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Abstract: A unique approach is proposed to boost on-chip immuno-sensors, for instance,
immunoassays, wherein an antibody immobilized on the walls of a microfluidic channel binds
specifically to an antigen suspended freely within a working fluid. The performance of these sensors
can be limited in both susceptibility and response speed by the slow diffusive mass transfer of
the analyte to the binding surface. Under appropriate conditions, the binding reaction of these
heterogeneous immuno-assays may be enhanced by electroconvective stirring driven by external AC
electric fields to accelerate the translating motion of antigens towards immobilized antibodies. To be
specific, the phenomenon of induced-charge electroosmosis in a rotating electric field (ROT-ICEO)
is fully utilized to stir analyte in the vicinity of the functionalized surface of an ideally polarizable
floating electrode in all directions inside a tri-dimensional space. ROT-ICEO appears as a consequence
of the action of a circularly-polarized traveling wave signal on its own induced rotary Debye screening
charge within a bipolar induced double layer formed on the central floating electrode, and thereby
the pertinent electrokinetic streamlines exhibit a radially converging pattern that greatly facilitates the
convective transport of receptor towards the ligand. Numerical simulations indicate that ROT-ICEO
can enhance the antigen–antibody binding reaction more effectively than convectional nonlinear
electroosmosis driven by standing wave AC signals. The effectiveness of ROT-ICEO micro-stirring is
strongly dependent on the Damkohler number as well as the Peclet number if the antigens are carried
by a continuous base flow. Our results provide a promising way for achieving a highly efficient
heterogeneous immunoassay in modern micro-total-analytical systems.

Keywords: on-chip immunoassay; induced-charge electroosmosis; rotating electric field; bipolar
floating electrode; microfluidics

1. Introduction

Immunoassays, which is known as the specific binding reaction between the free antigens
suspended in a fluid flow and the immobilized antibodies at a functionalized surface, have been
broadly applied in medical diagnostics, quality control, biomarker identification, and environment
monitoring for their high selectivity [1,2]. Traditional immunoassays, including microarrays and
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enzyme-linked immunosorbent assay (ELISA), usually require a vast sample volume and long
cultivation time due to the complicated fluid handling steps involved at different stages of the
assay [3–6]. Some representative label-free biomolecule detection approaches have been applied to
probe specific proteins and bacteria [7,8]. Nevertheless, the dependence of the test performance on the
interfacial binding reaction, which is routinely limited by slow diffusion rate and long detection time,
limits their broad application in various situations [9,10]. In addition, the low throughput constrains
the application of immunoassay in time-pivotal circumstances [11]. With the rapid development of
microfabrication techniques, embedding the functional biosensors into micro-total-analytical systems
(µTAS) has captured great attention from the microfluidic society [12]. In stark contrast with the
conventional immunoassay approaches, microfluidic biosensors provide enormous advantages to
transport the antigen sample onto the binding surface in a continuous-flow mode, in terms of imposing
a quite low demand on the sample volume and generating high-throughput while with a much shorter
analysis time and an enhanced sensitivity [13]. The mass transfer process where the specific analyte
is conveyed from the bulk of the liquid suspension to the reaction surface is negatively influenced
by the molecular diffusion effect across a concentration gradient on account of a small Reynolds
number in microsystems [13]. Consequently, on-chip immunoassays still suffer from restrictions in both
response speed and detection sensitivity, due to the slow diffusive transport of target antigens to the
functionalized surface with immobilized antibodies, which determines a non-ideal device performance
in diffusion-limited binding reactions with fast surface reactions [14].

A lot of physical mechanisms have been applied to result in stirring flow patterns in microfluidic
channels for on-chip biomedical diagnosis, such as hydrodynamic pressure [15], electrokinetics [16–19],
magnetic effect [20], and optical forces [21]. For instance, Selmi et al. calculated the binding
kinetics using a microchannel-based flow confinement strategy with an orthogonal complementary
stream to guide the translating motion of analyte molecules towards the binding surface [22].
Alternatively, AC electrokinetic (ACEK) phenomenon has become a popular way to drive fluid
motion and manipulate colloid samples within to expected locations in the presence of a low
voltage supply [23–26]. ACEK mainly includes dielectrophoresis (both particles and stratified liquid
contents) [27], AC electrothermal induced flow (ACET) [28–30], AC electroosmosis (ACEO) [31–33],
and induced-charge electroosmosis (ICEO) [34–36]. Both ACET and ACEO have been theoretically
and experimentally exploited for accelerating the convective transport of antigens towards specific
antibodies for enhancing the binding rate on functionalized electrode surfaces [37,38]. On the other
hand, ICEO has emerged as a brand new tool for manipulation of both fluid and particle motion in
microfluidic channels [39]. Like ACEO, ICEO is originated by the action of the applied electric field
on its own induced charge within a thin induced double layer (IDL) on a polarizable solid surface
immersed in an electrolyte solution and has been broadly applied for pumping [40], mixing [41–43],
and particle handing [44,45]. Though ICEO has a similar mechanism with ACEO, the introduction
of floating conductors (namely, floating electrodes) endows ICEO the traits of flexible configuration,
locally addressable, free from external wiring, and easy for device integration as compared to ACEO.
Our group have recently employed ICEO vortex flow field to trap and enrich microscale particle
samples in both static and dynamic conditions with a low voltage supply [46–49]. Pascall et al. designed
a standard electrode structure for actuating ICEO slipping fluid motion on the ideally polarizable
surface of a floating metal strip in the center of the gap between a pair of conducting probes inserted
into the reservoirs on both sides, and demonstrated by strict experimental measurement and physical
argumentation that the presence of a dielectric coating layer and an ion adsorption effect on the central
floating electrode (FE) was responsible for the larger ICEO slipping velocity predicted by the standard
RC circuit theory than that from experiments [50].

As a result, when the reaction rate is essentially much quicker than the diffusive transport of
target analytes to the sensor surface in microchannels, it is necessary to explore a label-free and
highly integrated detection strategy to boost the binding rate between antigen and antibody in
diffusion-limited cases. To address this issue, in this study, we propose an approach to transport the
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target antigen sample to the binding surface in a dilute electrolyte (typically with electric conductivity
less than 0.05 S/m, so as to evade double-layer shrinkage and steric effect at higher ion concentrations)
and improve the device performance of microfluidic heterogeneous immunoassays by using ICEO
electroconvective streaming on ideally polarizable surfaces of FE. In particular, a traveling-wave
voltage signal with a 90◦ phase shift is imposed sequentially to a circular electrode array of four discrete
phases. ICEO fluid motion with a radially converging flow pattern is induced on the central FE by such
a rotating electric field, namely, the phenomenon of ROT-ICEO. By numerical modeling, ROT-ICEO
is shown to be more effective in delivering the antigen samples in all directions and suppressing the
length of the diffusion boundary layer than ordinary nonlinear electroosmosis driven by AC standing
wave signals, due to the action of its tri-dimensional chaotic streamlines.

2. Theory and Methods

2.1. Device Geometry

To investigate the vortex flow pattern of ROT-ICEO and its important role in accelerating
the binding rate in an immuno-transducer, a microfluidic chip with a coplanar array of thin-film
microelectrode is designed and displayed in Figure 1. A square conducting FE with a width of WF
is deposited on the bottom surface of a microfluidic chamber with a height of HC and a length of
LC, respectively. A circular array of 4 rectangular driving electrodes (DE) is disposed on the channel
bottom surface, and surrounds the central FE. By imposing a 90◦-phase-shifted travelling wave (TW)
voltage signal to the 4 DE in sequence, a rotating (ROT) electric field is produced and runs throughout
the chamber. Since the TW signal rotates circularly, instead of propagating in a linear route, the resulted
electric field is in effect a circularly polarized rotating (ROT) electric field. It is noteworthy that the
rotating field rotates counterclockwise in the direction of the decreasing voltage phase, so we call
it a counterclockwise rotating electric field. Figure 2 is an advanced device design under dynamic
incoming laminar streams, which will be introduced in detail in Section 2.3.
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Figure 1. A systematic schematic of improving the specific binding reaction between immobilized
antibodies and freely suspended antigens in the dilute electrolyte by induced-charge electroosmosis
driven by an externally-imposed rotating electric field (ROT-ICEO) on the ideally polarizable surface
of a central floating electrode (FE). (a) A 3D sketch for enhancing inhomogeneous immunoassay in a
static microchamber; (b) fluidic samples before electrical powering; (c) electroconvective transport of
antigens towards the functionalized FE surface accelerates the interfacial binding reaction.
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Figure 2. A 3D schematic illustration of ROT-ICEO-mediated antigen-antibody specific binding reaction
on the conducting surface of the central FE encircled by a four-phase DE strip array, under the dynamic
condition that an external pressure-driven laminar flow injects the target antigen samples from the
inlet to the downstream outlet. Once they pass on top of the central FE, the localized ROT-ICEO vortex
flow field disturbs the laminar streamlines and transports the antigens to the FE’s ideally polarizable
surface, giving rise to more chance for the binding reaction between antigens and antibodies. (a) A 3D
schematic of the dynamic immuno-sensor in the presence of continuous base flow. (b) A magnified
view of the upstream flow passage before the suspended antigens pass by the reaction region. (c) An
amplified view of the critical reaction region on top of the electrode array affected by electroconvection
of ROT-ICEO.

The external ROT field injects bipolar counterionic charges into a thin Debye layer at the
FE/electrolyte interface by Ohmic conduction, in the presence of a normal field component on the
blocking electrode at the early stage. After a characteristic RC time scale τRC= RCD/σf(1 + δ) for
double-layer capacitive charging, the bulk electric field lines are fully repelled, and a stable bipolar
induced double layer (IDL) is developed on the ideally polarizable surface of the FE in the field center
due to complete field-induced Debye screening as shown in Figure 3a. From the perspective of an
observer, this renders the conducting surface manifest as a perfect insulator beyond a characteristic
distance scale of the Debye screening length, giving rise to a pair of ICEO micro-vortices in opposite
rotating directions on top of the central FE due to the interaction of the tangential field components
with the dipolar induced ionic charges inside the bipolar IDL (Figure 3a). The above physical picture is
valid only under a steady DC bias. For a low-frequency rotating electric field, however, the situation
becomes more subtle. As the field vector rotates counterclockwise within each complete AC voltage
cycle, with the axis of rotation constantly fixed at the field center, the bipolar charge accumulated
within the IDL rotates synchronously in the direction of the electric field as well. In this way, the ICEO
slipping fluid motion switches alternatively between two complementary convection modes, in which
the flow direction is along the x- and y-axis, respectively (Figure 3). After time average operation,
the ROT-ICEO fluidic eddies ought to exhibit a convergent profile, with the liquid molecules sucked
from surrounding medium in all outer directions to the center of the conducting surface of the FE and
then ejected to the bulk fluid along the channel depth direction, as indicated by the 3D toroidal arrows
in Figure 1. This kind of electroconvective stirring flows on top of the bipolar FE may be in favor of
enhancing antigen-antibody specific binding reactions on the functionalized interface of the FE.
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Figure 3. Theoretically-predicted bi-dimensional phase diagram of the applied rotating electric field
lines, induced surface charge, and the resulted transient ROT-ICEO surface slipping flow at different
time instants within a complete AC cycle for case (i): (a) t = nT, (b) t = nT + T/4, (c) t = nT + T/2, and (d)
t = nT + 3T/4.

2.2. Basic Theory of ICEO Electroconvection at the Metal/Electrolyte Interface

To account for the occurrence of transient ICEO streaming on metal electrodes with analytical
convenience, complex notation is invoked for various electric field variables. For instance, φ(t) =
A cos(ωt + θ) = Re

(
Ae jωte jθ

)
= Re

(
φ̃e jωt

)
, where φ̃ is the complex amplitude of the transient AC

voltage φ(t), and Re() the real part operator. A, ω and θ denote the amplitude, angular field frequency
and phase angle of the imposed AC voltage signal, respectively. Under sinusoidal steady-state,
the charge conservation equation within the liquid domain is reduced to the Laplace equation:

∇
2φ̃ = 0 (1)

Under the Debye–Huckel limit, the IDL behaves like a thin capacitor skin being charged by the
conduction current from the resistance of liquid bulk. Consequently, the Ohmic current in the bulk
should be continuous with the displacement current running across the thin boundary layer at the
electrode/electrolyte interface:

σn·∇φ̃ = jωC0
(
φ̃− φ̃0

)
(2)
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where n denotes the unit outward vector normal to the thin-film electrode, pointing from the reaction
surface to the bulk of the liquid suspension, and σ the electrolyte conductivity. C0 = CD/(1 + δ) is the
total double-layer capacity, which is essentially a series connection of the diffuse layer capacitance
CD = ε/λD and Stern layer capacitance Cs = 0.8 F/m2, in terms of the surface capacitance ratio
δ = CD/CS. φ̃ and φ̃0 are the electrostatic potential in the bulk fluid right outside the IDL and the
equal potential of the metal electrode, respectively.

The peripheral DE array located adjacent to the channel sidewalls is powered by a TW voltage
signal, with the specific voltage sequence φ1

0 = Acos(ωt), φ2
0 = Acos(ωt + 90◦), φ3

0 = Acos(ωt + 180◦),
φ4

0 = Acos(ωt + 270◦) imposed to the four DE strips along the clockwise direction, while the central
square electrode is floating in potential, as shown in Figure 1.

Only the voltage drop across the diffuse layer ζ̃ = φ̃0 − φ̃/1+δ serves as the effective induced zeta
potential (IZP) that contributes to the induced electrokinetic flows. The time-averaged ICEO slipping
under AC forcing is derivable from the generalized Helmholtz–Smoluchowski formula, which is
subsequently inserted into the Navier–Stokes equation as a leaking wall boundary condition on the
ideally polarizable surfaces of all the metal electrodes:〈

uslip
〉
= −

ε
η

1
2

Re
(
ζ̃Ẽ
∗

t

)
=

ε
2η

1
1 + δ

Re
((
φ̃− φ̃0

)(
Ẽ− Ẽ·n·n

)∗)
(3)

where η is dynamic viscosity of water, < . . . > the time-average operator for calculating the averaged
value within one sinusoidal voltage cycle, and the asterisk * the complex conjugate.

Fluid flows within the microchannel obeys the simplified Navier–Stokes equation for water-based
incompressible Newtonian fluids:

−∇p + η∇2u = 0 (4)

∇·u = 0 (5)

where p denotes the hydrostatic pressure, and u the vector field of flow velocity originated by
combined ICEO and external pressure gradient. It is well known that ICEO fluid motion vanishes
in high conductivity buffer solutions due to both double layer shrinkage and ion overcrowding
phenomenon inside the IDL. So, we prefer to study herein the effect of ROT-ICEO on improving
microfluidic immunoassays in dilute electrolyte with electric conductivity usually no more than
0.02 S/m. The aqueous electrolyte is a typical Newtonian fluid, and has a constant dynamic viscosity,
serving as the most appropriate liquid medium for suspending the free antigens in the present analysis.
On the other hand, recently, the necessity of manipulation of biofluids in small confinements has
triggered a renewed interest in the dynamics of non-Newtonian fluid with a shear-rate-dependent
viscosity. However, this is beyond the scope of current work with the purpose to provide a utilitarian
reference for the selection of the parametric space in experiments with water-based Newtonian fluid.
As a result, a uniform viscosity value η = 0.001 Pa·s is used in the simulation to reconstruct the actual
mechanical behavior of target antigens monodispersed in water solution. Please refer to Ref. [51–53]
for a systematic knowledge of both Newtonian fluid and non-Newtonian fluid.

2.3. Mass Transfer of Antigen and Binding Reaction Enhancement

Mass conservation of the target antigens freely suspended in the liquid flow can be mathematically
described by the standard convection-diffusion equation:

∂c
∂t

+∇·J = 0 (6)

J = uc−D∇c (7)
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where c stands for the concentration of antigens in the bulk fluid, and D their mass diffusivity. An initial
background concentration of antigens is introduced to the microchamber in the static case (Figure 1) or
to the channel inlet in the dynamic condition (Figure 2).

The specific binding reaction between the antigen in liquid suspension and the antibodies adhered
to the surface of the FE can be presumed to abide by the first-order Langmuir adsorption model:

∂B
∂t

= konCw(RT − B) − koffB (8)

where B represents the surface concentration of the antigen bound on the reaction surface in mol/m2,
kon and koff denote the association rate constant and the dissociation counterpart, respectively. Cw is the
antigen volumetric concentration just on top of the reaction surface, and RT the surface concentration
of the fixed antibody in mol/m2.

To enable the quantification of the feasibility of ROT-ICEO micro-stirring in elevation of the
antigen-antibody binding rate, we define the transient binding enhancement factor, Be(t) = BV(t)/B0(t),
in which BV(t) and B0(t) are the bound antigen concentration after introducing ROT-ICEO slipping
flow and without voltage supply at time node t, respectively. It has been reported that the binding rate
is also highly dependent on the nondimensional Damkohler number:

Da = konRTHC/D (9)

which is the ratio of the reaction speed to the diffusion speed. The Da number is usually employed
to judge whether the biosensor is restricted by diffusion or by reaction. If the reaction rate is quicker
than the diffusion transport of target analyte to the sensor surface, the whole binding process is
diffusion-limited. On the contrary, the binding rate will be reaction-limited in the situation whereby
the analyte diffusion is fast but the reaction speed cannot match with the rate of diffusion.

3. Results and Discussion

3.1. Binding Reaction Enhancement by ROT-ICEO Micro-Stirring

Three distinct convection modes of ICEO in this four-phase rotating electrode array are compared
in detail in the Supplementary Information (SI, Figures S1–S6), with the corresponding powering
schemes explicitly presented in Table 1. As the optimum ICEO slipping flow profile is created by case
(i), we then focus on the effect of ROT-ICEO micro-stirring on the antigen-antibody binding reaction on
the functionalized surface of the central FE. Before the DE array is energized, in the absence of ICEO
micro-stirring, the concentration of antigen freely suspended in the fluid bulk is primarily depleted by
the molecular diffusion effect. The mass transfer limitation constrains severely the binding reaction
between the free antigen and the fixed antibody, and results in the rapid growth of the antigen-depleted
diffusion boundary layer (Figure 4a), the thickness of which determines the detection performance of
the proposed immunosensor. When the four metal strips in the peripheral DE array are excited by a
TW voltage sequence with neighboring electrodes of a 90◦ phase shift at voltage amplitude V0 = 8 V
and field frequency f = 200 Hz, the transversal ROT-ICEO recirculating vortex flow field stirs effectively
the fluidic sample and thereby redistributes the depleted antigen concentration on top of the central
square FE. As displayed in Figure 4b, the rotating electrokinetic whirlpools enhance the convection
effect on the functionalized surface of the FE, facilitating greatly the efficient transport of free antigens
in the bulk to the reaction surface. Consequently, the depletion boundary layer shrinks in thickness,
and depletion occurs only in the central region of the FE surface (Figure 4b), which provides a sufficient
chance for a binding interaction between the free antigen and immobilized antibody, leading to an
enhancement of both the association and disassociation rates.



Micromachines 2020, 11, 739 8 of 20

Table 1. AC voltage sequence for the three distinct power supply modes.

Power Supply Modes 1st Terminal 2nd Terminal 3rd Terminal 4th Terminal

(i) V1 = V0cos(ωt) V2 = V0cos(ωt + 90◦) V3 = V0cos(ωt + 180◦) V4 = V0cos(ωt + 270◦)
(ii) V1 = V0cos(ωt) V2 = V0cos(ωt) V3 = V0cos(ωt + 180◦) V4 = V0cos(ωt + 180◦)
(iii) V1 = V0cos(ωt) V2 = V0cos(ωt + 180◦) V3 = V0cos(ωt) V4 = V0cos(ωt + 180◦)
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Figure 4. Simulation result of the volumetric concentration of suspended antigens on top of the binding
surface at t = 100 s for the following two circumstances: (a) Concentration distribution of suspended
antigens in the absence of any AC voltage supply with only analyte diffusive transport on the FE,
leading to a thick depletion boundary layer. (b) The ROT-ICEO recirculating flow stirs effectively the
depleted concentration after the peripheral DE array is powered by a four-phase AC voltage signal at
V0 = 8 V and f = 200 Hz.

To explore the dependence of the bound antigen concentration on the applied voltage magnitude,
we calculated by numerical simulation the binding rate in the presence of ROT-ICEO micro-stirring
under sinusoidal steady-state, with respect to the non-improved situation with no voltage supply,
when Da number equals 660. As identified in Figure 5a, when the four DE strips are activated with
varying voltage amplitude of 0 (the passive case), 2, 4, 8, 16, and 32 V with a prescribed signal frequency
of 200 Hz (the active case), the resulted binding rate becomes monotonously higher with larger imposed
voltages. In the low voltage range (0–8 V), the binding rate is almost linearly proportional to the
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voltage amplitude, in that the enhanced ROT-ICEO whirlpool promotes the convective transport of
free antigen to the functionalized surface for diffusion-limited binding reactions. In accordance with
the classical RC-circuit theory of ICEO, our numerical modeling indicates that the ROT-ICEO slipping
velocity has a quadratic dependence on the imposed AC voltage amplitude, and increases by 4-fold as
the voltage is doubled (Figure 5b). As the voltage further increases beyond 8 V, the growth trend of
the binding rate slows down, since the reaction speed on the functionalized surface cannot match the
fast ROT-ICEO electroconvection, namely the binding reaction transits from being diffusion-limited to
being reaction limited as the time-averaged ROT-ICEO slipping velocity on the ideally polarizable
surface under harmonic AC forcing exceeds a certain threshold value. In this sense, there always exists
an optimal AC voltage for the improvement of the specific binding reaction.
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3.2. Effect of the Damkohler Number

To investigate the importance of ROT-ICEO rotating whirlpool in microfluidic immunoassays, we
calculate the binding enhancement factor Be of the binding reaction on the application of an AC signal
with V0 = 4 V and f = 200 Hz for a time period of t = 100 s. As shown in Figure 6a, the antigen-antibody
binding rate enhances globally with an increase of the Damkohler number, implying a higher binding
efficacy yielding a factor of 21.5 higher binding rate for an applied TW voltage of 4 V at 200 Hz
with a Da number of 1000. For a small Da number, ICEO vortex flow on top of the FE is not able to
enhance the binding efficiency by transporting electro-convectively the free antigens to the binding
surface due to the slow reaction confinement. On the other hand, when Da is sufficiently large and
surpasses a certain threshold, the reaction rate becomes too fast, and therefore not enough time is left
for association. For instance, once the DE array is excited by 4 V at 200 Hz, the ROT-ICEO micro-stirring
is not potent enough, so that the binding performance reaches a plateau when Da number is beyond
10,000 (Figure 6a). Under this situation, the voltage amplitude has to be further elevated, so as to get a
larger ICEO flow velocity for convective delivery of free antigens towards the functionalized surface
and lead to an obvious improvement in the binding rate. On the basis of the above analysis, a higher
Da number (Da = 1000) is chosen for subsequent simulations.

Considering the ROT-ICEO circulating fluid motion has a second-order dependence on the voltage
magnitude imposed on the electrode array, we then study the relationship between the binding rate
enhancement and the AC voltage amplitude when the Da number is fixed at Da = 1000. As indicated in
Figure 6b, when an AC signal at an intermediate field frequency f = 200 Hz is applied to the peripheral
DE array, the interfacial binding rate rises quickly by adjusting the source voltage magnitude and is
almost linearly proportional to the background electric field intensity with the increment of the voltage
amplitude below 16 V (Figure 6b). The reason behind is that, since the reaction rate on the conducting
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surface of the central FE is fast, the diffusive transport nature of the free antigen determines there
is no possibility for efficient binding reaction to occur. In the presence of ROT-ICEO micro-vortices,
however, electroconvection accelerates the mass transfer of antigens to the functionalized surface and
enhances the binding performance.Micromachines 2020, 11, x 10 of 20 
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With further increase of the applied voltage, the binding rate enhances to a slight degree as the
voltage exceeds 16 V, which can be explained by the excessively large ROT-ICEO slipping velocity
in the lateral direction on the ideally polarizable surface of FE in contrast to the limited reaction rate.
In fact, the larger applied voltage is certainly important for the acceleration of the binding reaction,
while the actual binding rate may be negatively influenced by a sufficiently large voltage because the
reaction rate is not able to match with the moving velocity of the free antigens to the binding surface
any longer. That is, the antigen-antibody binding reaction turns from being diffusion-limited to being
reaction limited at large voltages. So, it will be meaningless to simply increase the voltage amplitude
for boosting the binding response of the microfluidic immunosensors. It is then necessary for us to
seek other possible ways to achieve the same goal.

3.3. Frequency-Dependent Binding Reaction

The ideal operating condition of the immunosensor is supposed to depend on the signal frequency,
in that the ROT-ICEO slipping velocity itself is very susceptible to the field frequency of the applied
TW voltage (Figure S1 and Figure S2b). As shown in Figure 7b, the ROT-ICEO fluid motion attains
a localized relaxation peak at an intermediate frequency between the inverse RC time constant for
electrochemical polarization of the peripheral DE array and that of the central FE. Namely, f DE

RC ≤

fideal ≤ f FE
RC, which agrees well with the preceding analysis in Section 3.1. According to the simulation

result in Figure 7b, the ideal working frequency of ICEO is fideal = 200 Hz, any further deviation of the
field frequency from this critical value would make the ICEO flow velocity decay to a great extent
whatever the applied voltage is 4 V, 8 V, or 16 V. For instance, the slipping fluid motion decreases by
almost 50% as the signal frequency increases from the ideal frequency of 200 Hz to a higher value of
1000 Hz (Figure 7b). Although the binding enhancement factor Be is also maximized at the same ideal
frequency 200 Hz, it decreases no more than 50% with the increment in frequency from 200 Hz to
1000 Hz (Figure 7a), which can be ascribed to the fact that not only the ROT-ICEO slipping fluid motion
but also the molecular diffusion effect contribute to the immuno-reaction. In practical experiments, it is
quite suitable for us to raise the field frequency to 1000 Hz or even 2000–10,000 Hz (Figure 7a), since the
binding rate decays much more slowly than the ROT-ICEO slipping fluid motion itself as the field
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frequency increases (Figure 7b). By doing this, we can insist on improving the binding performance of
the microfluidic immuno-sensors without having to know the accurate ideal operating frequency in
advance and evade the bipolar electrode reaction and bubble production on top of the central FE that
tend to occur below 1000 Hz at the same time.

Micromachines 2020, 11, x 11 of 20 

 

at the same ideal frequency 200 Hz, it decreases no more than 50% with the increment in frequency 
from 200 Hz to 1000 Hz (Figure 7a), which can be ascribed to the fact that not only the ROT-ICEO 
slipping fluid motion but also the molecular diffusion effect contribute to the immuno-reaction. In 
practical experiments, it is quite suitable for us to raise the field frequency to 1000 Hz or even 2000–
10,000 Hz (Figure 7a), since the binding rate decays much more slowly than the ROT-ICEO slipping 
fluid motion itself as the field frequency increases (Figure 7b). By doing this, we can insist on 
improving the binding performance of the microfluidic immuno-sensors without having to know the 
accurate ideal operating frequency in advance and evade the bipolar electrode reaction and bubble 
production on top of the central FE that tend to occur below 1000 Hz at the same time. 

 
Figure 7. Effect of the AC signal frequency on the binding reaction with Da = 1000. (a) A data point 
plot of the binding enhancement factor Be versus AC signals of varying oscillation frequencies when 
the voltage amplitude takes the value of V0 = 4 V, 8 V, and 16 V, respectively. (b) ROT-ICEO slipping 
velocity as a function of the field frequency for distinct voltage amplitude. 

3.4. Effect of Geometric Arrangement of the Floating Electrodes 

In this section, we study how the geometric configuration of the floating electrodes in the field 
center exerts an influence on the binding efficiency enhancement at a given TW voltage amplitude of 
V0 = 4 V. In preceding discussions, the square FE in the center of the rotating electric field has a given 
edge length of WF = 100 μm, being comparable in size with the channel depth HC = 200 μm. So, the 
first choice for changing the geometry is to adjust the edge length of the individual FE while 
maintaining its quantity.  

As shown in Figure 8b, the ideal working frequency shifts to lower values as the FE’s edge length 
rises from 100 μm to 300 μm, keeping consistent with the theoretical prediction of 

( )D 1 2idealf Rσλ δ π ε= + , in which an increment of the characteristic macroscopic length scale R for 
electrochemical polarization of the FE results in a smaller RC charge relaxation frequency at the 
FE/electrolyte interface. It is well known that ICEO flow velocity becomes faster as the size of the FE 
increases, as evidenced by the simulation result of ROT-ICEO slipping fluid motion for different FE 
edge lengths (Figure 8b) as well. 

Figure 7. Effect of the AC signal frequency on the binding reaction with Da = 1000. (a) A data point
plot of the binding enhancement factor Be versus AC signals of varying oscillation frequencies when
the voltage amplitude takes the value of V0 = 4 V, 8 V, and 16 V, respectively. (b) ROT-ICEO slipping
velocity as a function of the field frequency for distinct voltage amplitude.

3.4. Effect of Geometric Arrangement of the Floating Electrodes

In this section, we study how the geometric configuration of the floating electrodes in the field
center exerts an influence on the binding efficiency enhancement at a given TW voltage amplitude
of V0 = 4 V. In preceding discussions, the square FE in the center of the rotating electric field has a
given edge length of WF = 100 µm, being comparable in size with the channel depth HC = 200 µm.
So, the first choice for changing the geometry is to adjust the edge length of the individual FE while
maintaining its quantity.

As shown in Figure 8b, the ideal working frequency shifts to lower values as the FE’s
edge length rises from 100 µm to 300 µm, keeping consistent with the theoretical prediction of
fideal = σλD(1 + δ)/2πεR, in which an increment of the characteristic macroscopic length scale R
for electrochemical polarization of the FE results in a smaller RC charge relaxation frequency at the
FE/electrolyte interface. It is well known that ICEO flow velocity becomes faster as the size of the FE
increases, as evidenced by the simulation result of ROT-ICEO slipping fluid motion for different FE
edge lengths (Figure 8b) as well.

As for the corresponding enhancement of binding performance, however, a marked difference
has emerged (Figure 8a). Although the ideal operating frequency for the microfluidic immunosensor
shifts to lower frequency values just like the ideal ICEO flow rate, the maximum binding enhancement
factor Be decreases as the FE becomes larger in size (Figure 8a). A plausible reason for this particular
difference is that the ROT-ICEO slipping velocity is indeed fastest on the surface of the largest FE
(the blue line in Figure 8b), but the ICEO vortex flow field in the bulk fluid tends to be suppressed
to a great degree by a vertical confinement effect as the size of FE approaches and even exceeds the
channel depth (Figure 8c). Consequently, the recirculating fluid motion in the liquid bulk due to the
action of ROT-ICEO cannot be fully developed in the presence of a finite channel height (Figure 8c),
which may exert an adverse effect on the binding reaction enhancement. This conclusion suggested
that it is not necessary to deliberately enlarge the size of the square FE for accelerating the analyte
mass transfer towards the functionalized surface, and there exists an intermediate edge size on the
order of the channel depth serving as the best choice for such purpose.
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Figure 8. Effect of the FE’s size on the binding reaction improvement at a given voltage amplitude
V0 = 4 V. (a) Frequency-dependent Be for different FE’s edge length; (b) Frequency-dependent
ROT-ICEO slipping velocity when the edge length of the central FE takes the value of 100 µm, 200 µm,
and 300 µm, respectively. (c) A cross-sectional plot of the suspended antigen concentration on top of a
300 µm × 300 µm FE with an AC voltage supply of V0 = 4 V and f = 150 Hz at t = 100 s.

The second way to reconfigure the geometry of the central FE is to alter the number of discrete
floating electrodes located in the center of the microchamber. As shown in Figure 9c, we introduce
a 3 × 3 coplanar FE array to take the place of the original individual FE surrounded by the four
peripheral DE metal strips. In the absence of AC power, the target analytes suspended in the bulk
are consumed by the diffusion-limited interfacial binding reaction, resulting in the formation of one
thick depleted boundary layer on the ideally polarizable surfaces of each of the 9 floating conductors
respectively, as shown in Figure 9c. On switching the multiphase function generator on, ROT-ICEO
whirlpools appear on all the FEs, which are constantly sucked from the surrounding medium to the
electrode center, then ejected upward to the top surface of the fluidic chamber, and finally spread out
in all directions to form closed fluid loops. As a consequence, all the depletion boundary layers are
reshaped by ROT-ICEO vortex flow field, becoming much thinner on the electrode surface with most
of the depletion region shifted above the center of the floating conductors (Figure 9d), which indicates
an enhancement in electroconvective transport of the free antigens to the functionalized surfaces,



Micromachines 2020, 11, 739 13 of 20

bringing about more opportunities for the binding reaction between the immobilized antibody and
target analyte.
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reaction improvement when the voltage amplitude of the applied rotating electric fields is V0 = 4V.
(a) The binding enhancement factor Be on each electrode in the FE array versus AC signals of different
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t = 100 s with an imposed rotating electric field at V0 = 4 V and f = 200 Hz.
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Even so, the binding rate is different from one another on the 9 FE. The binding enhancement
factor Be is the least for the middlemost FE (Be = 16 for the 5th electrode at f = 200 Hz), and a bit
larger on the outer ones (Be ranges from 18 to 25 for the 1st–4th and 6th–9th electrodes at f = 200 Hz).
This unexpected growth phenomenon of the bound antigen concentration on the peripheral eight
electrodes can be accounted for by the difference in ICEO slipping velocity within the microfluidic
system (Figure 9b). As shown in Figure 9b, the ICEO slipping fluid motion is weakest on the middlemost
FE as well, corresponding to the least improvement of the binding efficiency (Figure 9a). The unequal
electrokinetic flow velocity on top of the 9 FE can be ascribed to the following two reasons: (1) The
discrete arrangement of the coplanar FE array makes the electric field unevenly distributed in the
fluidic chamber, which is stronger on the outer eight FEs and weakest on the middlemost FE. Since
the electroosmotic flow velocity is linearly proportional to the intensity of the tangential electric field
component that reaches a local minimum in the field center, the nonlinear ROT-ICEO slipping velocity
is suppressed to a certain degree on the 5th FE. (2) The ACEO fluid motion has a net flow component
that propagates in the direction of the rotating electric field (Supplementary Figure S3a,b), which can be
effectively superimposed with the ICEO vortex flow field on the outer eight electrodes, but diminishes
gradually along the field gradient due to the action of finite penetration depth, resulting in a higher
electroosmotic flow rate on the surface of the 8 FE close to the DE array than that on the middlemost
one that is most far away from chamber sidewalls. The above two factors coact to make the ideal Be
number Be = 16 (the purple line in Figure 9a) on the functionalized surface of the central FE lower than
Be = 22 (the black line in Figure 8a) with merely a single FE. However, the largest Be = 27 on the 1st FE in
the 3 × 3 discrete FE arrangement is still much higher than Be = 22 in the 1 × 1 configuration. The large
variance of bound antigen concentration on different FEs in the advanced device design (Figure 9a,d)
may be useful under certain circumstances that desire a range of binding rates simultaneously at
distinct positions of the inhomogeneous immunoassay.

3.5. Binding Reaction Enhancement in a Pressure-Driven Flow

To deal with a more realistic situation in a microfluidic device with continuous sample injection,
we have to check the effectiveness of the radially converging ROT-ICEO slipping fluid motion on
top of the FE in a straight microchannel under the influence of an axial pressure gradient on the
antigen-antibody binding reaction. For such, we prescribed the boundary condition at the upstream
channel entrance (Figure 10) with a paraboloidal profile of a mean inlet flow rate u0 = 25–200 µm/s in
the full scale tri-dimensional computational domain. In this integrated device design, two straight
branch channels on both sides are bridged by a microchamber in the center, as shown in Figure 10.
In contrast to the static condition, there is a uniform concentration of the analyte in the solution at the
initial time, and it is assumed that all the analyte sample is brought in by the incoming laminar flow,
so that a fixed analyte concentration c = c0 is prescribed at the channel inlet, while no analyte is present
in the bulk for the initial condition.

As shown in Figure 10a, without AC power, the axial laminar flow driven by the externally-imposed
pressure difference constantly injects the free antigens into the microchannel, and the base flow is
paraboloidal in essence (Figure 11a). So, the supplement of reacted analyte adjacent to the binding
surface in the center of the chamber bottom surface mainly depends on the axial convective transport
of the laminar streaming and transverse mass diffusion. On the application of a phase-shifted TW
signal to the four peripheral DE metal strips, however, the rotating ROT-ICEO whirlpool appears
(Figure 11b) and severely distorts the free antigen concentration on top of the central FE, providing
more chance for binding interaction between the ligand and receptor in terms of a much thinner
depletion boundary layer on the FE surface (Figure 10b). Consequently, the transient motion of target
analytes is a consequence of the combined action of laminar inflow, molecular diffusion effect, and ICEO
micro-stirring under the dynamic condition. In particular, the vortex flow field of ROT-ICEO is of the
greatest importance in delivering the suspended antigens transversely to the functionalized reaction
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surface and refreshing the depleted sample as signified by the non-negligible analyte concentration
gradient above the FE surface (Figure 10b), giving rise to enhanced binding reaction kinetics.
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fluidic channel at t = 80 s, which is modified by the ROT-ICEO vortex flow field on the top of the square
FE of 300 µm in edge length inside the central microchamber, when the peripheral DE array was excited
by TW voltage signals of (a) V0 = 0 V, and (b) V0 = 8 V at f = 200 Hz with an average inlet flow rate of
50 um/s. (unit: mol/m3).

Since there is no background analyte concentration in the bulk before the incoming electrolyte
carries the sample into the channel, it takes a finite time for the biosensor to make a definite response to
the analyte flow. The specific time duration equals the ratio of the distance (from the channel entrance
to the flat FE) to the inlet flow rate. So, a lower pump speed implies a larger response time for the
binding reaction (Figure 12a). For instance, with a low inlet flow rate of u0 = 25 µm/s, the surface
concentration of bound antigen begins to increase observably only after t = 100 s. On the contrary,
as the pump velocity is raised to u0 = 200 µm/s, the relaxation time needed for the binding reaction to
make a response to the applied voltage decreases sharply from t = 100 s to t = 10 s.

Under the circumstances with a net inlet flow rate, the ratio of convection to diffusion rate, namely,
the Peclet number Pe = uH/D, has to be introduced to depict the correlation between the binding
kinetics and inlet flow rate. We calculate the binding enhancement factor Be as a function of Da number
for distinct Peclet number, namely, 400, 1000, 2000, and 4000, which correspond to a pump speed of
20 µm/s, 50 µm/s, 100 µm/s, and 200 µm/s, respectively (Figure 12b). As shown in Figure 12b, the value
of Be enhances as the Da number increases under a given inlet flow rate, which agrees well with the
previous discussions on the Da-dependence of the sensor performance in static condition (Figure 6a).
The influence of Pe number on the binding reaction is much more pronounced than that of Da number
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(Figure 12b). With an increasing Pe number, the value of Be first rises when Pe is no more than 1000, and
then declines as Pe further increases from 1000 to 4000. This non-monotonous varying trend of Be as a
function of Pe number is attributed to the following two reasons: (1) Since Be is calculated at a specific
time node of t = 300 s, the binding reaction cannot be well activated by the imposed AC voltage as the
samples are not sufficiently transported to the functionalized surface for a small Pe (Pe ≤ 1000). (2) In
the presence of a large enough pump speed (Pe > 1000), the free antigens can amply arrive at the top of
the binding surface. Although a higher pump speed is able to boost the analyte transportation along
the channel length direction, a finite ICEO vortex flow field in the lateral direction is less efficient for
higher inlet flow rates by causing a lower probability in the binding reaction between the immobilized
antibody and the dynamic antigens that pass too quickly over the functionalized surface. So, in a
practical experiment, the microfluidic immunoassay should operate at a moderate Peclet number or
inlet flow velocity to achieve an observable binding rate enhancement, and either a lower or higher
pump rate may deteriorate the device functionality in biosensing.
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improvement in the dynamic flow condition. (a) The normalized surface concentration of bound
antigen with respect to the immobilized antibody under a voltage contrast between 0 V and 8 V
for different inlet flow rate. (b) Influence of Da number on the binding enhancement factor Be after
applying a rotating electric field of V0 = 8 V and f = 200 Hz at t = 300 s for distinct Peclet number.
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4. Conclusions

In summary, a unique ROT-ICEO method is proposed herein for the enhancement of the specific
binding reaction between free antigens and immobilized antibody on a functionalized surface of
conducting floating electrodes deposited in the center of the channel bottom surface for performing
microfluidic heterogeneous immunoassays. The lateral ROT-ICEO whirlpools can create more chances
for the binding reaction by convectively transporting the free antigens to the transducer surface,
resulting in an acceleration of both the association and dissociation processes. ROT-ICEO in a circularly
polarized electric field favors a slipping flow pattern whereby the electroosmotic streamlines converge
radially from all outer directions to the electrode center, and is thereby more advantageous to achieve
full-scaled micro-stirring in comparison with the conventional ICEO slipping modes. The dependence
of binding efficiency enhancement on AC voltage amplitude, signal frequency, and discrete arrangement
of the floating electrodes with or without an external pump fluid motion is analyzed in detail. It is
believed that the detection susceptibility and limit of detection are both enhanced by implementing
the ROT-ICEO vortex flow field on the ideally polarizable surface of the blocking FE. The numerical
computations reported here demonstrate that ROT-ICEO micro-stirring can serve as a utilitarian
technique for boosting the binding rate in microfluidic heterogeneous assays, especially when the
reaction process is dominated by a slow mass diffusion.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-666X/11/8/739/s1,
Figure S1: (a,b) Time sequence of the phase diagram for case (ii) with every two DEphase shifted by 180◦, (a) at
t = nT, and (b) at t = nT + T/2. (c,d) Time-sequence of the phasediagram for case (iii) with adjacent DE being
oppositely polarized, (a) at t = nT, and (b) at t = nT + T/2. Figure S2: A comparison of the frequency-dependence
of electrokinetic flow velocity between different convection modes ((i), (ii) and (iii)) at a given voltage amplitude
of V0 = 4 V. Figure S3: Simulation result of ROT-ICEO flow field inside the static fluidic chamber for case (i) under
a given voltage amplitude V0 = 4 V. Figure S4: A surface and arrow plot of ROT-ICEO slipping fluid motion on
the central FE for case (i) at distinct signal frequencies: (a) f = 10 Hz; (b) f = 200 Hz; (c) f = 500 Hz; (d) f = 5000 Hz.
(unit: m/s). Figure S5: Simulation result of nonlinear electroosmotic flow field within the microchamber for case
(ii) at f = 200 Hz and V0 = 4 V. (a) A top view of tri-dimensional streamline plot of the combined ACEO and ICEO
vortex flow field within the fluidic chamber. (b) A surface and arrow plot of ACEO slipping fluid motion on the
electrode array. (c) A surface and arrow plot of ICEO slipping fluid motion on the central FE. (unit: m/s). Figure S6:
Simulation result of nonlinear electroosmotic flow field within the microchamber for case (iii) at f = 300 Hz and
V0 = 4 V. (a) A top view of tri-dimensional streamline plot of the combined ACEO and ICEO vortex flow field
within the fluidic chamber. (b) A surface and arrow plot of ACEO slipping fluid motion on the electrode array.
(c) A surface and arrow plot of ICEO slipping fluid motion on the central FE. (unit: m/s).
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