate glass substrates. Bonding energy in similar
order to that by previous studies was achieved. The results provide a simple and easy process of
low-temperature glass bonding for the fabrication of micro/nanofluidic devices, enable the use of
high-resolution optical microscopy designed for borosilicate cover glass, and will greatly contribute to
advancements in micro/nanofluidics.
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