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Abstract: In this paper, an investigation is performed to analyze the L-shaped tunnel field-effect
transistor (TFET) depending on a gate work function variation (WFV) with help of technology
computer-aided design (TCAD) simulation. Depending on the gate voltage, the three variations occur
in transfer curves. The first one is the on-state current (ION) variation, the second one is the hump
current (IHUMP) variation, and the last one is ambipolar current (IAMB) variation. According to the
simulation results, the ION variation is sensitive depending on the size of the tunneling region and
could be reduced by increasing the tunneling region. However, the IHUMP and IAMB variations are
relatively irrelevant to the size of the tunneling region. In order to analyze the cause of this difference,
we investigated the band-to-band tunneling (BTBT) rate according to WFV cases. The results show
that when ION is formed in L-shaped TFET, the BTBT rate relies on the WFV in the whole region of
the gate because the tunnel barrier is formed in the entire area where the source and the gate meet.
On the other hand, when the IHUMP and IAMB are formed in L-shaped TFET, the BTBT rate relies on
the WFV in the edge of the gate.

Keywords: tunnel field-effect transistor (TFET); L-shaped TFET; high-κ/metal gate (HKMG);
work-function variation (WFV); band-to-band tunneling; on-state current (ION) variation;
hump current (IHUMP) variation; ambipolar current (IAMB) variation

1. Introduction

Recently, an L-shaped tunnel field-effect transistor (TFET) has attracted the attention of a lot of
researchers as a substitutional device for a metal-oxide-semiconductor (MOS) field-effect transistor
(MOSFET) [1–6]. The L-shaped TFET features a mesa-shaped structure and an intrinsic Si region
located between the source and gate dielectric layer to obtain high band-to-band tunneling (BTBT)
due to the larger tunneling area than the planar TFET. The L-shaped TFET has remarkable advantages
for low-voltage operation due to its small subthreshold swing (S) of less than 60 mV/dec, low-level
OFF-state current (IOFF) and high complementary MOS (CMOS) compatibility [7–10]. Based on the
characteristics, the electrical performance of the L-shaped TFET can be more improved dramatically by
applying the high-κ/metal gate (HKMG) technology [11–13]. Thus, it is expected that the L-shaped
TFET is applicable to the real industry. However, the application of HKMG brings a work-function
(WF) variation (WFV) issue due to the non-uniformity of metal gate grains in orientation depending
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on the fabrication processes [14–17]. Therefore, in order to apply the TFET to the real application,
the WFV in TFET should be investigated. Although there are several studies about the WFV effects
on TFET, they have some common issues. The mentioned papers have focused on variation in
electrical characteristics (e.g., threshold voltages (VT) and ON-state current (ION)) in general structures
(e.g., planar, fin, nanowire) and have not proposed the improvement of WFV in TFET [14–18].

This paper aims to study the effects of WFV in L-shaped TFET with the help of technology
computer-aided design (TCAD) simulation. The L-shaped TFET is expected to improve the WFV
due to the large tunneling area. Because the WFV has been studied, we know that the channel area
and the WFV have a high correlation [19,20]. The contents of this paper are as follows. In Section II,
the structure and dimension of the studied L-shaped TFET are explained. The WFV induced by the
grain of the metal gate is set reflecting the actual gate physical properties. In Section III, the quantitative
analysis is performed by confirming the location of metal grains and BTBT rate to monitor the variation
of ION, hump current (IHUMP) and ambipolar current (IAMB) of the L-shaped TFET.

2. Device Structure

The structure of L-shaped TFET for WFV analysis is shown in Figure 1a. It features that thin
intrinsic Si is deposited to restrict tunnel width for enhancing BTBT. All of the source, drain and channel
materials consist of Si. The body thickness (TB) of 20 nm, the lateral channel length (Lch) of 50 nm,
vertical tunneling thickness (Ltun) of 6 nm and the SiO2 gate oxide thickness (TOX) of 1 nm are applied.
p-type body doping (NB) of 1 × 1017 cm−3 is set. Then, both Si source and drain doping concentrations
(NS, ND) are set as 1 × 1020 cm−3 with opposite doping types Boron and Arsenic. For confirming
the effect for the area of the tunneling barrier, the source height (HS) is varied from 10 nm to 50 nm.
The gate area is split into 10 nm × 10 nm units considering the grain size of TiN and it is assumed to be
an identical square shape [21]. In the real fabrication process, the sputtered TiN is mainly crystallized
in <200> (60%) and in <111> (40%) which correspond to 4.6-eV and 4.4-eV WFs, respectively [19,22].
In order to compare with planar TFET as a control group, the planar TFET has the same parameter for
W, TB, Lch, NS, ND and NB (Figure 1b). All the specifications are summarized in Table 1.
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Table 1. Device parameters of devices used for technology computer-aided design (TCAD) simulation.

Parameters Value

Device L-shaped TFET Planar TFET
Source doping concentration (NS) 1020 cm−3 (p-type)
Drain doping concentration (ND) 1020 cm−3 (n-type)
Body doping concentration (NB) 1017 cm−3 (p-type)

Channel length (Lch) 50 nm
Channel width (W) 30 nm

Metal grain size 10 nm
Intrinsic layer thickness (TSi) 6 nm none
Gate oxide thickness (TOX) 1 nm

Drain voltage (VD) 1.0 V
Source height (HS) varied

The characteristics of the L-shaped TFET is simulated by the Synopsys SentaurusTM.
The Shockley–Read–Hall (SRH) and dynamic nonlocal BTBT model are used for accurate
characteristics [23,24]. The dynamic nonlocal BTBT model is essential to examine lateral- and vertical-
BTBT in the L-shaped TFET, since it can dynamically determine and calculate all tunneling paths
based on the energy band profile [3,25–27]. In detail, the BTBT model calibrated with experimental
results [28]. The BTBT generation rate per unit volume (G) defined as

G = A
(

F
F0

)P

exp
(
−

B
F

)
(1)

in the uniform electric field limit where F0 = 1 V/m and P = 2.5 for indirect tunneling [29].
The prefactor (A) and the exponential factor (B) are Kane parameters while the F is electric field [30,31].
The extracted A and B parameters of the BTBT model in Si TFET are 4×1014 cm−1s−1 and 9.9×106 V/cm,
respectively. Additionally, modified local density approximation (MLDA) is used for including quantum
phenomena [32,33]. The MLDA model is needed to calculate the confined carrier distributions, especially
inside the ultra-thin intrinsic Si tunnel region in which BTBT occurs. All the models are summarized in
Table 2.

Table 2. Models in TCAD simulation.

Definition Model

Bandgap narrowing Old slot boom
Fermi Statistic Fermi

Phonon scattering Constant mobility
Multi-valley for quantum confinement MLDA

SRH recombination SRH/TAT
Nonlocal BTBT Band to Band

WFV 4.6/4.4 eV (60%/40%) (Random generation)

3. Results and Discussion

Figure 2a shows the transfer characteristics of the planar TFET and L-shaped TFET with various
source heights (HS) at 1.0 V of drain voltages (VDS). In each case of HS, the 30 samples are simulated,
and each sample contains randomly generated TiN grains in the gate. The ION of the L-shaped
TFET increases as the HS increases. The result shows that the L-shaped TFET can improve the weak
drivability of ION, which is a weakness of TFET. In addition, the average S (Savg), defined as the average
inverse slope of the transfer curve while ID changes from 10−15 µA/µm to 10−11 µA/µm, is shown from
35 to 45 mV/decade for the L-shaped TFET which means that the L-shaped TFET suggests possible
applications for the low power operation [34,35]. In transfer curves, we measure three regions:
ION, IHUMP and IAMB variations. Each variation extracted the difference between the maximum and
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minimum values of the VGS values represented by each sample when the ION, IHUMP and IAMB are
formed. Firstly, the ION variation is investigated. The variation of ION is extracted from Figure 2a
at 10−9 A/µm of drain current (ID). For the ION variation, it is found that the greater the HS value,
the smaller the ION variation and the ION variation of the L-shaped TFET could be reduced compared
with that of the planar TFET (Figure 2b). For the planar TFET, the tunnel barrier that determines the
current, is formed only in the area adjacent to the source and channel [14,36]. This means that the ION

variation in planar TFET relies on the WFV in areas adjacent to the source, not on the whole area of the
gate. However, for the L-shaped TFET, the tunneling area affected by the WFV is relatively wider than
that of the planar TFET because the tunnel barrier is formed in the entire area where the source and
gate meet [1]. Figure 3a shows a sample produced by a random WFV. Inside the gate, 4.4 eV and 4.6 eV
grains are placed. Based on this sample, the vertical-BTBT generated in the source area can be found to
be high where the grain of 4.4 eV is located (Figure 3b). In other words, when the tunnel barrier has a
large area, the BTBT rate can have an average effect.
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Next, the IHUMP variation is investigated. For IHUMP, as reported in the previous papers,
the L-shaped TFET has vertical-BTBT and lateral-BTBT [37–39]. The lateral-BTBT is formed at low gate
bias (VGS) due to low VT, resulting in a hump phenomenon. As shown in Figure 4a, the variation of
IHUMP is extracted from Figure 2a at 10−13 A/µm of ID and it shows similar variations regardless of the
change in the HS value. To confirm this, we investigate two cases where the hump effect is high and low
(Figure 4b). In the transfer curves, the two samples have almost the same ION values, while the samples
have different IHUMP values. For the sample with a high hump effect shown in Figure 4c, a high BTBT
occurs mainly at the edge of the source area (Figure 4e). On the contrary, for the sample with a low
hump effect shown in Figure 4d, a low BTBT is confirmed (Figure 4f). Specifically, the lateral-BTBT is
measured highly where 4.4 eV grain is located in the source edge region, which causes a hump effect.
As a result, the hump phenomenon is not related to the intrinsic Si area because tunneling occurs only
at the edge of the source region.

Finally, the variation of the IAMB is investigated. As shown in Figure 5a, the variation of IAMB is
extracted from Figure 2a at 10−13 A/µm of ID. For IAMB variation, little dependency on the L-shaped
TFET is shown with HS values. To confirm this, we investigate two cases where the hump effect is
high and low (Figure 5b). In the transfer curves, it shows almost the same current in all regions except
the IAMB. As a result of confirming the high and low IAMB samples (Figure 5c,d), it can be found that
the BTBT occurs mainly in the edge of the drain at the gate, where there is a 4.6 eV grain (Figure 5e,
Figure 5f).
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In conclusion, the L-shaped TFET could be a solution to reduce ION variation for WFV in TFET.
However, the WFV reduction effect is not seen on whole electrical performance, especially for the
IHUMP and IAMB. These parameters are only affected by the edge region of the gate. Thus, for the
real application of the L-shaped TFET, the WFV improvement should proceed through simultaneous
applications of gate underlap technology that can reduce IAMB and the dual WF gate, reducing the
IHUMP [25,40,41].
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4. Conclusions

In this paper, the L-shaped TFET is investigated for WFV. We investigate all the variations divided
into ION, IHUMP, IAMB and study each variation. The improved results are shown for WFV in the
L-shaped TFET versus the planar TFET because the L-shaped TFET uses the wide tunnel barrier
region. Based on these results, it was confirmed that increasing the tunnel area in the TFET device
can be a method to decrease WFV. Therefore, the ION variation could be reduced by an increase in the
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tunneling region. However, the IHUMP and IAMB variations are relatively irrelevant to the size of the
tunneling region.
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