Combined Ammonia and Electron Processing of a Carbon-Rich Ruthenium Nanomaterial Fabricated by Electron-Induced Deposition

Markus Rohdenburg, Johannes E. Fröch, Petra Martinović, Charlene J. Lobo and Petra Swiderek

AFM Data of as-Deposited Pads before NH3 Treatment

Figure S1. AFM images and cross sections of (EtCp)₂Ru deposits on SiO₂/Si before treatment in an atmosphere of 0.11 mbar NH₃ by the 5 keV electron beam, with the times denoting the processing times used later in the experiment. The mean depth and standard deviation (shaded) are shown at the bottom.

AFM Data for Various Stages of NH₃ Treatment

Figure S2. AFM images and cross sections of (EtCp)₂Ru deposits on SiO₂/Si that have been treated in an atmosphere of 0.11 mbar NH₃ by the 5 keV electron beam for different processing times. Note the change in horizontal scale from 10 min to longer processing times.

Electron-Induced Reactions of NH3 with the Si Substrate

Figure S3. EDX spectra acquired after exposing the SiO₂/Si substrate in absence of a (EtCp)₂Ru to a 5 keV electron beam at a beam current of 10 nA in an atmosphere of 0.11 mbar NH₃ for 60 min (purple) and for a (EtCp)₂Ru deposit processed under the same conditions (red). The significantly increased N signal of the processed deposit indicates that electron-induced reactions of NH₃ with the Si substrate contribute only to a minor extent to the observed N incorporation into the deposits.

AFM Data for Various Stages of NH3 Treatment of H2O-Purified Deposits

Figure S4. AFM images and cross sections of (EtCp)₂Ru deposits on SiO₂/Si that have been treated in an atmosphere of 0.11 mbar NH₃ by the 5 keV electron beam for different processing times. The deposits had been pre-purified by water-assisted treatment before NH₃ treatment set in (5 keV, 0.13 mbar H₂O, 30 min).

ESD and TDS Data on Model Deposit Formation

Figure S5. Mass spectra recorded (**a**) during electron exposure of 40 mC/cm² at $E_0 = 31$ eV of an adsorbed layer of (EtCp)₂Ru with thickness of 13–20 ML on a Ta substrate held at 110 K, (**b**) before the start of irradiation, and (**c**) during dosing of (EtCp)₂Ru onto the Ta substrate. The peak groups seen in ESD in the range m/z 12–16 give evidence of desorption of CH₄; m/z 26–30 reveal desorption of C₂H₄ and C₂H₆. Signals at m/z 39 and 41 are small, pointing to very little desorption of species related to the Cp ring [9]. (**d**) TDS experiments performed directly after preparation of the precursor layer and after electron exposure of 40 mC/cm² at $E_0 = 31$ eV. After the temperature ramp terminated at 350 K, the temperature was rapidly increased to 450 K where it was held for 30 s in a final annealing step. The figure is taken from reference [9] of the main manuscript. Reprinted with permission from Markus Rohdenburg, Robert Winkler, David Kuhness, Harald Plank, and Petra Swiderek, ACS Applied Nano Materials, DOI: 10.1021/acsanm.0c01759. Copyright 2020, American Chemical Society.

TDS After NH3 Treatment

Figure S6. TDS of the volatile species present after ESD ($E_0 = 31 \text{ eV}$, 40 mC/cm²) of an NH₃ film condensed on top of an (EtCp)₂Ru model deposit.