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Abstract: Recently, soft actuators have been expected to have many applications in various fields.
Most of the actuators are composed of flexible materials and driven by air pressure. The 3-DOF
micro-hand, which is a kind of soft actuator, can realize a three degrees of freedom motion by
changing the applied air pressure pattern. However, the input–output relation is nonlinear and
complicated. In previous research, a model of the micro-hand was proposed, but an error between
the model and the experimental results was large. In this paper, modeling for the micro-hand is
proposed by using multi-output support vector regression (MSVR) and ant colony optimization
(ACO), which is one of the artificial intelligence (AI) methods. MSVR estimates the input–output
relation of the micro-hand. ACO optimizes the parameters of the MSVR model.

Keywords: model; 3-DOF micro-hand; actuator; nonlinear; support vector machine; multi-output
support vector regression; ant colony optimization

1. Introduction

Many robots have been used in industrial fields; for example, they assemble a car, transfer
wafer, and so on. In recent years, robots have been expected to be used not only for such fields but
also for medical and welfare fields. In these fields, robots are required to handle human bodies and
objects carefully.

To realize such robots, soft actuators have been getting increased attention. Soft actuators are
made of flexible materials; for example, silicone rubber and synthetic resin; therefore, they can handle
human bodies and objects delicately [1]. Various types of soft actuators have been developed and many
of which are driven by air pressure. Many pneumatic soft actuators are composed of tubes that show
expansion and bending motions under air pressure [2]. For example, there are McKibben pneumatic
artificial muscle [3–5], a flexible micro actuator (FMA) [6], and a miniature pneumatic bending rubber
actuator [7–10]. When air pressure is applied, the McKibben pneumatic artificial muscle expands in
the radial direction and contracts in the longitudinal direction. However, the McKibben muscle can
contract only in the longitudinal direction. Bending motions are difficult for the muscle [2].

To solve these problems, a 3-DOF micro-hand has been invented by S. Wakimoto [11]. The micro-hand
is small, thin and flat; therefore, it is expected to be applied as a tip of forceps or an endoscope for medical
fields, especially in operations. In that case, the micro-hand is assumed to be used inside a human body
and a position of the micro-hand is difficult to measure directly. The reason is, there are no sensors
that can attach itself to the micro-hand because the micro-hand is too small. The micro-hand is 50 mm
in length, 5.0 mm in width and 2.6 mm in thickness. The micro-hand should be controlled without
sensors; therefore, the input–output relation of the micro-hand should be modeled as accurately
as possible. On the other hand, the micro-hand has a nonlinearity by its structures and materials.
Thus, the relationship is complicated. In previous articles [12], a model of the micro-hand has been
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proposed; however, it needs to be improved because of the differences between the previous model and
the experimental results. For these reasons, it is necessary to model the micro-hand more accurately
for control without sensors.

In this paper, artificial intelligence (AI) is utilized for modeling the input–output relation of the
micro-hand. It is difficult to model a control target with nonlinear characteristics, such as soft actuators,
by using physical relationships, and there are often large errors between the actual measured values
and the model. On the other hand, AI methods can model even a control target with a nonlinearity
because the input–output data obtained from experiments are utilized. Furthermore, methods such as
using physical relationships take a lot of time, because the relation is first modeled and then compared
with the experimental data to check the accuracy of the model. In contrast, AI methods use only the
experimental data to model, therefore it does not take much time. In addition, AI methods can be easily
applied to other control objects because the modeling procedure does not change much. In recent
years, AI has been applied to robotic actuators for quality and reliability improvement, reduction in
cycle time, floor space utilization, and so on [13,14]. AI methods also have been used for estimating a
model of soft actuators. A miniature pneumatic bending rubber actuator can be controlled without
sensors by using support vector regression (SVR), which is one of the machine learning methods [7,10]
and a regression machine that is extended from a support vector machine (SVM) [15,16]. SVR has a
high generalization ability with few training data and is valid for a nonlinear model. In spite of its
potential usefulness, the standard SVR cannot cope with multi-output problems. The input–output
relation of a miniature pneumatic bending rubber actuator is a single-input single-output (SISO)
system, therefore there is no problem with applying the standard SVR. In contrast, the relation of the
micro-hand is a three-input three-output system, therefore it is necessary to use a different SVR for
each of the three outputs. This approach, however, ignores cross relations between the outputs and
makes it difficult to select parameters because the number of parameters is increased. To deal with this
problem, a multi-output support vector regression (MSVR), which extends SVR to multiple outputs,
is proposed [17]. In this article, MSVR is used for modeling the micro-hand. In addition, selecting
optimal parameters is needed to improve the estimation ability of MSVR. In this paper, ant colony
optimization (ACO) [18–21] is used for selecting the parameters. ACO was devised from the behavior
of real ants as they move from their nest to a food source and has been utilized to solve complex
combinatorial optimization problems [18]. Also, ACO has only two parameters; therefore, using ACO
makes selecting the parameters of MSVR easier. The relation is modeled by using MSVR with ACO.
Moreover, the proposed model is compared with the experimental results and the previous model.

2. Materials and Methods

This section describes methods for modeling the input–output relation of a 3-DOF micro-hand.
In Section 2.1, the structure of the micro-hand is shown. In Section 2.2, the previous method for
modeling the micro-hand is introduced. In Section 2.3, the proposed method for modeling the relation
by using MSVR and ACO is presented. In Section 2.3.1, the standard SVR and MSVR are introduced.
MSVR is utilized for modeling the relation. In Section 2.3.2, the ACO algorithm for selecting the
parameters of MSVR is presented. In Section 2.3.3, an AI–based experimental system and flow are
shown. The experimental system is used to obtain the input–output data of the micro-hand and model
the relation.

2.1. The Structure of the 3-DOF Micro-Hand

The cross section of the 3-DOF micro-hand is shown in Figure 1. The micro-hand has three
McKibben artificial muscles arranged in parallel [11]. The muscle is shaped like a rubber tube, closed
at one end, and contracts in the axial direction when air pressure is applied to the inside [2]. The x,
y, and z axes and muscles 1, 2, and 3 are defined, as shown in Figures 1 and 2. Silicone rubber
covers and bonds the three muscles. There is a gap between muscle 2 and the other muscles 1 and
3. These structures allow the micro-hand to bend in any direction by changing the input air pressure
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pattern to the muscles [12]. P1, P2, and P3 are the input pressures of the muscle 1, 2, and 3, respectively.
In the experiment, the coordinates of the tip of the micro-hand (x, y, z) are measured when pneumatic
pressure is applied. θ is a bending angle of the micro-hand, γ is a bending direction angle, R is a
curvature radius of the central axis of the micro-hand, and λ is an angle between z-axis and a straight
line passing through the tip and the bottom of the micro-hand. θ, γ, R, and λ are utilized for the
previous method.

1

2
3

McKibben artificial muscles

Silicone Rubber

𝑦

𝑥𝑧

Figure 1. The cross section of the 3-DOF micro-hand.

Figure 2. The coordinate system for 3-DOF micro-hand.

2.2. Previous Method

The previous model is derived by using physical and geometrical methods. The bending
micro-hand is divided into the axial direction, as shown in Figure 3, for modeling the relation of
the micro-hand. The piece consists of three cylinders which have different axial lengths and diameters.
By considering the piece, θ, γ, and R are derived [12].
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θ = 2n

√
2
(

1− c√
a2 + b2 + c2

)
, (1)

γ =


arccos

(
a√

a2+b2

)
, 0 ≤ b

− arccos
(

a√
a2+b2

)
, b < 0

(2)

R =
L1 + L2 + L3

3θ
, (3)

where n is the number of divided pieces; a, b, and c are physical parameters that change with the
input pressure P1, P2, and P3 of the muscles; L1, L2, and L3 are the axial lengths of the muscle 1, 2,
and 3, respectively (see details in [12]). From Figure 2, the relation between the coordinates of the
tip of the micro-hand (x, y, z) and R, γ and λ are obtained. R, γ, and λ are transformed to x, y, and z
geometrically as follows.

x = 2R sin2 λ cos γ, (4)

y = 2R sin2 λ sin γ, (5)

z = L0 − 2R sin λ cos λ, (6)

λ =
θ

2
. (7)

The detailed information about the previous method is written in [12].

Figure 3. A piece of the divided micro-hand.

2.3. Proposed Method

2.3.1. Multi-Output Support Vector Regression

The micro-hand has a nonlinearity, thus, the input–output relation of the micro-hand is
complicated, therefore we used multi-output support vector regression (MSVR) [17] for modeling
the relationship in this paper. MSVR extends the standard SVR to multiple outputs and retains
the advantage of a sparse and compact solution by utilizing the ε-insensitive loss-function [22].
The detailed information about the standard SVR and MSVR is written in [17].

The regression model f (x) is shown as

f (x) = wTφ(x) + b, (8)
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where x means the input vector, w shows the weight vector, b is the offset and φ is a nonlinear function
that maps the input space into a higher dimensional feature space [15]. The optimization problem in
the standard SVR is finding regressor w and b that minimizes

‖w‖2

2
+ C

n

∑
i=1

Lv

(
yi −

(
φ (xi)

Tw + b
))

, (9)

where Lv (·) is known as the ε-insensitive loss-function, which is equal to
∣∣yi −

(
φT (xi)w + b

)∣∣− ε for∣∣yi −
(
φT (xi)w + b

)∣∣ ≥ ε and equal to 0 for
∣∣yi −

(
φT (xi)w + b

)∣∣ < ε. C is a penalty parameter and
ε is an error accuracy parameter. The standard SVR can be solved using only inner products between
φ (·); therefore, it is only necessary to specify a kernel function K(xi, x) = φ (xi)

Tφ
(
xj
)
. In this paper,

the RBF kernel is used as a kernel function and is shown as follows.

K (xi, x) = exp

(
−‖xi − x‖2

2σ2

)
, (10)

where σ is a hyper-parameter in the RBF kernel.
The standard SVR is not able to solve the case when the output is a vector y ∈ RQ, therefore

MSVR needs to be applied. The MSVR solves the optimization problem by finding a regressor wj and
bj(j = 1, . . . , Q) for every output. This problem can be led to the minimization of

LP(W, b) =
1
2

Q

∑
j=1

∥∥∥wj
∥∥∥2

+ C
n

∑
i=1

L (ui) (11)

with respect to the weight vector W and the offset b, where ui = ‖ei‖ =
√

eT
i ei, eT

i = yT
i −φ (xi)

TW−bT,

W =
[
w1, . . . , wQ], b =

[
b1, . . . , bQ]T . The ε-insensitive loss function can be extended to multiple

dimensions, but it is based on an L1 norm. The function based on an L1 norm needs to consider each
dimension independently and the solution complexity is in proportion to the number of dimensions.
To solve the problem, by using an L2 norm, all dimensions can be considered in a unique restriction
that yields a single support vector for all dimensions [23]. The loss function based on an L2 norm is
proposed as follows.

L(u) =

{
0, u < ε

u2 − 2uε + ε2, u ≥ ε
(12)

The relation of the micro-hand is a three-input three-output system; therefore, in this paper,
x = (P1, P2, P3) and y = (x, y, z) are the input vector and the output vector of the MSVR, respectively.

2.3.2. Ant Colony Optimization

MSVR has penalty parameter C, error accuracy parameter ε, and hyper-parameter σ in RBF kernel
function [17]. The three parameters (C, ε, and σ) have a main influence on the regression model
precision. C determines the balance between model complexity and model precision. ε controls the
sparsity of the support vector. σ reflects the distribution features of the training data and confirms
the width of the local neighborhood. Grid search is often used to select these parameters; however,
grid search requires a lot of calculation and time. To solve this problem, different kinds of classical
techniques have been developed [10]. Among them, the meta-heuristic based methods (such as the
genetic algorithm, the differential evolution algorithm, and the particle swarm optimization algorithm)
are some of the most popular methods used to optimize the parameters as a multidimensional
optimization problem [24,25]. In this paper, the ant colony optimization (ACO) algorithm is utilized
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for selecting optimal parameters of MSVR. ACO has only two parameters, therefore using ACO makes
selecting the hyper-parameters of MSVR easier.

The ACO algorithm is inspired by the behavior of real ants moving from their nests to a food
source [18,26,27]. ACO has been applied to many combinatorial optimization problems such as the
traveling salesman problems (TSP). It is known that real ants use pheromones to find the shortest routes
from nests to food. Ants release the pheromone on the path they passed, and other ants are attracted
to the pheromone and select the route according to the quantity of the pheromone. Furthermore, the
pheromone tends to evaporate, therefore the pheromone remains only in the shortest path at last,
and ants take the shortest routes [18]. The mathematical model of the ACO algorithm is described
as follows.

At iteration t, the probability for ant k moving from node i to node j is

pk
ij(t) =

[
τij(t)

]
·
[
ηij(t)

]β

∑s∈Nk
i
[τis(t)] · [ηis(t)]

β
, ∀j ∈ Nk

i , (13)

where s is a set of nodes that ant k can choose; Nk
i is a set of nodes that ant k at node i has never chosen;

β is expected heuristic factor; τij is the intensity of trail information on the path between node i to
node j; ηij is heuristic information. In the case of TSP, ηij can be defined as the inverse number of the
distance between node i and node j. The heuristic information is optional, and the setting of ηij = 1
means that no heuristic information is considered [18]. In this paper, let ηij = 1, because the ACO
algorithm is utilized for selecting parameters of MSVR and there is no relation between the value of
one digit of the parameters and the value of the next digit.

The intensity of trail information on the path between node i to node j is

τij(t + 1) = (1− ρ)τij(t) +
m

∑
k=1

∆τk
ij(t)

∆τk
ij =

{
1
Lk

, if (i, j) ∈ Tk

0, otherwise

(14)

where ρ(0 < ρ < 1) is a pheromone volatile coefficient; m is the total number of ants; ∆τij is the
pheromone quantity left on the path (i, j) by ant k; Lk is the length of the path Tk which ant k has
moved. ∆τij is the inverse of Lk so that the shorter Lk is, the greater the value is. In this paper, the total
number of ants is 20. In the initial state, it is assumed that every path has the same intensity of the
pheromone τ0, therefore the initial pheromone is τij(0) = τ0.

In this paper, each digit of the parameters is represented by 10 nodes [28–30]. Thus, each digit contains
10 positive integers from 0 to 9. In this algorithm, penalty parameter C is 4-bit number, with range
(0.0 < C ≤ 999.9); error accuracy parameter ε is 4-bit number, with range (0.0000 < ε ≤ 0.9999);
hyper-parameter σ in RBF kernel function is 4-bit number, with range (0.000 < σ ≤ 9.999). When
the three parameters are arranged in order, the bit number is 12 bits in total. The bit number can be
represented as the character string d0d1d2 . . . dl−2dl−1, in which l is the precision. Then, the string is
converted into numbers according to the range of each parameter as follows.

x =
l

∑
i=1

d(i) ∗ 10−i, (15)

where x is the converted variable; d(i) is the ith character in the string.
Figure 4 shows the above idea, in which every node can only be the value of 0–9 and the

three parameters are arranged in order. As shown in Figure 4, the path connecting 12 nodes stands
for the 12 digits of the character string, 631288322151, and the character string is converted into
C = 631.2, ε = 0.8832, and σ = 2.151 by using Equation (15).
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Figure 4. Parameters of the multi-output support vector regression (MSVR) model searched by an ant.

Every optimization process is recorded in a one-dimension array. The following describes the
steps to optimize MSVR parameters with ACO.

1. Set ant number m, the coefficient representing pheromone evaporation ρ, the initial pheromone
τ0, time counter t = 0, cycle number N = 0, the maximum cycling times Nmax = 80, and a
one-dimension array Ak.

2. Calculate the probability that the ant moves to each path node with Equation (13). Move the ant
to the selected node, and record the coordinate value in the element i of Ak.

3. Set i = i + 1, if ant k goes through 12 nodes, jump to (4), otherwise (2).
4. Set k = k + 1, if all the ants go through 12 nodes, jump to (5), otherwise (2).
5. Obtain MSVR parameters by using Ak and calculate mean absolute error (MAE) between

experimental data and the MSVR model.
6. Update pheromone with Equation (14), clear Ak, and set N = N + 1.
7. If N < Nmax and every ant does not take the same path, jump to (2); if N < Nmax, but every ant

takes the same path, then MSVR parameters are optimized.

2.3.3. Experimental System

In this section, an experimental system for obtaining the input–output data and modeling the
input–output relation is introduced. Figure 5 shows the experimental system and Figure 6 shows
the experimental flow [12]. The experimental system is configured by a 3-DOF micro-hand, an air
compressor (0.20P-5S, HITACHI, Tokyo, Japan), an air filter (F1000-8, CKD, Aichi, Japan), a safety
regulator (RP1000-8-07, CKD, Aichi, Japan), an electro-pneumatic regulator (MEVT500, CKD, Aichi,
Japan), a controller for an electro-pneumatic regulator, two cameras (HD Pro Webcam C920r, Logicool,
Tokyo, Japan), and a computer sending an electrical signal [12]. The following explains how to move
the micro-hand and model the input–output relation of the micro-hand by the experiment.

1. The air compressor provides pneumatic pressure for the air filter and the filter sends clean air to
the safety regulator.

2. The safety regulator limits the pressure to at most 300 kPa not to break the micro-hand.
3. The computer sends an electrical signal to the controller for controlling the electro-pneumatic regulator.
4. The controller provides 4–20 mA for the electro-pneumatic regulator and decides the aperture of

the electro-pneumatic regulator.
5. Desired pressures are sent into the micro-hand and it bends or contracts.
6. The coordinates of the tip of the micro-hand are captured by two cameras.
7. The experimental data is sent to the computer and the input–output relation of the micro-hand is

modeled by using MSVR and ACO.
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Figure 5. AI-based experimental system.
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Figure 6. AI-based experimental flow.

3. Results and Discussion

This section shows and discusses the simulation results obtained by the proposed methods in
Section 2. The simulation results are obtained using MATLAB(R2019a), which is one of the effective
software products for system engineering. In Section 3.1, the parameters of MSVR are selected by
ACO. In Section 3.2, the input–output relation of the micro-hand is modeled by MSVR.

3.1. The Parameters of Multi-Output Support Vector Regression (MSVR) Selected by Ant Colony
Optimization (ACO)

ACO has two parameters that affect its performance in terms of solution quality. Table 1 shows
parameters of ACO for selecting the optimal parameters of MSVR.
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Table 1. Parameters of ant colony optimization (ACO).

Parameter Definition Value

ρ Evaporation coefficient 0.04
τ0 Quantity of initial pheromone 0.5

The parameters of MSVR are evaluated by mean absolute error (MAE) between experimental
results and the MSVR model. The process of obtaining optimal parameters of MSVR are shown
in Figures 7 and 8. Figure 7 shows the relation between iterations and the minimum MAE, and
Figure 8 shows the relation between iterations and the mean MAE. In Figure 7, the MAE decreases
and converges with increasing iterations. In Figure 8, the mean MAE decreases and converges with
increasing iterations. The parameters of MSVR selected by ACO are shown in Table 2.
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Figure 7. Relation between iterations and minimum mean absolute error (MAE).
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Figure 8. Relation between iterations and mean MAE.

Table 2. Parameters of the MSVR model selected by ACO.

Parameter Definition Value

C Penalty parameter 326.7
ε Error accuracy parameter 0.0169
σ Hyper-parameter in RBF kernel function 0.259
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3.2. Model for 3-DOF Micro-Hand Estimated by MSVR

The input–output relation of the micro-hand is modeled by using MSVR with the parameters shown
in Table 2. Figures 9–14 show the proposed model (MSVR model with ACO), the previous model,
and the experimental results. Experimental results are obtained by using two cameras. In Figures 9–11,
P1 = P2 = 0 kPa and P3 = 0 kPa–250 kPa. In Figures 12–14, P1 = 0 kPa and P2 = P3 = 0 kPa–250 kPa.
The previous model uses the same parameters and conditions as written in the previous article [12].

For comparing the proposed model and the previous model with experimental results, MAE is
calculated. From Figures 9–11, MAE of the proposed model is 0.0161 mm, while MAE of the previous
model is 2.7048 mm. From Figures 12–14, MAE of the proposed model is 0.0228 mm, while MAE of
the previous model is 1.0506 mm. MAE of the proposed model is less than that of the previous model,
therefore, the effectiveness of the proposed model is shown. Furthermore, it is considered that the
proposed methods can estimate the inversion of the input–output relation. The inverse model is useful
in designing a feedforward controller.

0 50 100 150 200 250
-5

0

5

10

15

20

25
MSVR model with ACO
Previous model
Experimental result

Figure 9. Relation between P3 and x (P1 = P2 = 0 kPa, P3 = 0 kPa–250 kPa).

0 50 100 150 200 250
-25

-20

-15

-10

-5

0

5

MSVR model with ACO
Previous model
Experimental result

Figure 10. Relation between P3 and y (P1 = P2 = 0 kPa, P3 = 0 kPa–250 kPa).
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Figure 11. Relation between P3 and z (P1 = P2 = 0 kPa, P3 = 0 kPa–250 kPa).
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Figure 12. Relation between P2, P3 and x (P1 = 0 kPa, P2 = P3 = 0 kPa–250 kPa).
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Figure 13. Relation between P2, P3 and y (P1 = 0 kPa, P2 = P3 = 0 kPa–250 kPa).
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Figure 14. Relation between P2, P3 and z (P1 = 0 kPa, P2 = P3 = 0 kPa–250 kPa).

4. Conclusions

In this paper, AI methods for modeling the input–output relation of a 3-DOF micro-hand is
proposed. MSVR is utilized for estimating the relation because it is a three-input three-output system
and MSVR can deal with multiple outputs. In addition, optimal parameters of MSVR are selected by
using ACO. The proposed model is compared with the previous model by the simulation, and the
proposed model is more accurate than that of the previous model. In conclusion, the effectiveness
of the proposed methods is shown. Since the proposed methods can be applied to any system with
multiple-input multiple-output(MIMO) and nonlinear characteristics, it can be applied to any robotic
system other than the micro-hand, as long as the input–output data are available. It helps to control
objects that have not been used in the past due to the difficulty of modeling. Further studies are
needed to design a control system without sensors for the micro-hand including the proposed model.
Furthermore, it is considered that the control system cannot work properly without sensory feedback
due to uncertainties and disturbances. To solve the problem, further studies are also needed to design
a feedback control system with a sensor; for example, by attaching a micro-camera to the base of the
micro-hand and obtaining the coordinates of the tip of the micro-hand, a robust control system could
be designed by using image processing and the proposed method.
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and agreed to the published version of the manuscript.
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Abbreviations

The following abbreviations are used in this manuscript:

DOF Degrees of freedom
AI Artificial Intelligence
FMA Flexible micro actuator
SISO Single-input single-output
MIMO Multiple-input multiple-output
SVM Support vector machine
SVR Support vector regression
MSVR Multi-output support vector regression
ACO Ant colony optimization
TSP Traveling salesman problems
RBF Radial basis function
MAE Mean absolute error
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