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Abstract: As an important actuator of the dual parallel jet, the porous nozzle has some non-structural
parameters (such as inlet pressure, nozzle spacing ratio, etc.) which have a significant influence on
energy transport, chemical combustion and pollutant generation. The research on the microfluidic
state of the porous nozzle dual parallel jet, however, remains insufficient because of its microjet
pattern and complex intersection process. In this paper, the authors used numerical simulation and
an experimental method to clarify the influence of porous nozzles’ non-structural parameters on
dual parallel jet characteristics. The results show that the inlet pressure only changes the pressure
peak value on the parallel jet axis; the starting point (SP) and peak point (PP) on the parallel jet axis,
which are located at Xsp = 22 mm and Xpp = 75 mm, respectively, are not changed; and with the
increase in the nozzle spacing ratio, the merging points (MPs) on the parallel jet axis are Xmp = 25 mm,
32 mm and 59 mm, respectively. The merging point and the combined point move to a farther distance
and the inner deflection angle of the jet is weakened.
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1. Introduction

The dual parallel jet is widely used in fluid energy transmission [1], atomic energy conversion [2],
dynamics [3], chemical industry [4], aviation [5], and other fields. And as an important actuator of the
dual parallel jet, the nozzle has a great influence on electrostatic distribution [6], three-dimensional
(3D) bioprinting [7], electro-osmotic fluid flow [8], jetting performance [9], metal microcomponents
picking [10], energy transport, chemical combustion and pollutant generation [11]. Thus, it is of great
significance to verify the parallel jet characteristics and microfluidic state in the nozzle by means of
numerical simulation and experiments. Finding a way of improving the dual parallel jet characteristics
by adjusting the non-structural parameters (such as inlet pressure, nozzle spacing ratio, etc.) has
become the common goal of domestic and foreign scholars [12–15].

In regard to the porous nozzle jet characteristics, Evans [16] studied the gas dispersion through
porous nozzles into down-flowing liquids, and the flow characteristics of a down-flowing gas–liquid
column incorporating a submerged entry porous nozzle system are considered. Okada [17] compared
the behavior of liquid films and droplets in the non-equilibrium region of a downward annular
mist flow under porous and central nozzle mixing methods, and displayed that the onset of large
disturbance waves was influenced remarkably by the mixing method. Syamir [18] showed that porous
treatments are beneficial to noise reduction, and Wei [19] obtained that the structure of the porous
nozzle plays a vital role in the full utilization of energy.

Regarding the inlet pressure influence on the characteristics of the parallel jet, Fujisawa [20]
studied the interaction of two parallel plane jets under two different inlet velocities, and found that the
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interaction of the two parallel jets weakened with the decrease in the jet velocity ratio; Khazaei [21]
found that the influence of the pressure of the dual parallel jet on the extraction effect is the most
significant among many factors; Tian [22] studied the influence of pressure and nozzle target distance
on jet impact pressure, and the results showed that both of them can effectively improve jet efficiency;
Assoudi [23] found that the velocity ratio has a significant influence on the mean velocity and turbulence
characteristics of the turbulent offset jet; Krishna Chandran [24] simulated the non-isothermal jet
mixing phenomena and obtained result that suggested that the jets with a unity velocity ratio showed
maximum temperature fluctuations; Wang [25] investigated the flow structure nearby a rectangular
cooling hole on a flat plate and proved that the asymmetric vortex system with a different velocity ratios
is stable; and Kwon [26] measured the heat transfer performance of the coolers for three electronic
device configurations with varied jet velocity.

Regarding the influence of the nozzle spacing ratio on the dual parallel jet characteristics, domestic
and foreign researchers have found that the characteristics of dual parallel jet are related to the ratio of
the nozzle axis spacing d to the nozzle width w (nozzle spacing ratio, d/w). Wang and Tan [27] proved
that the existence of Carmen vortex led to the periodic interaction between two jets when d/w = 1;
Mondal, Das, Guha, and Transfer [28] concluded that at 0.6 ≤ d/w ≤ 1.4, the peak value of jet velocity
decreases with an increase in the jets’ spacing ratio; Liu et al. [11] studied the jet characteristics of
rectangular nozzles, and found that the nozzle spacing ratio is linear with the merging point; Zhao and
Wang [29] found that the whole flow field periodically declines at 7≤ d/w≤ 8; and Manigandan et al. [30]
studied the aerodynamic mixing characteristics of the nozzle with an identical circular exit of the
spacing ratio where d/w = 3, and found that the mixing promoting capability decreases as the area of
the elliptical throat decreases.

The above-mentioned scholars have conducted a lot of research on the porous nozzle, but most of
them chose the liquid or gas–liquid mixture as the jet medium, and the research on the jet characteristics
with pure gas is still insufficient. However, the jet mixing characteristics of gas play a key role in
equipment cooling and jet cleaning, such as cooling of the blade passage and purging of steel surface.
Thus, it is particularly important to study the performance of gas jet mixing. Moreover, the mixing
characteristics of the parallel jet with porous nozzles are still unclear, and the law of the interaction
between jet columns remains to be explored. The mapping relationship between the microfluidic
characteristics and the operating parameters remains undiscovered, and the analysis of the influence
of the operating parameters on the jet region is still insufficient. Therefore, the authors take the porous
nozzle as the research subject, and numerical simulation and experiments are used to explore the
influence of two non-structural parameters (the inlet pressure and nozzle spacing ratio) on the pressure
and velocity distribution during parallel jet processes. The originality of this paper lies in the research
on the characteristics of parallel jets with porous nozzles with gas, the finding that there are two
confluences in the process, and the exploration of the influence of operation parameters on the jet
flow field.

2. Establishment of the Simulation Model

2.1. Arrangement of the Dual Parallel Jet

The structure of the porous nozzle is shown in Figure 1. There are four jet holes which are
symmetrically distributed at the center and eight fan-shaped bosses at the front of the nozzle to adjust
the air flow state and reduce noise. The middle of the nozzle is a hexagonal structure, which facilitates
the removal and installation of the nozzle; the rear thread of the nozzle is used to fix the nozzle.
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In the process of the dual parallel jet, the two nozzles are parallel and symmetrically arranged 
along symmetry plane 1, and the jet holes adjacent to the side are located on symmetry plane 2. The 
dual parallel jet arrangement of the porous nozzles is shown in Figure 2. 

 
Figure 2. Space arrangement of the porous nozzle dual parallel jet. 

2.2. Computational Domain 

In order to reduce the influence of the boundary on the jet flow field, the domain is set as a 
cylinder with a length of 1000 mm and a diameter of 500 mm. Considering the fact that the domain 
is symmetrical, a quarter of the domain is taken as the computational domain, which greatly reduces 
the simulation workload and shortens the research period. The computational domain for the dual 
parallel jet with porous nozzles is presented in Figure 3. 

Figure 1. Nozzle structure.

The specific dimensions of the porous nozzle are shown in Table 1.

Table 1. Nozzle structure parameters.

Parameter Value

diameter of the jet port D1 1 mm
internal diameter of the nozzle pipe D2 9 mm

nominal diameter of the thread D3 13 mm
height of the sector boss H1 2 mm
Height of the hexagon H2 8 mm

distance between the opposite sides of the hexagon H3 14 mm
distance between the opposite jet holes w 6 mm
distance between the two nozzle axes d 18/24/30 mm

In the process of the dual parallel jet, the two nozzles are parallel and symmetrically arranged
along symmetry plane 1, and the jet holes adjacent to the side are located on symmetry plane 2.
The dual parallel jet arrangement of the porous nozzles is shown in Figure 2.
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2.2. Computational Domain

In order to reduce the influence of the boundary on the jet flow field, the domain is set as a
cylinder with a length of 1000 mm and a diameter of 500 mm. Considering the fact that the domain is
symmetrical, a quarter of the domain is taken as the computational domain, which greatly reduces
the simulation workload and shortens the research period. The computational domain for the dual
parallel jet with porous nozzles is presented in Figure 3.

Three sets of mesh independence analysis are carried out. The grid size at the jet outlet is
0.1 mm and the grid size increases with the jet distance. The computational domain is meshed with
2,676,830 grids, as shown in Figure 4.
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2.3. Governing Equations

The basic equations of fluid mechanics include the continuity equation, the motion equation,
the energy equation and the state equation. The details are as follows:

The continuity equation:
∂ρ

∂t
+ div(ρv) = 0 (1)

The motion equation:

∂(ρu)
∂t

+ div(ρuv) = div(µgradu) −
∂p
∂x

+ Su (2)

∂(ρv)
∂t

+ div(ρvv) = div(µgradv) −
∂p
∂y

+ Sv (3)

∂(ρω)

∂t
+ div(ρωv) = div(µgradω) −

∂p
∂z

+ Sω (4)

The energy equation:

∂(ρT)
∂t

+ div(ρvT) = div
(

k
cp

gradT
)
+

ST

cp
(5)
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The state equation:
ρ = f (p, T) (6)

There are six equations in this system, including six unknowns: fluid velocity in three directions
u, v, ω, fluid pressure p, fluid temperature T, fluid density ρ. This system is closed, so it can solve the
most basic hydrodynamics problems. µ is dynamic viscosity, also known as the momentum diffusion
coefficient. Su, Sv, Sω, are the strain rates in different directions. Cp is the specific heat capacity,
1030 J/(kg·◦C). ST is the dissipation function of fluid velocity in three directions, namely, u, v, ω. K is
the thermal conductivity of air, 0.024 W/(m·◦C). In the initial state, the fluid velocity is 0, the fluid
pressures p of the inlet are 0.1, 0.3 and 0.5 Mpa, respectively, and the initial gas temperature T is 25 ◦C.

However, when describing the turbulent flow state, the Reynolds stress term, which represents
turbulence effect, is introduced due to the use of the Reynolds time average treatment in order to
ensure that the equations are not closed. Therefore, it is necessary to determine whether the jet flow
state is turbulent according to the following formula:

Re =
ρvD
µ

(7)

where Re is the Reynolds number, D is the diameter of the nozzle jet pipe, and v is the air velocity in
the jet direction. By substituting the data into the above formula, it is found that the Reynolds number
of the air jet of the porous nozzle is 6486, which is larger than the critical Reynolds number 2320 under
the circular tube; thus, the jet state is turbulent. At this time, we are required to introduce a turbulence
model to make the equations closed. The governing equation used throughout this paper is the k-ω
equation based on the SST (shear stress transport) model, shown as follows:

µ

ρ
=

ak
max(aω, SF2)

(8)

In the formula, F2 is a mixing function which constrains the wall layer as a limit number when the
free shear flow does not coincide with the assumption. S is a fixed estimate of the strain rate. a = 0.031
is a constant. The biggest advantage of using the SST model in this paper is that the turbulent shear
stress is considered, and the fluid separation at the beginning of flow and negative pressure gradient
can be accurately predicted in order to ensure that the eddy viscosity is not over-predicted.

2.4. Boundary Conditions

The boundary conditions are shown in Figure 5. The jet medium is constant air; the jet inlet is
set as the pressure inlet with a gauge pressure of 0.1–0.5 MPa; the front and rear jet outlets are set as
pressure outlets with a gauge pressure of 0 MPa; the symmetrical plane is set as the symmetry; and the
remaining boundaries are set as the wall. The specific boundary conditions are shown in the Table 2.Micromachines 2020, 11, x 6 of 14 
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Table 2. Boundary conditions.

Parameter Value

medium Constant air
pressure inlet 0.1/0.3/0.5 MPa

pressure outlets 0 Mpa
symmetrical plane Symmetry
other boundaries Wall

3. Simulation Results

3.1. Process of the Dual Parallel Jet with Porous Nozzles

The process of the parallel jet with porous nozzles includes two confluences. The four jet holes of
the single nozzle jet parallel along the nozzle axis form four independent jet columns, and the four jet
columns combine into a single flow column to complete the first confluences, as shown in Figure 6.
Then, the dual flow columns are combined twice to complete the secondary confluences, as shown in
Figure 7.
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Due to the existence of air viscous drag, when the jet air of the dual parallel jets carries the
stationary air in the surrounding area forward, the air gradually mixes and merges and a low-pressure
region in the middle ground is created. This low-pressure region causes backflow at the bottom of
the jet.

On the velocity field of the dual parallel jet, there are three regions along the jet axis: the converging
region, the merging region and the combined region [31–34]. On the parallel jet axis, the merging
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point (MP) is defined as the point where the backflow disappears and the axis velocity is zero, and the
combined point (CP) is defined as the point where the two parallel jets disappear and merge into
one and the axis velocity is at its maximum. The converging region spans from the jet outlet to the
merging point (MP), between the merging point (MP) and the combined point (CP) is the merging
region, and the combined region is after the combined point (CP).

For the division of the pressure region in the parallel jet process, there are also three regions along
the jet direction that are defined [35,36]: the low-pressure region, the boosting region and the reducing
region. On the parallel jet axis, the starting point (SP) is defined as the rapid rising point of the pressure
value from zero, and the peak point (PP) is defined as the highest point of pressure on the axis. The low
pressure region spans from the jet outlet of the nozzle to the starting point (SP), the boosting region
spans from the starting point (SP) to the peak point (PP), and the reducing region is after the peak
point (PP).

3.2. Influence of Inlet Pressure on Parallel Jet Characteristics

When the nozzle spacing ratio (d/w = 3) is fixed and the inlet pressure P is 0.1 MPa, 0.3 MPa and
0.5 MPa, respectively, the velocity and pressure contours of symmetry plane 2 are as shown in Figure 8.
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It can be seen from Figure 8a that as the inlet pressure increases, the jet column velocity increases
after the air exits from the jet holes. Thus, the first and secondary confluence effects are more significant,
the overall flow region of dual parallel jet is enlarged, and the overall flow velocity is increased, but the
low velocity area between the nozzles shrinks and the backflow is more significant. From the combined
velocity distribution and variation trend on the parallel jet axis, it can be observed that under different
inlet pressures, the merging point (MP) is distributed at the same point of X = 22 mm, and the position
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of the combined point (CP) is located at the same point of X = 75 mm. The merging point (MP) and
the combined point (CP) on the parallel jet axis do not change with the increase in inlet pressure,
which also means that the division of the converging region, merging region and combined region
does not change.

Therefore, in the process of the dual parallel jet with porous nozzles, the inlet pressure only affects
the value of velocity. The greater the inlet pressure, the larger the velocity of parallel jet and the
greater the peak value of velocity on the parallel jet axis. However, in the process of the dual parallel
jet, the velocity-change rule remains; that is, it converges first, then merges, and combined finally.
Additionally the axial ranges of the converging region and the merging region are fixed, always kept
within the range of X~(0 mm, 22 mm) and X~(22 mm, 75 mm) in order to ensure that the mixing
fluctuation range of the parallel jet is certain.

It can be seen from Figure 8b that with the increase in inlet pressure, the axial and radial ranges
of the jet column expand, which leads to the expansion of the pressure impact region of the first and
second confluences, and the overall flow region is widened. The low-pressure areas between the
nozzles and in the nozzles are narrowed, but the starting point (SP) and the peak point (PP), which are
located at X = 22 mm and X = 75 mm, respectively, on the parallel jet axis are not changed at the same
point as the velocity-merging point (MP) and velocity-combined point (CP). Moreover, the diversion of
the low pressure region, the boosting region and the reducing region does not change as well with the
increase in the inlet pressure. The velocity region corresponds to the pressure region.

3.3. Influence of the Nozzle Spacing Ratio on the Characteristics of the Parallel Jet

When the inlet pressure (P = 0.1 MPa) is fixed and the nozzle spacing d/w ratio is 3, 4 and 5,
respectively, the velocity and pressure contours on symmetrical plane 2 of the dual parallel jet are as
shown in Figure 9.
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It can be seen from Figure 9a that in the process of the first confluence, when the nozzle spacing
d/w ratio is 3, the outer jet column deflects significantly to the inner side under the influence of the
whole parallel jet, and its axial jet distance is longer than that of the inner jet column; when the nozzle
spacing ratio is d/w = 4, the inner deflection angle of the outer jet column decreases; and when the
nozzle spacing ratio is d/w = 5, the inner deflection angle of the outer jet column is significantly smaller
than that of the ratio when d/w = 3, and the outer jet column and the inner jet column on symmetry
plane 2 are nearly symmetrical. Therefore, with the increase in the nozzle spacing ratio, the influence
of the whole dual parallel jet on the first confluence decreases.

In the secondary confluence process, when the nozzle spacing ratios are d/w = 3, 4 and 5, the merging
points (MPs) on the parallel jet axis are 25 mm, 32 mm and 59 mm, respectively, and the combined
points (CPs) on the parallel jet axis are 80 mm, 108 mm and 135 mm, respectively. The merging
point (MP) and the combined point (CP) move backward gradually, and the ranges of converging
region, merging region and combined region expand correspondingly. The backflow phenomenon
weakens, and the low velocity area between the nozzles is grows. Thus, the merging region is extended,
which means that the jet stability is reduced and the dual parallel jet merges at a greater distance in the
axial direction.

It can be seen from Figure 9b that when the nozzle spacing d/w ratio is 3, 4 and 5, the pressure
starting point (SP) on the parallel jet axis is 27 mm, 38 mm and 69 mm, respectively, and the pressure
peak point (PP) is 80 mm, 102 mm and 132 mm, respectively. The changes in the pressure starting
point (SP) and peak point (PP) are consistent with the changes in the velocity-merging point (MP)
and the combined point (CP), and they all move to a farther distance with the increase in the nozzle
spacing ratio. The overall flow region expands along the axial direction and longitudinal direction.
The low-pressure region, the boosting region and the reducing region are expanded, and the dual
parallel jet converges at a greater distance; the secondary confluence has a smaller impact on the
primary confluence.

4. Experimental Result and Discussion

In this experiment, the pressure value on the parallel jet axis was collected and compared with
the simulation results. As shown in Figure 10, the experimental test system is mainly composed of
an operational interface, output buttons, a programmable logic controller, three-degree-of-freedom
nozzle-moving rails, porous nozzles, a pressure probe and an air compressor.
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The working parameters of the micromanometer are shown in Table 3.

Table 3. Working parameters of the micromanometer.

Parameter Value

range 0–±8000 Pa
accuracy class 0.5 FS

operation temperature 25 ◦C

When the nozzle spacing d/w ratio is 3 and the inlet pressure is 0.1 MPa, 0.3 MPa and 0.5 MPa,
respectively, the pressure of the dual parallel jet axis is as shown in Figure 12.Micromachines 2020, 11, x 11 of 14 
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It can be seen from Figure 12 that when the nozzle spacing ratio is fixed, the inlet pressure is
different and the pressure change in the parallel jet axis shows a similar trend of a slow decline after
a rapid rise from zero pressure. With the increase in inlet pressure, (1) the rate of pressure change
increases, (2) the peak pressure increases, and (3) the starting point (SP) and peak point (PP) do not
change. The results show that the pressure value and change rate of the parallel jet axis are related to
the inlet pressure, and at the same point on the parallel jet axis, the larger the inlet pressure, the higher
the pressure value and the greater the pressure change rate. However, the starting point (SP) and peak
point (PP) do not change with the increase in inlet pressure, and the division among the low pressure
region, boosting region and reducing region also has no effect. Thus, the inlet pressure can only affect
the peak value of the parallel jet with porous nozzles and the energy conversion of the confluence will
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increase accordingly, while the completed merging point does not change and the peak value always
appears at the same point. Accordingly, the optimum distance of nozzle jet cleaning does not change
with the increase in jet pressure.

When the inlet pressure is 0.1 MPa and the nozzle spacing d/w ratio is 3, 4 and 5, respectively,
the pressure change curves of the dual parallel jet axis are as shown in Figure 13.
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It can be seen from Figure 13 that under certain inlet pressure, the nozzle spacing ratio is different,
and the pressure change trends of the experiment and simulation on the parallel jet axis are the
same—both of them rise rapidly from zero pressure to their peak value, decline slowly, and finally
merge and decay. With the increase in the nozzle spacing ratio, (1) the starting point (SP) and the peak
point (PP) move backward; (2) the change rate of pressure becomes smaller and both rise and fall
speeds decrease; and (3) the peak value of pressure decreases.

This indicates that as the nozzle spacing ratio increases in the dual parallel jet process, the pressure
starting points (SP) and the peak point (PP) move backwards, causing the boosting region and the
reducing zone to move backwards accordingly and the dual parallel jet to merge further away from
the jet outlet. The pressure change rate of the boosting region is reduced, the pressure rise slows down,
the axial length of the boosting region increases, the parallel jets merge further away, the intensity of
energy conversion decreases in the process of parallel jet merging, the jet flow becomes more unstable,
the pressure peak decreases, and the jet impact effect weakens.

Liu [24] fitted the equation between Xpp and d/w by linear regression, and the peak point Xpp can
be forecasted through the equation. The equation is as follows:

Xpp = [3.79(
d
w
) + 2.02]w (9)

When the d/w ratio is 3, 4 and 5, respectively, the theoretical and average value of peak point Xpp

are as shown in Table 4. The errors between the average value and the theoretical value are 0.38%,
1.07% and 4.70%, respectively.

Table 4. Error statistics of peak point Xpp.

Spacing Ratio d/w Theoretical Value Average Value Error

3 80.3 mm 80 mm 0.38%
4 103.1 mm 102 mm 1.07%
5 125.8 mm 132 mm 4.70%
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The error between the average value in this paper and Liu’s theoretical prediction value is small,
so the analysis result is credible. The error increases with the increase in the nozzle spacing ratio,
because the stability of the parallel jet decreases and the mixing area of the jet extends along the axis,
causing the measurement accuracy to decrease.

5. Conclusions

(1) The process of the dual parallel jet with porous nozzles contains two confluences: (1) the single
nozzle jet columns merge into a flow column; and (2) the two flow columns merge into the whole flow
region, and then the flow recedes gradually.

(2) When the inlet pressure in the dual parallel jet is 0.1 MPa, 0.3 MPa, 0.5 MPa, the pressure and
velocity values and their change rate increase, and the overall jet region expands. However, the velocity
merging point (MP) and the combined point (CP) are consistent, always at Xmp = 22 mm, Xcp = 75 mm;
the pressure starting point (SP) and the peak point (PP) are maintained, always at Xsp = 22 mm and
Xpp = 75 mm. The pressure and velocity flow fields are consistent.

(3) When the nozzle spacing ratio increases from 3 to 5, the influence of the overall dual parallel
jet on the outer jet column weakens. The pressure starting points (SP) on the parallel jet axis are
Xsp = 27 mm, 38 mm and 69 mm, respectively, and the peak points PP are Xpp = 80 mm, 102 mm
and 132 mm, respectively. The two parallel jets merge further away from the jet outlet, and the
pressure-boosting region and -reducing region also move further away from the outlet correspondingly.
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