
micromachines

Article

A Mobility Aware Binary Tree Algorithm to Resolve
RFID Jam and Bottleneck Problems in a Next
Generation Specimen Management System

Yen-Hung Chen 1,*, Yen-An Chen 2,* and Shu-Rong Huang 3

1 Department of Information Management, National Taipei University of Nursing and Health Sciences,
Taipei 112, Taiwan

2 Taipei Veterans General Hospital, Taipei 112, Taiwan
3 Department of Information Management, National Chiao Tung University, Hsinchu 300, Taiwan;

hsr.long@gmail.com
* Correspondence: yenhung@ntunhs.edu.tw or pplong@gmail.com (Y.-H.C.);

yenanchen7@gmail.com (Y.-A.C.)

Received: 2 July 2020; Accepted: 28 July 2020; Published: 4 August 2020
����������
�������

Abstract: Hospitals are continuously working to reduce delayed analysis and specimen errors during
transfers from testing stations to clinical laboratories. Radio-frequency identification (RFID) tags,
which provide automated specimen labeling and tracking, have been proposed as a solution to
specimen management that reduces human resource costs and analytic delays. Conventional RFID
solutions, however, confront the problem of traffic jams and bottlenecks on the conveyor belts that
connect testing stations with clinical laboratories. This mainly results from methods which assume
that the arrival rate of specimens to laboratory RFID readers is fixed/stable, which is unsuitable
and impractical in the real world. Previous RFID algorithms have attempted to minimize the time
required for tag identification without taking the dynamic arrival rates of specimens into account.
Therefore, we propose a novel RFID anti-collision algorithm called the Mobility Aware Binary Tree
Algorithm (MABT), which can be used to improve the identification of dynamic tags within the
reader’s coverage area and limited dwell time.

Keywords: RFID; tag identification; anti-collision; mobile tag; specimen management

1. Introduction

Currently, many medical institutions have begun using RFID [1–3] for the internal management
of drug administration, blood transfusions, patient identification, and surgical equipment, as well as
the collection of surgical information. Radio frequency identification is widely used in automated
identification systems. It is more convenient and immediate than traditional barcode systems, and there
is no need to handle the object to be identified. An RFID system includes a reader and several tags,
each with a unique identifier (ID), which allows the reader to identify all tags within its coverage
area via radio signals. However, collision, which means different tags send signals to the reader
simultaneously, may occur during the tag identification process. Collision causes that the reader cannot
immediately identify any tags that cause collisions, resulting in a waste of bandwidth resources and
prolonged tag identification time. In the medical field, accuracy and efficiency are vital. Therefore,
designing a good anti-collision algorithm for RFID tag identification is necessary.

Several RFID anti-collision algorithms have been proposed to improve the speed of tag
identification and minimize delays in the tag identification process. These RFID anti-collision algorithms
can be broadly categorized as Aloha-based [4,5] or Tree-based [6,7]. Aloha-based algorithms set up
an appropriate number of slots in a frame, which determines the frame length. During the recognition

Micromachines 2020, 11, 755; doi:10.3390/mi11080755 www.mdpi.com/journal/micromachines

http://www.mdpi.com/journal/micromachines
http://www.mdpi.com
https://orcid.org/0000-0003-2316-9055
http://www.mdpi.com/2072-666X/11/8/755?type=check_update&version=1
http://dx.doi.org/10.3390/mi11080755
http://www.mdpi.com/journal/micromachines

Micromachines 2020, 11, 755 2 of 21

process, these algorithms then work to minimize the frame length by observing the ratio of collisions
to successes in each frame. Tree-based algorithms, on the other hand, continuously divide the colliding
tags into two subgroups until each group has only one or no tags. Tree-based algorithms can be
further divided into Query tree (QT) algorithms and Binary tree (BT) algorithms. Collision tags for
QT algorithms are grouped according to the query conditions transmitted by the reader, while in BT
algorithms they are randomly selected as a binary value for grouping.

However, in the actual RFID environment, these traditional anti-collision algorithms do not
consider that tags continuously move in and out of the reader’s coverage area and dwell time within
the coverage area is limited, so they do not give priority to tags that are about to leave the coverage area.
Moreover, hospitals need to examine a huge number of specimens, and tags may be placed on anything
from specimens on a conveyor belt to packages of prescribed drugs for automatic sorting [8–12]. It is
important to consider not only the length of time during which tags stay in the reader’s coverage area,
but also a mechanism to prioritize the tags that are about to leave it.

A schedule-based anti-collision protocol (SAC) [13] solves the problem of identifying dynamic
tags moving in and out of the coverage area in the traditional algorithms described above. SAC uses
two readers to identify dynamic tags. The first reader assigns a group ID to each tag, while the
second identifies the tags and prioritizes those that are about to leave the coverage area based on
their group ID. However, SAC has two disadvantages. The first is that it uses a fixed frame length.
When the tags move faster, the number of tags that pass by is too great for the fixed frame length to
cope with. This results in a large number of collisions and a severely reduced recognition rate. Second,
the starvation problem of Aloha-based algorithms, in which tags are continuously colliding and cannot
be identified, also exists in SAC.

The goal of this study was to develop a novel RFID anti-collision algorithm to improve the
identification of dynamic tags. This algorithm, called the Mobility Aware Binary Tree Algorithm
(MABT), can be used to improve the identification of the dynamic tags within a reader’s coverage area
and limited dwell time. The MABT anti-collision algorithm has three features: (1) grouping to prioritize
tags that are about to leave the coverage area of the reader; (2) estimation of the number of tags and
setting of an appropriate number of time slots per frame (to reduce collisions due to different tags
choosing the same time slot, effectively use idle time slots, and increase the accuracy of recognition);
and (3) switching to BT identification when tags collide due to random selection, which can reduce
recognition time delays and effectively avoid hunger. The introduction of this novel anti-collision RFID
algorithm in the medical industry can result in greater precision, less manpower, and fewer errors in
specimen management, thus improving efficiency and patient safety.

2. Background

2.1. Overview of RFID System

Typically, existing RFID systems consist of a single reader and multiple tags, and they automatically
identify or track objects with the embedded or attached tags. Figure 1 shows some of the technical
terms used in the identification process. The frame is also called a recognition cycle and refers to the
time from which a reader sends a signal until it receives and processes a tag ID within its coverage
area. Therefore, the recognition process is divided into many frames. We define fi as the i frame,
which contains a set of slots. Each slot represents a kind of feedback the reader should send to the tag
based on the result of the received signal. We define Si, j as the j time slot in the i frame. It should be
noted that the status of each time slot can be classified into three types: Idle, Success, and Collision.
When the slot is Idle, there is no tag to respond to, and the reader will not receive any signal. Success
means that the reader can successfully decode the signal with the ID of one or more tags. If the reader
receives a signal but cannot decode any information from it, it is called a Collision slot. As shown in
Figure 2, a Collision is usually due to the slot sending a signal to the reader when two or more tags
choose the same slot.

Micromachines 2020, 11, 755 3 of 21

During the identification process, the reader broadcasts periodically (Broadcast), which means it
sends a query or message to each frame. If a tag within the reader’s identification coverage area meets
the query conditions, it will choose a time slot in which to respond to the reader with its ID. Ideally,
to maximize bandwidth usage, the number of time slots in a frame should be equal to the number of
tags within the reader’s coverage area. If the frame length is greater than the actual number of labels,
there may be time slots that are not effectively used; if the frame length is less than the actual number
of labels, the labels may suffer severe collisions. Therefore, the RFID reader must estimate changes in
the number of tags in order to properly determine frame length.

Micromachines 2020, 11, x 3 of 22

During the identification process, the reader broadcasts periodically (Broadcast), which means

it sends a query or message to each frame. If a tag within the reader’s identification coverage area

meets the query conditions, it will choose a time slot in which to respond to the reader with its ID.

Ideally, to maximize bandwidth usage, the number of time slots in a frame should be equal to the

number of tags within the reader’s coverage area. If the frame length is greater than the actual number

of labels, there may be time slots that are not effectively used; if the frame length is less than the actual

number of labels, the labels may suffer severe collisions. Therefore, the RFID reader must estimate

changes in the number of tags in order to properly determine frame length.

Figure 1. Relationship between frame and time slot.

Figure 2. Collisions in a radio-frequency identification (RFID) system.

2.2. Dynamic RFID System Model

A dynamic RFID system has a fixed RFID reader and several dynamic RFID tags which enter

and exit the coverage of the reader. Once commonly used in warehouses and stores for automatic

sorting and distribution, these systems are now also used in the medical field for specimen conveyor

belt management [8–12]. As shown in Figure 3, a conveyor belt moves the tags at a constant transport

rate of v. The reader is placed over the conveyor belt to detect the tags, which enter and leave the

reader’s fixed coverage area from left to right. Figure 3 shows two tags labeled Tag A and Tag B

entering the reader’s identification range at different times. If the two Tags A and B keep colliding

Figure 1. Relationship between frame and time slot.

Micromachines 2020, 11, x 3 of 22

During the identification process, the reader broadcasts periodically (Broadcast), which means

it sends a query or message to each frame. If a tag within the reader’s identification coverage area

meets the query conditions, it will choose a time slot in which to respond to the reader with its ID.

Ideally, to maximize bandwidth usage, the number of time slots in a frame should be equal to the

number of tags within the reader’s coverage area. If the frame length is greater than the actual number

of labels, there may be time slots that are not effectively used; if the frame length is less than the actual

number of labels, the labels may suffer severe collisions. Therefore, the RFID reader must estimate

changes in the number of tags in order to properly determine frame length.

Figure 1. Relationship between frame and time slot.

Figure 2. Collisions in a radio-frequency identification (RFID) system.

2.2. Dynamic RFID System Model

A dynamic RFID system has a fixed RFID reader and several dynamic RFID tags which enter

and exit the coverage of the reader. Once commonly used in warehouses and stores for automatic

sorting and distribution, these systems are now also used in the medical field for specimen conveyor

belt management [8–12]. As shown in Figure 3, a conveyor belt moves the tags at a constant transport

rate of v. The reader is placed over the conveyor belt to detect the tags, which enter and leave the

reader’s fixed coverage area from left to right. Figure 3 shows two tags labeled Tag A and Tag B

entering the reader’s identification range at different times. If the two Tags A and B keep colliding

Figure 2. Collisions in a radio-frequency identification (RFID) system.

2.2. Dynamic RFID System Model

A dynamic RFID system has a fixed RFID reader and several dynamic RFID tags which enter and
exit the coverage of the reader. Once commonly used in warehouses and stores for automatic sorting
and distribution, these systems are now also used in the medical field for specimen conveyor belt
management [8–12]. As shown in Figure 3, a conveyor belt moves the tags at a constant transport rate
of v. The reader is placed over the conveyor belt to detect the tags, which enter and leave the reader’s
fixed coverage area from left to right. Figure 3 shows two tags labeled Tag A and Tag B entering the
reader’s identification range at different times. If the two Tags A and B keep colliding during the
identification process, the reader’s inability to know which tag will leave the coverage area first makes
it impossible for the reader to identify them successfully within a limited time.

Micromachines 2020, 11, 755 4 of 21

Micromachines 2020, 11, x 4 of 22

during the identification process, the reader’s inability to know which tag will leave the coverage

area first makes it impossible for the reader to identify them successfully within a limited time.

Figure 3. Dynamic RFID system.

Models for dynamic tags can be classified according to two factors: the number of tags in the

interrogation zone (NT) and the distance between consecutive tags (DT). If NT maintains a constant

value at any time, it is called constant arrival, as shown in Figure 4. If NT changes over time, it is

called variable arrival. When DT is greater than or equal to the coverage area of reader (L), which

means that only one tag will be in coverage area at any given time, it is called isolated arrival.

Otherwise, it is called dynamic arrival.

Using different combinations of the factors NT and DT, four basic types of dynamic tag can be

formed: isolated constant arrival, isolated variable arrival, dynamic constant arrival, and dynamic

variable arrival. It should be noted that constant arrival and dynamic arrival do not conflict, because

the number of tags within the coverage area can be kept at a constant value by continuously changing

the number of tags in and out per time unit.

(a) Isolated constant arrival model

(b) Dynamic constant arrival model

Figure 4. Examples of dynamic tag models.

2.3. Discussion in Related Literature

RFID anti-collision algorithms are mainly Aloha-based [14,15] or Tree-based. In Aloha-based

algorithms, the recognition process is divided into many frames and an appropriate number of time

slots are included in each frame, which determines the length of the frame. The reader adjusts the

number of time slots based on the collision, success, and idle time of each time slot in the frame in an

attempt to minimize the frame length during the recognition process. Q algorithms and Dynamic

Frame Slotted Aloha (DFSA) algorithms are used to generate appropriate frame lengths. The former

uses the recognition result of each time slot in a frame to adjust the Q value (an integer) to restart a

new frame with a length of 2Q for random selection of unidentified labels. The latter directly sets the

frame length by estimating the number of tags and giving the appropriate number of time slots. One

method of estimation is the Low-bound method. A collision consists of at least two tags responding

Figure 3. Dynamic RFID system.

Models for dynamic tags can be classified according to two factors: the number of tags in the
interrogation zone (NT) and the distance between consecutive tags (DT). If NT maintains a constant
value at any time, it is called constant arrival, as shown in Figure 4. If NT changes over time, it is called
variable arrival. When DT is greater than or equal to the coverage area of reader (L), which means that
only one tag will be in coverage area at any given time, it is called isolated arrival. Otherwise, it is
called dynamic arrival.

Using different combinations of the factors NT and DT, four basic types of dynamic tag can be
formed: isolated constant arrival, isolated variable arrival, dynamic constant arrival, and dynamic
variable arrival. It should be noted that constant arrival and dynamic arrival do not conflict, because
the number of tags within the coverage area can be kept at a constant value by continuously changing
the number of tags in and out per time unit.

Micromachines 2020, 11, x 4 of 22

during the identification process, the reader’s inability to know which tag will leave the coverage

area first makes it impossible for the reader to identify them successfully within a limited time.

Figure 3. Dynamic RFID system.

Models for dynamic tags can be classified according to two factors: the number of tags in the

interrogation zone (NT) and the distance between consecutive tags (DT). If NT maintains a constant

value at any time, it is called constant arrival, as shown in Figure 4. If NT changes over time, it is

called variable arrival. When DT is greater than or equal to the coverage area of reader (L), which

means that only one tag will be in coverage area at any given time, it is called isolated arrival.

Otherwise, it is called dynamic arrival.

Using different combinations of the factors NT and DT, four basic types of dynamic tag can be

formed: isolated constant arrival, isolated variable arrival, dynamic constant arrival, and dynamic

variable arrival. It should be noted that constant arrival and dynamic arrival do not conflict, because

the number of tags within the coverage area can be kept at a constant value by continuously changing

the number of tags in and out per time unit.

(a) Isolated constant arrival model

(b) Dynamic constant arrival model

Figure 4. Examples of dynamic tag models.

2.3. Discussion in Related Literature

RFID anti-collision algorithms are mainly Aloha-based [14,15] or Tree-based. In Aloha-based

algorithms, the recognition process is divided into many frames and an appropriate number of time

slots are included in each frame, which determines the length of the frame. The reader adjusts the

number of time slots based on the collision, success, and idle time of each time slot in the frame in an

attempt to minimize the frame length during the recognition process. Q algorithms and Dynamic

Frame Slotted Aloha (DFSA) algorithms are used to generate appropriate frame lengths. The former

uses the recognition result of each time slot in a frame to adjust the Q value (an integer) to restart a

new frame with a length of 2Q for random selection of unidentified labels. The latter directly sets the

frame length by estimating the number of tags and giving the appropriate number of time slots. One

method of estimation is the Low-bound method. A collision consists of at least two tags responding

Figure 4. Examples of dynamic tag models.

2.3. Discussion in Related Literature

RFID anti-collision algorithms are mainly Aloha-based [14,15] or Tree-based. In Aloha-based
algorithms, the recognition process is divided into many frames and an appropriate number of time
slots are included in each frame, which determines the length of the frame. The reader adjusts the
number of time slots based on the collision, success, and idle time of each time slot in the frame in
an attempt to minimize the frame length during the recognition process. Q algorithms and Dynamic
Frame Slotted Aloha (DFSA) algorithms are used to generate appropriate frame lengths. The former
uses the recognition result of each time slot in a frame to adjust the Q value (an integer) to restart a new
frame with a length of 2Q for random selection of unidentified labels. The latter directly sets the frame
length by estimating the number of tags and giving the appropriate number of time slots. One method
of estimation is the Low-bound method. A collision consists of at least two tags responding at the same
time, so EstLow-bound = number of collisions × 2. Although Aloha-based algorithms are more suitable
for dynamic environments, they may lead to potential hunger problems.

Micromachines 2020, 11, 755 5 of 21

Tree-based algorithms continuously divide tags that have collided into two sub-groups until each
group has only one label or no labels exist. They can be further divided into QT algorithms [16,17] and
BT algorithms [18–20].

In QT algorithms, the reader first generates two queries, “0” and “1”, to the tags in the queue.
Then, these tags respond after comparing the prefix from their ID with the query q from the reader.
When a collision occurs in a slot, the reader extends two new queries, q+ “0”, q+ “1” into the queue
until all the tags are successfully identified when it becomes empty. In BT algorithms, there is a counter
for each tag and reader. The counter in the tag records the time slot when the tag has to wait. When the
tag’s counter zeroes, it sends its ID to the reader, and the reader’s counter records the time slot that is
waiting for the reader. Therefore, when the reader finishes recognition of the last slot, the counter goes
to −1, which means that all time slots have been processed. At this point, the grabber terminates the
frame. With tree-based algorithms, it may not be easy to estimate the number of unrecognized tags in
recognition under a dynamic situation, but, because of its short recognition delays, BT algorithms are
widely used in large, complex RFID systems.

However, traditional anti-collision algorithms were designed primarily for use in static RFID
systems and not for dynamic tags entering and leaving the reader’s coverage area. If a tag enters the
reader in frame fi, it will leave after frame fi + n whether the tag has been successfully identified or
not, which also indicates that the tag’s residence time in the coverage area is limited. The successful
identification rate will also dramatically decrease, once the arrival rate of the incoming tags is dynamic
(called a dynamic RFID system). This is because the conventional RFID anti-collision algorithms do
not distinguish the incoming order and movement direction of continuous incoming tags. Since the
reader cannot prioritize tags that are leaving the coverage area, the rate of successful identifications
will decrease as the conveyor belt moves faster. Therefore, RFID readers must be able to give priority to
tags that are about to leave coverage considering the continuous movement of tags and the relationship
between tags in a dynamic tag model, when these readers are set up to read continuously and
immediately find increments of incoming RFID tags.

SACs [13] solve the problem of limited time for identifying dynamic tags in the coverage area.
SAC algorithms use two readers to identify dynamic tags, as shown in Figure 5. The first is the
group reader, which assigns a group ID to the tags that have entered its coverage area; the smaller
a group ID is, the earlier that group has entered the coverage area. The second is an identification
reader. The mechanism for identifying tags in the coverage area is based on the group ID. Therefore,
the smaller is the group ID, the sooner it will leave the coverage area, and the higher its priority in
processing identification. However, SAC has two disadvantages. The first is that it uses a fixed frame
length. Because the number of labels is not estimated, it is easy to overestimate or underestimate the
actual required frame size. As labels move more quickly, the fixed frame length cannot handle the large
number of labels entering and leaving, which leads to an increase in the number of idle and collision
slots and a serious decrease in the recognition rate. The second problem is that SAC algorithms still
have the starvation problem of Aloha-based algorithms. Even if the group ID can be processed in
order, there are still cases that cannot be identified due to tags continuously colliding.

Micromachines 2020, 11, x 5 of 22

at the same time, so EstLow-bound = number of collisions × 2. Although Aloha-based algorithms are

more suitable for dynamic environments, they may lead to potential hunger problems.

Tree-based algorithms continuously divide tags that have collided into two sub-groups until

each group has only one label or no labels exist. They can be further divided into QT algorithms

[16,17] and BT algorithms [18–20].

In QT algorithms, the reader first generates two queries, “0” and “1”, to the tags in the queue.

Then, these tags respond after comparing the prefix from their ID with the query q from the reader.

When a collision occurs in a slot, the reader extends two new queries, q+ “0”, q+ ”1” into the queue

until all the tags are successfully identified when it becomes empty. In BT algorithms, there is a

counter for each tag and reader. The counter in the tag records the time slot when the tag has to wait.

When the tag’s counter zeroes, it sends its ID to the reader, and the reader’s counter records the time

slot that is waiting for the reader. Therefore, when the reader finishes recognition of the last slot, the

counter goes to −1, which means that all time slots have been processed. At this point, the grabber

terminates the frame. With tree-based algorithms, it may not be easy to estimate the number of

unrecognized tags in recognition under a dynamic situation, but, because of its short recognition

delays, BT algorithms are widely used in large, complex RFID systems.

However, traditional anti-collision algorithms were designed primarily for use in static RFID

systems and not for dynamic tags entering and leaving the reader’s coverage area. If a tag enters the

reader in frame fi, it will leave after frame fi + n whether the tag has been successfully identified or

not, which also indicates that the tag’s residence time in the coverage area is limited. The successful

identification rate will also dramatically decrease, once the arrival rate of the incoming tags is

dynamic (called a dynamic RFID system). This is because the conventional RFID anti-collision

algorithms do not distinguish the incoming order and movement direction of continuous incoming

tags. Since the reader cannot prioritize tags that are leaving the coverage area, the rate of successful

identifications will decrease as the conveyor belt moves faster. Therefore, RFID readers must be able

to give priority to tags that are about to leave coverage considering the continuous movement of tags

and the relationship between tags in a dynamic tag model, when these readers are set up to read

continuously and immediately find increments of incoming RFID tags.

SACs [13] solve the problem of limited time for identifying dynamic tags in the coverage area.

SAC algorithms use two readers to identify dynamic tags, as shown in Figure 5. The first is the group

reader, which assigns a group ID to the tags that have entered its coverage area; the smaller a group

ID is, the earlier that group has entered the coverage area. The second is an identification reader. The

mechanism for identifying tags in the coverage area is based on the group ID. Therefore, the smaller

is the group ID, the sooner it will leave the coverage area, and the higher its priority in processing

identification. However, SAC has two disadvantages. The first is that it uses a fixed frame length.

Because the number of labels is not estimated, it is easy to overestimate or underestimate the actual

required frame size. As labels move more quickly, the fixed frame length cannot handle the large

number of labels entering and leaving, which leads to an increase in the number of idle and collision

slots and a serious decrease in the recognition rate. The second problem is that SAC algorithms still

have the starvation problem of Aloha-based algorithms. Even if the group ID can be processed in

order, there are still cases that cannot be identified due to tags continuously colliding.

Figure 5. Schedule-based anti-collision protocol (SAC) algorithm setup. Figure 5. Schedule-based anti-collision protocol (SAC) algorithm setup.

Micromachines 2020, 11, 755 6 of 21

3. Materials and Methods

This study proposes a motion-aware binary tree algorithm (MABT) to improve the identification of
dynamic tags with limited dwell time in a reader’s coverage area. The goal is to achieve an acceptable
tag recognition rate in an environment of high-density tag quantities and high-speed tag movement
by combining the advantages Aloha-based and Tree-based anti-collision algorithms. Aloha-based
algorithms are suitable for a dynamic environment by randomly select time slots within a given frame
length during the recognition process. Tree-based algorithms are characterized with specific query
conditions sent by the reader, which can shorten recognition delays during the recognition process and
ensure that hunger does not occur.

In Section 3.1, we explain how to determine optimal frame length, then describe the operational
flow of the MABT algorithm in Section 3.2, and give an example of the MABT algorithm in Section 3.3.

3.1. Determining Optimal Frame Length

With dynamic tags, an RFID anti-collision algorithm needs to achieve two goals: workload
optimization and identification deadline prioritization. Workload is defined as the number of tags
competing for the same time slot at the same time; identification deadline is defined as the time point
before each tag leaves the coverage area. The priority of workload optimization is to maintain a stable
quantity of accurate identifications, which means the identification rate should be greater than the
moving speed of the conveyor belt. The identification deadline prioritization ensures that the tag
can be detected early when it enters the end of the reader’s coverage area, which means that tags at
the back of the coverage area will have higher recognition priority than those in the front or newly
entered tags.

To optimize the workload, it is necessary to estimate the number of tags to be processed in
each frame. Both the number of unrecognized tags and the number of newly entered tags must be
estimated. Precisely estimating the total number of tags and giving appropriate time slots helps avoid
the unnecessary waste of time slots or excessive collisions, but the complexity of estimation may lead
to longer recognition delay times or missed opportunities to identify labels. Therefore, it is important
to calculate the number of frames and slots for tags to randomly select based on successfully identified
tags, unrecognized tags due to collision, and expected increase of new tags.

According to RFID time series and historical data in dynamic RFID environments, if the time series
can reasonably be postponed, then past data can be used to predict the future. Although unrecognized
tags can still be estimated in traditional algorithms, they cannot be directly used to determine frame
length because the extra tags (or tag groups) must be considered. Therefore, this paper proposes to use
the exponential smoothing method to estimate the number of labels to determine optimal frame length;
that is, to use the weighted average of the past time series to smooth the data, and use the smoothed
weighted average as the predicted value for the next period. The basic formula for this exponential
smoothing method is shown in Equation (1):

Ft+1 = α×Xt + (1− α) × Ft (1)

Ft is the predicted value in period t; Ft + 1 is the predicted value in period t + 1; Xt is the
actual demand value in period t; and α is the smoothing constant, i.e., the error correction coefficient.
As a sensitivity adjustment to the prediction error, its value must be between 0 and 1. If α is closer to
0, past observations will be weighted more heavily. By contrast, when α is closer to 1, more recent
observations are weighted. The exponential smoothing method has two additional attributes: distance
from the forecast period and number of observed data sets. This is because a larger weight should
be given to observation values closer to the forecast period or larger numbers of observed datasets.
The purpose here is not to abandon past observations, but to give them a gradually weakening degree
of influence.

Micromachines 2020, 11, 755 7 of 21

Finally, based on the attributes described above and the method for estimating unidentified labels
proposed by Cha and Kim [4,18], a new equation (Equation (2)) for dynamic environments can be
derived in which Nsucc represents each superframe and FNcoll represents the number of time slots for
each collision within a frame.

Ft+1 = α× (FNcoll × 2.3922 + Nsucc) + (1− α) × Ft (2)

Identification deadline prioritization refers to how to allocate the best group size. The faster is the
speed, the more tags will enter the coverage area, resulting in a severely increased rate of collisions.
To effectively solve this problem, it is necessary to limit the number of tags so that they can respond in
the frame to reduce collisions. This concept is called pre-grouping. In addition to being able to achieve
a low rate of collisions by limiting the tags that can respond in the frame, an optimal group size also
gives tags that are about to leave the reader’s coverage area a higher recognition priority than tags
that have just entered. By estimating the average number of tags in each time slot that the reader is
broadcasting to, the time interval of each broadcast can be adjusted using the exponential smoothing
method, so that each group can be made up of the most suitable number of labels.

Newly added tags and unrecognized tags need to be counted for estimation, and α will adopt
a specific value because it is in a stable state over the long-term.

3.2. MABT Algorithm

To achieve the above two goals, the MABT algorithm uses two RFID readers and two stages of
identification processing, as shown in Figure 6. The setup is shown in Figure 6a. The grouping reader
is on the left, while the identification reader is on the right. The two readers are both equipped with
single antenna. It should be noted that the grouping reader is placed before the identification reader,
which means the tags will not be recognized until they are grouped. Furthermore, the distance between
two RFID readers and the corresponding conveyor belt should be adjusted based on the triangulation
and strength of radio signal regarding the tag identification environment.

The MABT algorithm is divided into two stages. The first stage is assigning a group ID to a tag,
and the second stage is identifying the tag. The purpose of the first stage is to arrange the most
appropriate quantity of tags to the same group ID through the group reader, so that the number of
tags in each group is as similar as possible. The purpose of the second stage is to effectively use the
time slots and decrease the probability of collisions between labels. Finally, the two stages are cycled
to continuously identify the tags. (1) The appropriate frame length is provided by estimating the
number of tags to be identified. (2) A BT algorithm is used to resolve time slots when collisions occur.
(3) When the accumulated number of time slots reaches the default interruption standard, it will stop
recognizing the current frame and initialize recognition of the next frame. The default interruption
standard mentioned above refers to the length of the super frame, which is the accumulated time slots
used, as shown in Figure 6b. During the identification process, each frame has j time slots. In the BT
method, when time slot collisions occur, two new time slots are generated, after which identification
continues in the new time slot. Conversely, if a time slot is successfully identified or idle, no new
time slot will be generated. When a new time slot is generated, the number of time slots used also
accumulates; thus, when the preset super frame length is reached, the identification of this frame
will end.

The receiveGroupingReader function is executed at each time slot, where the frame length f
indicates that there are f time slots in the frame, and that time slot s is coded from 1 to f.

The flowchart of MABT is shown in Figure 7, and the detailed operations among the grouping
reader, identification reader, and tag are explained in Figures 8–10. The readers are capable of initializing
and receiving messages. The symbols for and definitions of related parameters are described in Table 1.

Micromachines 2020, 11, 755 8 of 21
Micromachines 2020, 11, x 8 of 22

.

(a)

(b)

Figure 6. Concept of mobility aware binary tree algorithm (MABT): (a) MABT identification algorithm

design; and (b) relationship between super frame and time slot.

The flowchart of MABT is shown in Figure 7, and the detailed operations among the grouping

reader, identification reader, and tag are explained in Figures 8–10. The readers are capable of

initializing and receiving messages. The symbols for and definitions of related parameters are

described in Table 1.

Table 1. Definition of related parameters.

Parameter Definition

L Coverage area of identity reader

d Average distance between adjacent tags

p Average density of tags per meter on the conveyor belt

f Frame length

s, s.id, cumSlot time slot, time slot code, accumulated number of time slots

Ni, Ns, Nc

Fi, Fs, Fc

Total number of idle slots, success slots, and collision slots

Number of idle, success, and collided states of the original frame

frameId ID of frame

curGroupId ID of currently identified group

maxGroupId Maximum allowable number of group IDs

groupLen Total number of groups on the conveyor belt

groupNum Total number of groups within the coverage of the reader

groupSize Average number of tags in group

Finish [x] Number of identified tags in group x

breakPoint Restricted identification time under each super frame

RC Reader time slot counter

TC Time slot counter for each tag

Figure 6. Concept of mobility aware binary tree algorithm (MABT): (a) MABT identification algorithm
design; and (b) relationship between super frame and time slot.

Table 1. Definition of related parameters.

Parameter Definition

L Coverage area of identity reader
d Average distance between adjacent tags
p Average density of tags per meter on the conveyor belt
f Frame length

s, s.id, cumSlot time slot, time slot code, accumulated number of time slots
Ni, Ns, Nc
Fi, Fs, Fc

Total number of idle slots, success slots, and collision slots
Number of idle, success, and collided states of the original frame

frameId ID of frame
curGroupId ID of currently identified group
maxGroupId Maximum allowable number of group IDs

groupLen Total number of groups on the conveyor belt
groupNum Total number of groups within the coverage of the reader
groupSize Average number of tags in group
Finish [x] Number of identified tags in group x
breakPoint Restricted identification time under each super frame

RC Reader time slot counter
TC Time slot counter for each tag

Micromachines 2020, 11, 755 9 of 21

Micromachines 2020, 11, x 9 of 22

Figure 7. Flowchart of MABT.

The packet reader agreement (Figure 8) is the first stage in Figure 6. It is responsible for assigning

a group ID to the tag. In the initGroupingReader function, curGroupId and f are broadcast to the tag

by defining a “groupIdAssign” command equivalent to the query condition. After receiving the

command, the tag signals back a message which is used as a basis for determining whether the tag is

within the coverage area of the reader, and also as a reference for adjusting the frame length. When

the judgment result of s.id == f on Line 2 is true, (Ns + Nc) > 0 is further used to determine whether

there is a label in the coverage area. When the result is true to indicate that there is a label, a curGroupId

value is added; if there is no label, the curGroupId value is not changed. Line 7 adjusts the frame length

of the next broadcast based on Ni, Ns, Nc, Fi, Fs, and Fc in each frame to suit the current belt speed.

Protocol: MPBS Grouping Reader Operation

Variable: f, groupSize

Function: initGroupingReader()

curGroupId = 1

broadcat curGroupId and f using “groupIdAssign”

command to assign a group id to the tags

Function: receiveGroupingReader(time slot s)

add Ni, Ns, Nc, Fi, Fs , Fc correspondingly

if (s.id == f) then {

If (Ns+Nc) > 0 then {

 curGroupId ++

}end

}end

f = α × (2.3922 × Fc + Ns) + (1 - α) × f
goto initGroupingReader line 2

1.

2.

1.

2.

3.

4.

5.

6.

7.

8.

Figure 8. Code for group reader.

Figure 7. Flowchart of MABT.

The packet reader agreement (Figure 8) is the first stage in Figure 6. It is responsible for assigning
a group ID to the tag. In the initGroupingReader function, curGroupId and f are broadcast to the
tag by defining a “groupIdAssign” command equivalent to the query condition. After receiving the
command, the tag signals back a message which is used as a basis for determining whether the tag is
within the coverage area of the reader, and also as a reference for adjusting the frame length. When the
judgment result of s.id == f on Line 2 is true, (Ns + Nc) > 0 is further used to determine whether there
is a label in the coverage area. When the result is true to indicate that there is a label, a curGroupId
value is added; if there is no label, the curGroupId value is not changed. Line 7 adjusts the frame length
of the next broadcast based on Ni, Ns, Nc, Fi, Fs, and Fc in each frame to suit the current belt speed.

Micromachines 2020, 11, x 9 of 22

Figure 7. Flowchart of MABT.

The packet reader agreement (Figure 8) is the first stage in Figure 6. It is responsible for assigning

a group ID to the tag. In the initGroupingReader function, curGroupId and f are broadcast to the tag

by defining a “groupIdAssign” command equivalent to the query condition. After receiving the

command, the tag signals back a message which is used as a basis for determining whether the tag is

within the coverage area of the reader, and also as a reference for adjusting the frame length. When

the judgment result of s.id == f on Line 2 is true, (Ns + Nc) > 0 is further used to determine whether

there is a label in the coverage area. When the result is true to indicate that there is a label, a curGroupId

value is added; if there is no label, the curGroupId value is not changed. Line 7 adjusts the frame length

of the next broadcast based on Ni, Ns, Nc, Fi, Fs, and Fc in each frame to suit the current belt speed.

Protocol: MPBS Grouping Reader Operation

Variable: f, groupSize

Function: initGroupingReader()

curGroupId = 1

broadcat curGroupId and f using “groupIdAssign”

command to assign a group id to the tags

Function: receiveGroupingReader(time slot s)

add Ni, Ns, Nc, Fi, Fs , Fc correspondingly

if (s.id == f) then {

If (Ns+Nc) > 0 then {

 curGroupId ++

}end

}end

f = α × (2.3922 × Fc + Ns) + (1 - α) × f
goto initGroupingReader line 2

1.

2.

1.

2.

3.

4.

5.

6.

7.

8.

Figure 8. Code for group reader. Figure 8. Code for group reader.

Micromachines 2020, 11, 755 10 of 21

Micromachines 2020, 11, x 10 of 22

Function: receiveIdenReader(time slot s)

add Ni, Ns, Nc, Fi, Fs , Fc correspondingly

RC = s.id

while (RC >= s.id) do {

cumSlot++

if (RC == s.id) then {

listen to signals

if (no signal) then {

RC = RC – 1

respond idle()

}end

}else {

if (an ID is decoded) then {

extract tagId and groupId of the tag, store tagId

finish[groupId]++

RC = RC -1

respond successful()

}else {

RC = RC + 1

respond collision()

}end

}end

if (cumSlot == breakPoint) then{

maxGroupId = maxGroupId + 1

break

}end

}end

f = α × (2.3922 × Fc + Ns) + (1 - α) × f
goto initIdenReader line 4

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Protocol: MPBS Identification Reader Operation

Input : L, p, groupLen, groupSize, breakPoint, f

Variable: groupNum, frameId, curGroupId, maxGroupId,

 finish, cumSlot, RC

Function: initIdenReader()

groupNum = (L ∙ p)/groupSize

frameId = 1, curGroupId = 1, finish[1: groupLen] = 0

maxGroupId = curGroupId, cumSlot = 0

While (curGroupId < groupLen) do {

while finish[curGroupId] == groupSize do {

curGroupId++

}end

while ((curGroupId + groupNum) < maxGroupId) do {

curGroupId++

}end

maxGroupId = max(curGroupId, maxGroupId)

}end

broadcast maxGroupId and f using“query” command to

begin the identification of a new frame

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

Figure 9. Code for identification reader.

Figure 9 is the identification reader protocol. When identifying tags, it uses the tracking group

ID to determine which tags to prioritize. L, p, and breakPoint are defined as input parameters in the

system model; f and breakPoint are the default values; groupLen is the total number of groups on the

conveyor belt. If this value is unknown, the user can simply set a large enough value. The groupSize

is the number of tags in a group. If the conveyor speed is known in advance, the number of tags can

be calculated. Otherwise, the optimal group size in SAC [13] is used.

In the initIdenReader function, Lines 1–3 initialize the decision variable which resets cumSlot to

zero for subsequent usage of the time slot. Lines 4–12 refresh the curGroupId and maxGroupId at the

beginning of each new frame as a baseline for tracking to control workloads. Lines 5–7 add one group

after the next group has been identified, and Lines 8–12 exclude groups that have left the coverage

area of the identification reader. Line 11 obtains the largest identifiable group ID value based on the

Figure 9. Code for identification reader.

Figure 9 is the identification reader protocol. When identifying tags, it uses the tracking group
ID to determine which tags to prioritize. L, p, and breakPoint are defined as input parameters in the
system model; f and breakPoint are the default values; groupLen is the total number of groups on the
conveyor belt. If this value is unknown, the user can simply set a large enough value. The groupSize is
the number of tags in a group. If the conveyor speed is known in advance, the number of tags can be
calculated. Otherwise, the optimal group size in SAC [13] is used.

In the initIdenReader function, Lines 1–3 initialize the decision variable which resets cumSlot to
zero for subsequent usage of the time slot. Lines 4–12 refresh the curGroupId and maxGroupId at the
beginning of each new frame as a baseline for tracking to control workloads. Lines 5–7 add one group

Micromachines 2020, 11, 755 11 of 21

after the next group has been identified, and Lines 8–12 exclude groups that have left the coverage area
of the identification reader. Line 11 obtains the largest identifiable group ID value based on the above
results. Finally, on Line 13, the identification reader sends a “query” command containing curGroupId
and f to the tags.

The receiveIdenReader function uses the BT algorithm to identify each time slot, and cumSlot for
accumulated time slot usage as the basis for interruption of identification. On Line 1, Ni, Ns and Nc are
the cumulative number of idle, successful, and collisions in time slot k. Fi, Fs and Fc are the number
of idle, successful, and collisions in the first layer of the frame, which is the status of j. Lines 2–26
identify the conditions in each time slot using the BT algorithm. Line 2 makes RC equal to the current
time slot code. Lines 22–25 observe time slot usage to control the identification time limit. Thus,
when the cumulative number of slots (cumSlot) meets the preset breakpoint (breakpoint), the current
identification of this group is ended. The rest of the tags participates in the identification of the next
frame together with next group and increases the value of maxGroupId. Line 27 estimates the length of
the next frame according to Ni, Ns, Nc, Fi, Fs, and Fc. Line 28 returns to the initIdenReader function to
start a new round of frames.

Micromachines 2020, 11, x 11 of 22

above results. Finally, on Line 13, the identification reader sends a “query” command containing

curGroupId and f to the tags.

The receiveIdenReader function uses the BT algorithm to identify each time slot, and cumSlot for

accumulated time slot usage as the basis for interruption of identification. On Line 1, Ni, Ns and Nc

are the cumulative number of idle, successful, and collisions in time slot k. Fi, Fs and Fc are the number

of idle, successful, and collisions in the first layer of the frame, which is the status of j. Lines 2–26

identify the conditions in each time slot using the BT algorithm. Line 2 makes RC equal to the current

time slot code. Lines 22–25 observe time slot usage to control the identification time limit. Thus, when

the cumulative number of slots (cumSlot) meets the preset breakpoint (breakpoint), the current

identification of this group is ended. The rest of the tags participates in the identification of the next

frame together with next group and increases the value of maxGroupId. Line 27 estimates the length

of the next frame according to Ni, Ns, Nc, Fi, Fs, and Fc. Line 28 returns to the initIdenReader function

to start a new round of frames.

Variable: TC

Function: receiveTag()

TC = 0

if (received “groupIdAssign” command that it is

curGroupId and f from the grouping reader) then{

record curGroupId

reply an arbitrary short message

}end

if (received “query” command that it is

maxGroupId and f from the identification reader &&

groupId <= maxGroupId) then {

reply as basic frame slotted protocol

record TC = randomly selected slot of frame

}end

if (received “query” command that it is TC from

the identification reader) then {

reply as basic binary splitting protocol

}end

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

Protocol: MPBS Tag Operation

Figure 10. Tag code operation.

Figure 10 shows the operational details of the label agreement. Each label has a TC with an initial

value of 0. On Lines 2–5, the tag receives the “query” command from the grouping reader, records

the curGroupId as the groupId, and then returns a short message. On Lines 6–9, when a “query” from

the reader is received, it checks whether the groupId of the tag is no more than the maxGroupId

command. If the condition is satisfied, the tag will randomly select a time slot using the Aloha-based

algorithm and set the value of TC to the selected time slot. On Lines 10–12, when the tag receives the

“query” from the identification reader asking for the TC condition, it responds with the BT algorithm.

3.3. MABT Example

In this section, an example is used to illustrate the MABT algorithm. Figure 11 is an example of

MABT. In frame i, it is assumed that there are four tags—labeled A, B, C, and D—for Group 1. In

frame i + 1, four tags for Group 2—E, F, G and H—are added. Figure 11a–d shows information related

to the identification tags. A tag randomly selects a time slot in the frame and sets the TC value to that

time slot. The reader sequentially identifies each time slot and sets the RC value of the query condition

as the time slot during judgment. The judgment method is based on the BT algorithm. The difference

is that the query condition is based on the time slot instead of 0. When a tag has been successfully

Figure 10. Tag code operation.

Figure 10 shows the operational details of the label agreement. Each label has a TC with an initial
value of 0. On Lines 2–5, the tag receives the “query” command from the grouping reader, records the
curGroupId as the groupId, and then returns a short message. On Lines 6–9, when a “query” from the
reader is received, it checks whether the groupId of the tag is no more than the maxGroupId command.
If the condition is satisfied, the tag will randomly select a time slot using the Aloha-based algorithm
and set the value of TC to the selected time slot. On Lines 10–12, when the tag receives the “query”
from the identification reader asking for the TC condition, it responds with the BT algorithm.

3.3. MABT Example

In this section, an example is used to illustrate the MABT algorithm. Figure 11 is an example of
MABT. In frame i, it is assumed that there are four tags—labeled A, B, C, and D—for Group 1. In frame
i + 1, four tags for Group 2—E, F, G and H—are added. Figure 11a–d shows information related to the
identification tags. A tag randomly selects a time slot in the frame and sets the TC value to that time

Micromachines 2020, 11, 755 12 of 21

slot. The reader sequentially identifies each time slot and sets the RC value of the query condition as
the time slot during judgment. The judgment method is based on the BT algorithm. The difference
is that the query condition is based on the time slot instead of 0. When a tag has been successfully
identified, it is set to −1 because it will be quiet and no longer participate in recognition. The parameter
cumSlot is used not only to calculate how many time slots are to be used in this frame, but also as the
basis for the break point. Suppose that the frame will be interrupted after eight time slots. Even if,
as in in Figure 11b, tag A can be successfully identified at the 10th time slot, the reader will be forced to
end the identification of this frame at the eighth time slot. The purpose of this mechanism to limit
identification time is to set a breakpoint to avoid time delays caused by repeated collisions. However,
the unrecognized tags in frame i will continue the recognition process in frame i + 1 and can be in the
same frame with different groups at the same time. There are two points worth noting. First, regardless
of the TC value of the tag, a time slot must be randomly selected at the beginning of each new frame.
In Figure 11b,d, TC = 3 for label A in frame i, but TC = 1 in frame i + 1. Second, the frame length is
adjusted after frame recognition is completed or interrupted, which brings the number of time slots in
the frame closer to the number of tags to be identified and reduces the chance of collision. Thus, in the
example, the following information can be obtained in the i frame: the frame length Ft = 4, the time
slot where the original frame experienced collision FNcoll = 2, the number of successfully identified
labels Nsucc = 3, and a = Case of 0.6. Thus, frame i + 1 becomes 8 according to Equation (2).

Micromachines 2020, 11, x 12 of 22

identified, it is set to −1 because it will be quiet and no longer participate in recognition. The

parameter cumSlot is used not only to calculate how many time slots are to be used in this frame, but

also as the basis for the break point. Suppose that the frame will be interrupted after eight time slots.

Even if, as in in Figure 11b, tag A can be successfully identified at the 10th time slot, the reader will

be forced to end the identification of this frame at the eighth time slot. The purpose of this mechanism

to limit identification time is to set a breakpoint to avoid time delays caused by repeated collisions.

However, the unrecognized tags in frame i will continue the recognition process in frame i + 1 and

can be in the same frame with different groups at the same time. There are two points worth noting.

First, regardless of the TC value of the tag, a time slot must be randomly selected at the beginning of

each new frame. In Figure 11b,d, TC = 3 for label A in frame i, but TC = 1 in frame i + 1. Second, the

frame length is adjusted after frame recognition is completed or interrupted, which brings the

number of time slots in the frame closer to the number of tags to be identified and reduces the chance

of collision. Thus, in the example, the following information can be obtained in the i frame: the frame

length Ft = 4, the time slot where the original frame experienced collision FNcoll = 2, the number of

successfully identified labels Nsucc = 3, and a = Case of 0.6. Thus, frame i + 1 becomes 8 according to

Equation (2).

(a)

(b)

Figure 11. Cont.

Micromachines 2020, 11, 755 13 of 21
Micromachines 2020, 11, x 13 of 22

(c)

(d)

Figure 11. MABT example: (a) frame i; (b) parameters of frame i; (c) frame i + 1; and (d) parameters of

frame i + 1.

4. Results

We conducted a simulation to evaluate the performance of the MABT and SAC algorithms and

compared recognition rates based on the movement speeds of different conveyor belts and tag

cooperation. Recognition rate refers to how many tags have been successfully identified out of the

total number of tags. The movement rate equals one unit of movement per second. The combination

of tags can consider three measurement indicators: average distance, average density, and

recognition breakpoint. The purpose of including these three factors was to evaluate: (a) whether the

tags could be read within the time limit; (b) the results when there are a large number of tags within

the time limit; and (c) the pros and cons of using the time slot and the tag group.

To ensure a fair comparison of the MABT and SAC algorithms, the simulated environment

settings used were identical, as shown in Figure 12. The environmental parameters of the system

model are shown in Table 2. The preset values were set to L = 15 m, d = 50 cm, and T0 = 15 ms. Other

values were adjusted according to different simulation purposes. In addition, the MABT algorithm

estimates optimal frame length by estimating the number of labels. Therefore, the initial frame size

setting was a fixed frame size using the SAC algorithm as the initial value. Since MABT and SAC use

the same estimation formula to determine optimal group size, the same value can be used.

Figure 11. MABT example: (a) frame i; (b) parameters of frame i; (c) frame i + 1; and (d) parameters of
frame i + 1.

4. Results

We conducted a simulation to evaluate the performance of the MABT and SAC algorithms
and compared recognition rates based on the movement speeds of different conveyor belts and tag
cooperation. Recognition rate refers to how many tags have been successfully identified out of the
total number of tags. The movement rate equals one unit of movement per second. The combination
of tags can consider three measurement indicators: average distance, average density, and recognition
breakpoint. The purpose of including these three factors was to evaluate: (a) whether the tags could be
read within the time limit; (b) the results when there are a large number of tags within the time limit;
and (c) the pros and cons of using the time slot and the tag group.

To ensure a fair comparison of the MABT and SAC algorithms, the simulated environment settings
used were identical, as shown in Figure 12. The environmental parameters of the system model are
shown in Table 2. The preset values were set to L = 15 m, d = 50 cm, and T0 = 15 ms. Other values
were adjusted according to different simulation purposes. In addition, the MABT algorithm estimates
optimal frame length by estimating the number of labels. Therefore, the initial frame size setting was
a fixed frame size using the SAC algorithm as the initial value. Since MABT and SAC use the same
estimation formula to determine optimal group size, the same value can be used.

Micromachines 2020, 11, 755 14 of 21
Micromachines 2020, 11, x 14 of 22

Figure 12. Simulated environment.

The simulator adopted in this study is extended by simulator developed by our previous works

[21–24]. To ensure the experiments were simulated in a verisimilar environment, we derived the

corresponding numerical analysis model in Ref. [21–24] by the following equations.

The total number of slots consumed by BT to identify n tags, denoted by SBT(n), can be

represented as

SBT(𝑛) = RBT(𝑛) + CBT(𝑛) + IBT(𝑛) (3)

 = ∑ (
𝑛
𝑖

) 2−𝑛[1 + SBT(𝑖) + SBT(𝑖 − 1)]

𝑛

𝑖=0

=
1 + 2 ∙ 2−𝑛 ∑ (

𝑛
𝑖

) SBT(𝑖)𝑛−1
𝑖=0

1 − 2 ∙ 2−𝑛
, {

SBT(0) = 1

SBT(1) = 1
}

where RBT(n), CBT(n), and IBT(n) are the numbers of readable slots, collision slots, and idle slots,

respectively. RBT(n), CBT(n), and IBT(n) can be derived as

𝑅𝐵𝑇(𝑛) = 𝑛 (4)

𝐶𝐵𝑇(𝑛) = ∑ (
𝑛
𝑖

) 2−𝑛[1 + 𝐶𝐵𝑇(𝑖) + 𝐶𝐵𝑇(𝑖 − 1)]

𝑛

𝑖=0

 =
1 + 2 ∙ 2−𝑛 ∑ (

𝑛
𝑖

) 𝐶𝐵𝑇(𝑖)𝑛−1
𝑖=0

1 − 2 ∙ 2−𝑛
, {

𝐶𝐵𝑇(0) = 0

𝐶𝐵𝑇(1) = 0
}

(5)

𝐼𝐵𝑇(𝑛) = ∑ (
𝑛
𝑖

) 2−𝑛[𝐼𝐵𝑇(𝑖) + 𝐼𝐵𝑇(𝑛 − 𝑖)]

𝑛

𝑖=0

 =
2 ∙ 2−𝑛 ∑ (

𝑛
𝑖

) 𝐼𝐵𝑇(𝑖)𝑛−1
𝑖=0

1 − 2 ∙ 2−𝑛
, {

𝐼𝐵𝑇(0) = 1

𝐼𝐵𝑇(1) = 0
}

(6)

Our designed simulator was validated by Equations (3)–(6) in our previous works [21–24], which

demonstrated the mathematical analysis results match the simulation results of our designed RFID

simulator very well.

Figure 12. Simulated environment.

The simulator adopted in this study is extended by simulator developed by our previous
works [21–24]. To ensure the experiments were simulated in a verisimilar environment, we derived
the corresponding numerical analysis model in Ref. [21–24] by the following equations.

The total number of slots consumed by BT to identify n tags, denoted by SBT(n), can be
represented as

SBT(n) = RBT(n) + CBT(n) + IBT(n) (3)

=
n∑

i=0

(
n
i

)
2−n[1 + SBT(i) + SBT(i− 1)]

=

1+2·2−n ∑n−1
i=0

 n
i

SBT(i)

1−2·2−n ,
{

SBT(0) = 1
SBT(1) = 1

}
where RBT(n), CBT(n), and IBT(n) are the numbers of readable slots, collision slots, and idle slots,
respectively. RBT(n), CBT(n), and IBT(n) can be derived as

RBT(n) = n (4)

CBT(n) =
n∑

i=0

(
n
i

)
2−n[1 + CBT(i) + CBT(i− 1)]

=

1+2·2·n
∑n−1

i=0

 n
i

CBT(i)

1−2·2−n ,
{

CBT(0) = 0
CBT(1) = 0

} (5)

IBT(n) =
n∑

i=0

(
n
i

)
2−n[IBT(i) + IBT(n− i)]

=

2·2−n ∑n−1
i=0

 n
i

IBT(i)

1−2·2−n ,
{

IBT(0) = 1
IBT(1) = 0

} (6)

Our designed simulator was validated by Equations (3)–(6) in our previous works [21–24],
which demonstrated the mathematical analysis results match the simulation results of our designed
RFID simulator very well.

Micromachines 2020, 11, 755 15 of 21

Table 2. Definition of parameters in the simulated environment.

Parameter Definition

r Identification rate
L Identification reader coverage
d Average distance between adjacent tags
v Moving speed of tag on the conveyor belt

column Average number of tags per line on the conveyor belt
p Average tag density per meter on the conveyor belt

T0 Duration of time slot
breakPoint Identification deadline in each frame

As shown in Figure 13, the rate of the conveyor belt was one meter per second (1 m/s),
and measurements were in units of 0.5 m. The performance of SAC and MABT in terms of MAD
(mean absolute deviation), MSE (mean square error), and MAPE (mean absolute percent error) are
also demonstrated in Figure 13. This paper discusses the impact of the highest recognition rate within
the time limit when distances between tags are the same and fixed, and when they are not the same,
but maintain an average distance. Figure 13a,b shows one row of labels on the conveyor with a label
density of 2. Figure 13c,d shows two rows of labels on the conveyor, with a label density of 4. As the
results of Figure 13, the MAD, MSE, and MAPE values of MABT are significantly lower than those of
SAC. This means the successful identification rate of MABT is significantly higher than SAC.

Specifically, Figure 13a shows that, as the rate of the conveyor belt sped up, so did the number of
tags entering the coverage area of the reader per second, so that the tag recognition rate gradually
declined. The recognition rate of MABT began to decrease after the speed reached 13 m/s, and the
recognition rate of SAC began to decrease continuously after the speed reached 10 m/s. This is because,
in the SAC algorithm, when the number of labels in the coverage area was larger, the fixed frame length
was insufficient to cope with a circumstance in which the amount of labels is larger than the frame
length. On the other hand, when there was no estimated frame, it was easy to underestimate the number
of tags, which led to an excessive amount of collisions during the identification process. In comparison,
MABT performed excellently at higher speeds. As shown in Figure 13b, the distance between tags was
averaged, but the distance between each tag was different. At a speed of 11 m/s, the SAC recognition
rate was only 39.95%, while the MABT recognitions rate was still 97.60%, a difference of nearly 60%.
There are two reasons for this: (1) The MABT algorithm used a more accurate estimation of optimal
frame size so that the frame could quickly adjust the number of processes required, greatly reducing
the incidence of underestimated labels. (2) When distance was exponentially assigned, it meant that
the number of tags entered per second was also different, but an average value was maintained. In
addition to avoiding excessive collisions, the use of dynamic frames also reduced unnecessary time slot
waste. With as rates increased, the difference in recognition rate between the two narrowed. However,
under the requirement of maximum movement rate and better the recognition rate, MABT significantly
improved on SAC (Figure 13b). To maintain a recognition rate of more than 90%, SAC could only be
about 9.9 m/s at the most, while MABT could reach about 11.4 m/s, which is equivalent to processing
22.8 labels per second. When the density of tags on the conveyor belt was further increased, as shown
in Figure 13c,d, it can be seen that, when the distance between tags was fixed, the difference between
the two recognition rates was about 30%. The difference in recognition rates of the two was about 10%
when the distance between tags was not uniform. Therefore, Figure 13 shows that, in the context of
dynamic labels on a conveyor belt, to achieve the highest recognition rate in a limited time, the MABT
algorithm provides high recognition performance at high rates of speed.

Figure 14 shows that, at a fixed rate and fixed intervals, the identification rate changes when the
average number of tags per line changes from 2 to 5. For example, suppose the moving speed of the
conveyor is 4 m/s and there are a large number of tags within the time limit, i.e., the impact on the
recognition rate when the number of tags on each line is the same and fixed and when the number of
tags is changed.

Micromachines 2020, 11, 755 16 of 21
Micromachines 2020, 11, x 16 of 22

(a)

(b)

Figure 13. Cont.

Micromachines 2020, 11, 755 17 of 21
Micromachines 2020, 11, x 17 of 22

(c)

(d)

Figure 13. Average distance between tags: (a) fixed distance with one tag/column; (b) variable

distance with one tag/column; (c) fixed distance with two tags/column; and (d) variable distance with

two tags/column.

Figure 14 shows that, at a fixed rate and fixed intervals, the identification rate changes when the

average number of tags per line changes from 2 to 5. For example, suppose the moving speed of the

conveyor is 4 m/s and there are a large number of tags within the time limit, i.e., the impact on the

recognition rate when the number of tags on each line is the same and fixed and when the number of

tags is changed.

Figure 14 also demonstrates that the MAD, MSE, and MAPE values of MABT are lower than that

of SAC. This means the successful identification rate of MABT is higher than SAC even when the tag

arrival rate is fixed. As shown in Figure 14a,b, the average number of labels on each line of the

Figure 13. Average distance between tags: (a) fixed distance with one tag/column; (b) variable distance
with one tag/column; (c) fixed distance with two tags/column; and (d) variable distance with two
tags/column.

Figure 14 also demonstrates that the MAD, MSE, and MAPE values of MABT are lower than that
of SAC. This means the successful identification rate of MABT is higher than SAC even when the
tag arrival rate is fixed. As shown in Figure 14a,b, the average number of labels on each line of the
conveyor is 2 and average label density is 4. The average number of tags entering coverage per second
is 16. The average number of labels on each line of the conveyor is 3 and the average label density is 6.
The average number of tags entering coverage per second is 24. The difference is that, in Figure 14a,

Micromachines 2020, 11, 755 18 of 21

there is a fixed number in each row, while, in Figure 14b, the number in each row is different but the
total average is the same as that of Figure 14a. In the pursuit of maximum density combined with an
acceptable recognition rate, MABT is a significant improvement on SAC. The reason can be seen in
Figure 13, which shows that, when density on the conveyor belt increases, it becomes more difficult for
the reader to identify the tags. If the fixed frame length of SAC is adopted, collisions are more likely to
occur. MABT adjusts the optimal frame size more quickly by more accurately estimating collisions and
the expected increase in the number of tags. Although the difference in the recognition rate between
two algorithm decreases as the speed of the conveyor belt increases, when we compared the difference
in recognition rates at three labels per line, SAC comes in at about 82.20%, while MABT is at 98.85% in
both Figure 14a,b.

Micromachines 2020, 11, x 18 of 22

conveyor is 2 and average label density is 4. The average number of tags entering coverage per second

is 16. The average number of labels on each line of the conveyor is 3 and the average label density is

6. The average number of tags entering coverage per second is 24. The difference is that, in Figure

14a, there is a fixed number in each row, while, in Figure 14b, the number in each row is different but

the total average is the same as that of Figure 14a. In the pursuit of maximum density combined with

an acceptable recognition rate, MABT is a significant improvement on SAC. The reason can be seen

in Figure 13, which shows that, when density on the conveyor belt increases, it becomes more difficult

for the reader to identify the tags. If the fixed frame length of SAC is adopted, collisions are more

likely to occur. MABT adjusts the optimal frame size more quickly by more accurately estimating

collisions and the expected increase in the number of tags. Although the difference in the recognition

rate between two algorithm decreases as the speed of the conveyor belt increases, when we compared

the difference in recognition rates at three labels per line, SAC comes in at about 82.20%, while MABT

is at 98.85% in both Figure 14a,b.

(a)

(b)

Figure 14. Average tag number per column: (a) fixed n tags/line; and (b) average n tags/line. Figure 14. Average tag number per column: (a) fixed n tags/line; and (b) average n tags/line.

The purpose of setting a break point is to ensure that the limited time slots can be properly used
to reduce the number of idle time slots and collision time slots, thereby increasing the probability of
successful tag identification. Therefore, Figures 15 and 16 show the effect of the break point on the

Micromachines 2020, 11, 755 19 of 21

usage of the time slots and the label groups. Figure 15 shows the total idle time slots for SAC and
MABT during the identification process. The figure shows that, from 4.5 to 6 m/s, the total number
of idle time slots required by MABT as a whole is about 19% less than SAC. There are two possible
reasons for the small difference between the speeds of 4.5 and 5.5 m/s. One is that the recognition rate
of both algorithms is nearly 90% or more and the other is either that the recognition rate of the reader
is greater than the moving speed of the conveyor belt or that the interval between the tags is greater
than the coverage of the reader. It is impossible to avoid the occurrence of a slot when idle.

Micromachines 2020, 11, x 19 of 22

The purpose of setting a break point is to ensure that the limited time slots can be properly used

to reduce the number of idle time slots and collision time slots, thereby increasing the probability of

successful tag identification. Therefore, Figures 15 and 16 show the effect of the break point on the

usage of the time slots and the label groups. Figure 15 shows the total idle time slots for SAC and

MABT during the identification process. The figure shows that, from 4.5 to 6 m/s, the total number of

idle time slots required by MABT as a whole is about 19% less than SAC. There are two possible

reasons for the small difference between the speeds of 4.5 and 5.5 m/s. One is that the recognition rate

of both algorithms is nearly 90% or more and the other is either that the recognition rate of the reader

is greater than the moving speed of the conveyor belt or that the interval between the tags is greater

than the coverage of the reader. It is impossible to avoid the occurrence of a slot when idle.

Figure 15. Total number of time slots used at different rates.

In addition, Figure 16 shows that improper break points may also cause a low recognition rate.

When the number of time slots at the break point is 14 or fewer, no matter what the rate is, the slower

is the occurrence of the break point, the higher is the recognition rate, which reduces influence

between groups. However, when the number of time slots at the break point is more than 14 time

slots, there is no significance. A possible reason for this is that the value of the break point is too large.

It also means that the break point is larger than the average number of the actual time slots, thus it

does not affect the number of groups or time slots at all.

Figure 16. Identification rate of different velocities at different breakpoints.

Figure 15. Total number of time slots used at different rates.

In addition, Figure 16 shows that improper break points may also cause a low recognition rate.
When the number of time slots at the break point is 14 or fewer, no matter what the rate is, the slower is
the occurrence of the break point, the higher is the recognition rate, which reduces influence between
groups. However, when the number of time slots at the break point is more than 14 time slots, there is
no significance. A possible reason for this is that the value of the break point is too large. It also means
that the break point is larger than the average number of the actual time slots, thus it does not affect
the number of groups or time slots at all.

Micromachines 2020, 11, x 19 of 22

The purpose of setting a break point is to ensure that the limited time slots can be properly used

to reduce the number of idle time slots and collision time slots, thereby increasing the probability of

successful tag identification. Therefore, Figures 15 and 16 show the effect of the break point on the

usage of the time slots and the label groups. Figure 15 shows the total idle time slots for SAC and

MABT during the identification process. The figure shows that, from 4.5 to 6 m/s, the total number of

idle time slots required by MABT as a whole is about 19% less than SAC. There are two possible

reasons for the small difference between the speeds of 4.5 and 5.5 m/s. One is that the recognition rate

of both algorithms is nearly 90% or more and the other is either that the recognition rate of the reader

is greater than the moving speed of the conveyor belt or that the interval between the tags is greater

than the coverage of the reader. It is impossible to avoid the occurrence of a slot when idle.

Figure 15. Total number of time slots used at different rates.

In addition, Figure 16 shows that improper break points may also cause a low recognition rate.

When the number of time slots at the break point is 14 or fewer, no matter what the rate is, the slower

is the occurrence of the break point, the higher is the recognition rate, which reduces influence

between groups. However, when the number of time slots at the break point is more than 14 time

slots, there is no significance. A possible reason for this is that the value of the break point is too large.

It also means that the break point is larger than the average number of the actual time slots, thus it

does not affect the number of groups or time slots at all.

Figure 16. Identification rate of different velocities at different breakpoints. Figure 16. Identification rate of different velocities at different breakpoints.

5. Conclusions

We propose the MABT algorithm to deal with the problem of dynamic tag identification
performance, and to achieve an acceptable tag identification rate at high tag densities and high
tag movement speeds. The MABT responds more accurately to tags in a rapidly changing conveyor
belt transmission environment. It can estimate the next appropriate frame length from current tag

Micromachines 2020, 11, 755 20 of 21

identification status, which leads to effective use of idle time slots and reduced collisions. It also
achieves better workload optimization and identification time prioritization. Simulation results indicate
that MABT recognition rate increases by about 20% over SAC when the rate of movement is 6 m/s and
average label density is 4 per meter. Additionally, at a rate of movement of 4 m/s while recognition
rate is kept at 98%, the average label density per meter increases by about 17%. Therefore, in addition
to solving problems with traditional algorithms, MABT also has significant advantages over existing
SAC algorithms. The proposed MABT algorithm can be implemented by using Request Type B (REQB)
command and Slot Marker Command in the RFID firmware based on the chosen commercial RFID
system [25,26].

The two factors in the dynamic tag model combine to make four kinds of dynamic tags: a single
fixed quantity, a single variable quantity, a dynamic fixed quantity, and a dynamic variable quantity.
At present, MABT can only be considered a solution for single fixed quantities and dynamic fixed
quantities. Therefore, in the future, we will further adjust the MABT algorithm to make it better
integrate into different applications and scenarios [27–30].

Author Contributions: Conceptualization, Y.-H.C. and S.-R.H.; methodology, Y.-A.C. and S.-R.H.; software,
Y.-A.C.; validation, Y.-A.C.; formal analysis, Y.-A.C. and S.-R.H.; investigation, S.-R.H.; resources, Y.-H.C.;
data curation, Y.-A.C. and S.-R.H.; writing—original draft preparation, S.-R.H. and Y.-A.C.; writing—review
and editing, Y.-A.C.; visualization, Y.-A.C.; supervision, Y.-H.C.; project administration, Y.-A.C.; and funding
acquisition, Y.-H.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Ministry of Science and Technology of the R.O.C., for financially
supporting this research under Contract Nos. MOST 108-2221-E-227-002, MOST 109-2221-E-227-001, and
MOST 109-2218-E-011-007.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Information Technology—Radio Frequency Identification for Item Management—Part 6: Parameters for Air Interface
Communications at 860 MHz to 960 MHz General; ISO/IEC, 18000-6; ISO: Geneva, Switzerland, 2013.

2. EPC TM Radio-Frequency Identity Protocols Class 1 Generation-2 UHF RFID Protocol for Communications at
860-960MHz Version 1.2.0; EPCglobal Inc. TM: Bruxelles, Belgium, 2008.

3. Azambuja, M.; Marcon, C.A.M.; Hessel, F.P. Survey of standardized ISO 18000-6 RFID anti-collision protocols.
In Proceedings of the Second International Conference on Sensor Technologies and Applications, Washington,
DC, USA, 25–31 August 2008; pp. 468–473.

4. Cha, J.-R.; Kim, J.-H. Dynamic framed slotted ALOHA algorithms using fast tag estimation method for RFID
system. In Proceedings of the 3rd IEEE Consumer Communications and Networking Conference, Las Vegas,
NV, USA, 8–10 January 2006; Volume 2, pp. 768–772.

5. Vogt, H. Efficient object identification with passive RFID tags. In Proceedings of the First International
Conference on Pervasive Computing, Zürich, Switzerland, 26–28 August 2002; pp. 98–113.

6. Namboodiri, V.; Gao, L. Energy-aware tag anti-collision protocols for RFID systems. In Proceedings of the
Fifth Annual IEEE International Conference on Pervasive Computing and Communications, White Plains,
NY, USA, 19–23 March 2007; pp. 23–36.

7. Law, C.; Lee, K.; Siu, K.-Y. Efficient memoryless protocol for tag identification. In Proceedings of the 4th
International Workshop on Discrete Algorithms and Methods for Mobile Computing and Communications,
Boston, MA, USA, 11 August 2000; pp. 75–84.

8. Saygin, C.; Natarajan, B. RFID-based baggage-handling system design. Sens. Rev. 2010, 30, 324–335. [CrossRef]
9. Wang, X.; Wang, D. Experimental study on RFID performance factors of conveyor belt system using DOE

methodology. In Proceedings of the Second International Conference on the Future Networks, Washington,
DC, USA, 22–24 January 2010; pp. 139–143.

10. HKIA Boosts Baggage Handling Efficiency with RFID Technology; Hong Kong International Airport: Hongkong,
China, 15 January 2008. Available online: http://www.hongkongairport.com/eng/media/press-releases/pr_
914.html (accessed on 23 June 2014).

11. Roberti, M. Wal-Mart begins RFID rollout. RFID J. 2004. Available online: http://www.rfidjournal.com/

articles/view?926 (accessed on 23 June 2014).

http://dx.doi.org/10.1108/02602281011072215
http://www.hongkongairport.com/eng/media/press-releases/pr_914.html
http://www.hongkongairport.com/eng/media/press-releases/pr_914.html
http://www.rfidjournal.com/articles/view?926
http://www.rfidjournal.com/articles/view?926

Micromachines 2020, 11, 755 21 of 21

12. Bacheldor, B. China post deploys EPC RFID system to track mailbags. RFID J. 2006. Available online:
http://www.rfidjournal.com/articles/view?2487 (accessed on 23 June 2014).

13. Zhu, W.; Cao, J.; Chan, H.; Liu, X.; Raychoudhury, V. Mobile RFID with a high identification rate. IEEE Comput.
Trans. 2013, 63, 1778–1792.

14. Farooq, M.U.; Asif, M.; Nabi, S.W.; Qureshi, M.A. Optimal adjustment parameters for EPC global RFID
anti-collision Q-Algorithm in different traffic scenarios. In Proceedings of the 2012 10th International
Conference on the Frontiers of Information Technology (FIT), Islamabad, Pakistan, 17–19 December 2012;
pp. 302–305.

15. Cha, J.-R.; Kim, J.-H. Novel anti-collision algorithms for fast object identification in RFID system.
In Proceedings of the 11th International Conference on the Parallel and Distributed Systems, Fukuoka, Japan,
20–22 July 2005; Volume 2, pp. 63–67.

16. Myung, J.; Lee, W.; Srivastava, J.; Shih, T.K. Tag-splitting: Adaptive collision arbitration protocols for RFID
tag identification. IEEE Trans. Parallel Distrib. Syst. 2007, 18, 763–775. [CrossRef]

17. Chiang, K.W.; Hua, C.; Yum, T.-S.P. Prefix-randomized query-tree protocol for RFID systems. In Proceedings
of the IEEE International Conference on Communications, Surathkal, India, 20–23 December 2006; Volume 4,
pp. 1653–1657.

18. Cho, J.-S.; Shin, J.-D.; Kim, S.K. RFID tag anti-collision protocol: Query tree with reversed IDs. In Proceedings
of the 10th International Conference on in Advanced Communication Technology, Gangwon-Do, Korea,
17–20 February 2008; Volume 1, pp. 225–230.

19. Choi, J.; Lee, I.; Du, D.-Z.; Lee, W. FTTP: A fast tree traversal protocol for efficient tag identification in RFID
networks. IEEE Commun. Lett. 2010, 14, 713–715. [CrossRef]

20. Yeh, M.-K.; Jiang, J.-R.; Huang, S.-T. Adaptive splitting and pre-signaling for RFID tag anti-collision. Comput.
Commun. 2009, 32, 1862–1870. [CrossRef]

21. Lai, Y.-C.; Lin, C.-C. Two blocking algorithms on adaptive binary splitting: Single and pair resolutions for
RFID tag identification. IEEE/ACM Trans. Netw. 2009, 17, 962–975.

22. Lai, Y.-C.; Hsiao, L.-Y.; Lin, B.-S. Optimal slot assignment for binary tracking tree protocol in RFID tag
identification. IEEE/ACM Trans. Netw. 2015, 23, 255–268. [CrossRef]

23. Jayadi, R.; Lai, Y.-C.; Lin, C.-C. Efficient time-oriented anti-collision protocol for RFID tag identification.
Comput. Commun. 2017, 112, 141–153. [CrossRef]

24. Hailemariam, Z.L.; Lai, Y.-C.; Jayadi, R.; Chen, Y.-H.; Huang, S.-C. A knowledge-based query tree with
shortcutting and couple-resolution for RFID tag identification. Comput. Commun. 2020. [CrossRef]

25. Texas Instruments, Implementation of the ISO14443B Protocol in the TI TRF796x, Application Report:
SLOA137. 2009. Available online: https://www.ti.com/lit/an/sloa137/sloa137.pdf?ts=1595071408062 (accessed
on 20 June 2020).

26. Fernández-Caramés, T.M.; Fraga-Lamas, P.; Suárez-Albela, M.; Castedo, L. A Methodology for evaluating
security in commercial RFID systems. In Radio Frequency Identification; Paulo, C.C., Tales, C.P., Eds.;
IntechOpen: London, UK. [CrossRef]

27. Abbasian, A.; Safkhani, M. CNCAA: A new anti-collision algorithm using both collided and non-collided
parts of information. Comput. Netw. 2020. [CrossRef]

28. Deng, F.; Zuo, P.; Wen, K.; Wu, X. Novel soil environment monitoring system based on RFID sensor and
LoRa. Comput. Electron. Agric. 2020. [CrossRef]

29. Westerkamp, M.; Victor, F.; Küpper, A. Tracing manufacturing processes using blockchain-based token
compositions. Digital Commun. Netw. 2020, 6, 167–176. [CrossRef]

30. Muratkar, T.S.; Bhurane, A.; Kothari, A. Battery-less internet of things–A survey. Comput. Netw. 2020.
[CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://www.rfidjournal.com/articles/view?2487
http://dx.doi.org/10.1109/TPDS.2007.1020
http://dx.doi.org/10.1109/LCOMM.2010.08.100539
http://dx.doi.org/10.1016/j.comcom.2009.07.011
http://dx.doi.org/10.1109/TNET.2013.2295839
http://dx.doi.org/10.1016/j.comcom.2017.08.016
http://dx.doi.org/10.1016/j.comcom.2020.06.025
https://www.ti.com/lit/an/sloa137/sloa137.pdf?ts=1595071408062
http://dx.doi.org/10.5772/64844
http://dx.doi.org/10.1016/j.comnet.2020.107159
http://dx.doi.org/10.1016/j.compag.2019.105169
http://dx.doi.org/10.1016/j.dcan.2019.01.007
http://dx.doi.org/10.1016/j.comnet.2020.107385
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	Overview of RFID System
	Dynamic RFID System Model
	Discussion in Related Literature

	Materials and Methods
	Determining Optimal Frame Length
	MABT Algorithm
	MABT Example

	Results
	Conclusions
	References

