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Abstract: Numerous in vitro studies have been conducted in conventional static cell culture systems. 

However, most of the results represent an average response from a population of cells regardless of 

their local microenvironment. A microfluidic probe is a non-contact technology that has been widely 

used to perform local chemical stimulation within a restricted space, providing elaborated 

modulation and analysis of cellular responses within the microenvironment. Although microfluidic 

probes developed earlier have various potential applications, the two-dimensional structure can 

compromise their functionality and flexibility for practical use. In this study, we developed a three-

dimensional microfluidic probe integrated device equipped with vertically oriented microchannels 

to overcome crucial challenges and tested the potential utility of the device in biological research. 

We demonstrated that the device tightly regulated spatial diffusion of a fluorescent molecule, and 

the flow profile predicted by simulation replicated the experimental results. Additionally, the 

device modulated the physiological Ca2+ response of cells within the restricted area by altering the 

local and temporal concentrations of biomolecules such as ATP. The novel device developed in this 

study may provide various applications for biological studies and contribute to further 

understanding of molecular mechanisms underlying cellular physiology. 
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1. Introduction 

Cells communicate with one another by transmitting signals to maintain physiological 

homeostasis [1,2]. The intercellular signal transmission is initiated by the binding of signaling 

molecules to receptors and the subsequent influx of ions through various channels in the plasma 

membrane, inducing multiple cellular responses. For example, calcium ions (Ca2+) play an important 

role in intercellular communications associated with induction of differentiation and cardiac 

contraction. To date, several methods have been developed and employed to study the local cell-cell 

interactions [3–10]; however, it remains challenging to investigate the intercellular communication 

due to difficulties in spatiotemporal control of the microenvironment surrounding the cells of 

interest. Therefore, it is important to develop methods and tools to dissect the cell-cell interactions by 

controlling the local microenvironment. 

To control the local microenvironment, a concentration gradient of injected molecules was 

created by gradient generators in combination with laminar flow within microchannels [11–14], and 
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the idea was applied for high-throughput cell-based assays for biomedical research [15]. Although 

the methods using laminar flow have great spatial resolution in a vertical flow direction, the spatial 

resolution in the horizontal flow direction is quite low. A microfluidic probe (MFP) is a non-contact 

technology that has been proposed to regulate the microenvironment surrounding the targeted cells 

[16–18]. An MFP has two microchannels, one for injection and the other for aspiration. Diffusion of 

injected reagents can be regulated by maintaining a balance between injection and aspiration flow 

rates. Juncker et al. used a MFP to perform protein patterning on a substrate, localized chemical 

stimulation, and for selective staining of the cells [19–27]. Although MFPs are simple devices used in 

open-culture systems like conventional cell culture dishes, the integration of MFP technology into 

microfluidic devices could be highly beneficial for cell-based assays. 

We previously developed a microfluidic device integrated with an MFP [28]. The device has 

flow channels on the wall of a cell culture chamber to replicate the function of an MFP, providing 

live-cell imaging with localized chemical stimulation. Moreover, it maintains an in vivo like 

environment using applied mechanical stimuli such as shear stress [29,30]. However, the horizontal 

flow direction limited the function of the device. Furthermore, the flow was directly formed after 

starting perfusion on the cells. Thus, only simple experiments such as cell staining and cell harvest 

can be performed using the device. This study aimed to develop a three-dimensional MFP integrated 

device to overcome the limitations mentioned above for investigating cellular physiology. We 

developed a microfluidic cell culture device with an MFP attached to the roof of a cell culture chamber 

that can provide arbitrary stimulations on the X and Y axes. We demonstrated that the device can 

spatiotemporally regulate chemical stimulation and the subsequent physiological cellular response 

in the microenvironment. These results suggested that the device can potentially be applied for 

biological research. 

2. Materials and Methods  

2.1. MFP Integrated Device 

A novel MFP integrated device was developed in this study. It comprises a pair of injection and 

aspiration ports with each channel (green colored channels in Figure 1A) installed onto the roof of a 

cell culture chamber, which ensures localized chemical stimulation. The cell culture chamber is 

within a cell culture microchannel, which is connected to an inlet with a reservoir and an outlet for 

cell seeding and medium supply (orange colored channel in Figure 1A). The localized chemical 

stimulation area formed using an MFP depends on the ratio of injection to aspiration flow, distance 

between the injection and suction ports, size of the ports, and distance between the cells and the ports 

[16,21,31–33]. The microchannels were designed based on these aspects (Figure 1B,C). The device was 

installed into a jig with interfaces such as tube connecters and a reservoir for high precision fluidic 

control. 

2.2. Fabrication 

The device consisted of four layers: an upper layer, a middle layer, a lower layer, and a glass 

substrate comprising the MFP channels, MFP ports, the cell culture channel, and the bottom, 

respectively. The upper, middle, and lower layers were composed of polydimethylsiloxane (PDMS), 

and fabricated using conventional soft lithography [34–36]. Master molds for the three PDMS layers 

were manufactured using photolithography. Four-inch chrome (Cr) mask substrates were designed 

using CAD software (AutoCAD 2016, Autodesk, Inc., San Rafael, CA, USA) (Figure S1A–C) and 

fabricated using a micro-pattern generator (μPG101, Heidelberg Instruments Inc., Heidelberg, 

Germany). A negative photoresist (SU-8 2100, MicroChem, Westborough, MA, USA) of 1.9 g (100 μm 

of the upper and lower layers) and 2.5 g (160 μm of the middle layer) was spin coated onto the Cr 

mask substrates directly to fabricate high-resolution microstructures. The photoresist layers on the 

substrates were baked at 95 °C for 30 min (the upper and lower layers) and 20 min (the middle layer) 

using a hot plate as the soft bake, and then baked again at 95 °C for 5 min (the upper and lower layers) 



Micromachines 2020, 11, 691 3 of 13 

 

and 12 min (the middle layer) as the post exposure bake to form microstructures on the substrates by 

exposing them to an ultraviolet lamp of 240 mJ/cm2 (the upper and lower layers) and 260 mJ/cm2 (the 

middle layer). The substrates were dipped in the MicroChem SU-8 developer for 15 min with shaking 

to develop the exposed layers, and then washed twice with isopropanol and ion-exchanged water. 

The surface of the substrates was coated with CHF3 as a mold lubricant using reactive ion etching 

(RIE-10NR, Samco Inc., Kyoto, Japan).  

The substrates were used as master molds for PDMS (SILPOT 184, Dow Corning Toray, Tokyo, 

Japan). A 10:1 mixture of PDMS and a polymerization agent was poured onto the master molds in 

the upper layer, and heat cured in an oven at 75 °C for 2 h. The mixture was spin coated at 600 rpm 

for 20 s with air blowing onto the master molds in the middle and lower layers to make through-

structures and heat cured in an oven at 75 °C for 2 h. The cured PDMS was peeled off from the master 

mold to produce chips to which the microstructures were transferred. Microchannel inlets and outlets 

(2 mm diameter each) were fabricated on the upper layer of the PDMS chips using a trepan (BP-L20K, 

Kai). The surfaces of the three layers of the PDMS chips and a cover glass plate were activated using 

a plasma cleaner (PDC-32G, Harrick Plasma, Ithaca, NY, USA) and then aligned using pure water 

and permanently bonded together to assemble the MFP integrated device [37]. The fabricated device 

is shown in Figure 1D. Furthermore, PDMS connection blocks were attached at the locations of the 

ports using plasma bonding to set the device into the jig (Figure 1E). The jig was made of poly ether 

ether ketone (PEEK) and fabricated with machine processing (Figure S2A). The jig spacer and plate 

were made of duralumin and fabricated with machine processing (Figure S2B,C). The jig, jig plate, 

and jig spacer were fixed with screws. 

2.3. Microfluidic Control Setup and Method 

The MFP integrated device was set in the jig. To control the MFP functionality, the inlets and the 

outlets of the MFP and cell culture channels were connected to four independent high-resolution 

syringe pumps (Microfluidic System Works) using fluorinated ethylene propylene (FEP) tubes (OD: 

1/16 inch and ID: 1/100 inch, Upchurch Scientific, Oak Harbor, WA, USA). The reservoir for storing 

the medium was installed at the inlet of the cell culture channel. The flow rate in the MFP channels 

was controlled using the syringe pumps no. 1 and no. 2, which were connected to its inlet and outlet, 

respectively, as shown in Figure 1E. Using these syringe pumps, the solution containing a humoral 

factor was injected at flow rate QI into the injection port of the MFP channel and was aspirated at 

flow rate QA from the suction port of the MFP channel, as shown in Figure 1A. The diffusion of the 

humoral factor in the solution could be suppressed by maintaining QI < QA, resulting in a high-

resolution localized exposure area for the humoral factor within the cell culture chamber. 

Simultaneously, the amount of medium corresponding to the difference between QA and QI was 

discharged from the cell culture channel, allowing for a sufficient amount of the medium to be 

stocked in the reservoir. The syringe pump no. 3 was used for aspirating the solution from the 

reservoir required for cell inoculation and medium replacement in the cell culture channel. The 

syringe pump no. 4 was used for supplying the medium into the reservoir. The device with the jig 

was installed into a stage top incubator maintained at 37 °C in a humidified atmosphere containing 

5% CO2 on the stage of a confocal microscope (A1, Nikon, Tokyo, Japan) in Tokai University Imaging 

Center for Advanced Research (TICAR).  

2.4. Verification of MFP Function 

Functions of the MFP within the device were verified by comparing simulation and experiment. 

Computational fluid dynamics (CFD) analysis was performed using the general-purpose physics 

simulation software ANSYS Fluent 17.1, which is based on the finite element method (FEM), to 

estimate the chemical stimulation area using parameters such as the channel design and the flow 

ratio. We used the pressure-based solver in ANSYS Fluent. The multiphase model and the viscose 

model were set to “Mixture” and “Laminar”, respectively, to evaluate the flow and the diffusion of 

substrates in the cell culture chamber. The density, viscosity, and other parameters of the solution at 
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37 °C were set to the preset values of the water in ANSYS Fluent 17.1 (Ansys, Inc., Canonsburg,PA, 

USA). The SIMPLE method was set as the solution methods, the “Max Iterations/Time Step” was set 

to 25, and the mesh topology was tetrahedron (Table S1). 

 

Figure 1. Conceptual diagram of the microfluidic probe (MFP) integrated device. (A) MFP integrated 

device design. The device consists of an MFP channel (indicated in green) and a cell culture channel 

(indicated in orange). To obtain a localized chemical stimulation area, flow ratios are set such that QI 

< QA. (B) The device is composed of four layers: upper, middle, lower, and a glass substrate. The 

upper, middle, and lower layers correspond to the MFP channels, the MFP ports, and the cell culture 

channel, respectively. (C) Scale diagram of the channel section of the device. The major portion of 

each MFP channel and the cell culture chamber have a channel width and height of 1 mm and 100 

μm, respectively. (D) Photograph of the device made from polydimethylsiloxane (PDMS) using 

photolithography. An inlet and outlet are fabricated at each microchannel in this device. (E) 

Experimental setup. Thick PDMS connection blocks are attached to the locations of the inlets and the 

outlets for installation in a jig connected to syringe pumps. Syringe pumps no. 1 and no. 2 are 
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connected to the MFP channels and are used for fluid control in the chemical stimulation area. Syringe 

pumps no. 3 and no. 4 are connected to the cell culture channel, and are used for cell culture, solution 

replacement, and other related activities. The device with the jig is installed onto the stage of a 

confocal microscope. 

The microchannel model geometry was built similar to the device that we manufactured. In the 

simulation, the flow ratios were set to the same values as those in the experiment. Fluorescein sodium 

salt was used as the humoral factor, with a diffusion coefficient of D = 4.9 × 10−10 m2/s [38] and a 

concentration of 100 μM. The chemical stimulation area on the bottom of the cell culture chamber 

was measured from the images obtained from the simulation results, using image-processing 

software (ImageJ, NIH, Bethesda, MD, USA) in steady-state under each condition with a threshold 

concentration which was 10% of the concentration of the original solution.  

An experiment was performed using the fabricated device to verify the validity of the simulation 

results. The device was installed on the stage of a microscope, and the ports were connected to the 

four syringe pumps, as described previously. Fluorescein sodium salt (Uranin, F0096, Tokyo 

Chemical Industry, Tokyo, Japan) (100 μM) was used as the humoral factor, and fluorescence images 

were taken from the bottom of the cell culture chamber around the MFP ports using the confocal 

microscope. The flow ratios (QI:QA) were set to 0.10:1.00–0.33:1.00 μL/min. The chemical stimulation 

area in the channel was measured quantitatively from the fluorescence images using ImageJ with a 

threshold concentration of 10 μM. Fluorescence intensities of the images obtained from the 

experiment were calculated according to a standard curve, which we obtained prior to the experiment 

using different concentrations of fluorescein injected into the device; the linearity of the curve was 

maintained from 10 to 70 μM. Thus, a 10 μM threshold was set for binarization for area calculation.  

2.5. Cell Culture 

Madin-Darby canine kidney (MDCK) cells were obtained from the JCRB Cell Bank. The cells 

were cultured and maintained at 37 °C in an incubator in a humidified atmosphere containing 5% 

CO2. The culture were grown in Dulbecco’s modified Eagle medium (12320-032, Gibco) 

supplemented with 10% fetal bovine serum (FBS, Biowest, Nuaillé, France), 1% non-essential amino 

acid solution (11140–050, Thermo Fisher, Waltham, MA, USA), and 1% antibiotic and antimycotic 

solution (161–23181, Fujifilm Wako, Osaka, Japan). Chinese hamster ovary (CHO-K1) cells (JCRB Cell 

Bank, Osaka, Japan) were maintained at 37 °C in an incubator in a humidified atmosphere containing 

5% CO2. The cells were maintained in Ham’s F-12 medium (087–08335, Wako Pure Chemical 

Industries, Osaka, Japan), supplemented with 10% fetal bovine serum (FBS, Bio West, Japan), 1% non-

essential amino acid solution (11140–050, Thermo Fisher, USA), and 1% antibiotic and antimycotic 

solution (161–23181, Fujifilm Wako, Japan). 

The devices were sterilized by filling them with 70% ethanol for 60 min and then rinsing with 

Milli-Q water before being used. The cell culture channel was coated with collagen by filling the 

channel with 0.1 mg/mL collagen type I-P (634-00663, Nitta Gelatin Inc., Osaka, Japan) solution for 2 

h, followed by a rinse with PBS. The cells were seeded at a density of 1.0 × 105 cells/cm2 by introducing 

the cell suspension to the reservoir by aspirating at the rate of 5.00 μL/min using syringe pump no. 3 

(Figure 1D). Next, the device was placed in the incubator for 2 h to allow the cells to adhere to the 

bottom surface of the cell culture channel. Following cell adhesion, the culture medium stored in the 

reservoir was aspirated at a flow rate of 0.1 μL/min using syringe pump no. 3 for a perfusion culture. 

Syringe pump no. 4 was used for supplying the culture medium into the reservoir at a flow rate of 

0.1 μL/min. 

2.6. Evaluation of Cell Response by Local Chemical Stimulation 

We performed experiments of chemical stimulation on cells to evaluate the potential utility of 

the device for the assessment of physiological response induced by a signaling molecule. In this 
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experiment, we observed the changes in Ca2+ concentration in MDCK cells due to spatiotemporal 

chemical stimulation. Adenosine triphosphate (ATP; R0441, Thermo Fisher, USA) was used at a 

concentration of 75 μM as the humoral factor, which induces an increase in Ca2+ concentration. The 

flow ratios (QI:QA) were set to 0.10:1.00, 1.00:10.00, and 2.00:10.00 μL/min. The change in Ca2+ 

concentration in the cells was measured using a fluorescent Ca2+ indicator, Fluo-4 AM (Calcium Kit-

Fluo-4, Dojindo, Kumamoto, Japan). After the introduction of Fluo-4 AM into the cells, the chemical 

stimulation was initiated in each flow condition. The fluorescence intensity of Fluo-4 AM in the cells 

was observed using a confocal microscope and quantitatively measured from the images using 

ImageJ. The region of interest (ROI) corresponding to the chemical stimulation area was estimated 

by simulation. In the simulation, the flow ratios were set to the same values as mentioned in this 

experiment. A diffusion coefficient of ATP was set to D = 3.0 × 10−10 m2/s [3]. 

2.7. Cell Collection 

It is important to evaluate chemically stimulated cells using qPCR and other methods. For this, 

the cells should be collected spatially from the cell culture chamber. In this experiment, we 

investigated whether the cells can be collected site-selectively from the chamber. CHO-K1 cells were 

seeded onto the chamber according to the procedure described above and were cultured to be 

confluent. A 0.25% w/v trypsin/1 mM EDTA·4Na solution with phenol red (T4049, Sigma, St. Louis, 

MO, USA) was injected at flow ratios (QI) of 0.10–0.33 μL/min from the injection port of the MFP 

channel, and it was simultaneously aspirated at a flow rate (QA) of 1.0 μL/min. In this manner, the 

cells were exposed to a site-localized trypsin solution and collected after desquamation. After the 

collection experiment, the cells were cultured for 2 h to evaluate the effect of trypsin on the 

surrounding cells. 

3. Results and Discussion 

3.1. Flow Control Experiment and Simulation 

To evaluate the function of the MFP, we first performed a FEM-based simulation to investigate 

the chemical stimulation area of fluorescein, which served as a model for the fluorescence molecule. 

The flow ratio (QI:QA) was set at 0.1:1.00 to 0.33:1.00 μL/min. As the injection flow rate, QI, in the MFP 

channel increased, the stimulation area of fluorescein expanded (Figure 2A). The numerical 

simulation results also indicated that concentration gradients were formed depending on the flow 

ratio in the confined zone (Figure 2A). We then performed flow control experiments using the MFP. 

Consistent with the numerical simulation results, the exposed area was found to be regulated by the 

flow ratio (Figure 2B). There was a chemical concentration gradient in the chemical stimulation area. 

Although the concentration gradient decreased due to an increase in the flow rate, the shear stress 

also increased, which might affect cell functions. The chemical concentration gradient and the shear 

stress are related to the transactions. It is difficult to expose cells within the chemical stimulation area 

to chemical factors without any shear stress using the MFP. The chemical concentration gradient in 

the chemical stimulation area and the shear stress can be estimated by the numerical simulation. 

Thus, the MFP should be used with optimal flow rates depending on the cell species and phenomena. 

Furthermore, the chemical stimulation area was quantified in both experiments. As shown in Figure 

2C, the flow rate-dependent stimulation area was almost equivalent in the case of both the simulation 

and the experiment from 0.1:1.00 to 0.25:1.00 μL/min except 0.33:1.00 μL/min.  

We simulated the chemical stimulation area using three different mesh sizes at the flow ratio 

(QI:QA) 0.33:1.00 to evaluate the effect of the mesh size. “Proximity Min Size”, “Max Face Size”, and 

“Max Tet Size” were set to 100 times and 1000 times the original size that we used in this study. The 

results showed that the larger the mesh sizes, the larger were the estimated chemical stimulation 

areas, and the effect of the mesh size was significant, especially in a low concentration of a chemical 

stimulation factor (Figure S3). It is well known that the smaller the mesh size gets, the higher the 

accuracy we have in the FEM. The mesh size and density were small and high around the MFP ports 
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and were gradually larger and lower, respectively, depending on the distance from the MFP ports in 

ANSYS Fluent. This aspect caused a significant error when the chemical stimulation area was larger 

than the area in the flow ratios 0.25:1.00, especially in a low chemical concentration area. Although 

we could obtain more accurate results using the smaller mesh size, the mesh size used in this study 

was the smallest that we could perform using the workstation (CPU: Intel Xeon CPU E3-1271 v3 @3.6 

GHz, RAM: 32.0 GB). Thus, we conclude that the estimated chemical stimulation area in the flow 

ratios (QI:QA) less than 0.25:1.00 are reliable in the simulation condition. 

 

Figure 2. Comparison of experimental results with that of the simulation model to evaluate 

functionality of the device. (A) Fluid analysis simulation results using ANSYS Fluent for evaluation 

of the MFP functionality. Simulation results for the chemical stimulation area when the flow ratios 

(QI:QA) are 0.10:1.00 to 0.33:1.00 μL/min. The chemical stimulation area increases with the flow ratio. 

(B) Fluorescence images of the chemical stimulation area and its vicinity when the flow ratios are the 

same as the simulation. (C) Graph comparing the simulation results and the experimental results 

performed using the device. The results were almost identical. Means are values between maximum 

values and minimum values. 
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The diffusion coefficient directly affects the diffusion range of molecules. The diffusion range 

increases in proportion to the diffusion coefficient in the same flow ratio. Fluorescein, serving as a 

model for the fluorescence molecule in the present study, has a low molecular weight and is widely 

used as a highly diffusible molecule. Moreover, the stimulation area of the fluorescein was almost 

equivalent in both simulation and experiment. Thus, the device can be applied to highly diffusive 

chemicals.  

 

3.2. Evaluation of Cell Response via Local Chemical Stimulation 

Next, experiments were performed to evaluate the potential utility of the MFP for assessment of 

physiological response in cells induced by signaling molecules. We examined ATP as the signaling 

molecule in FEM-based simulation and evaluated ATP-dependent Ca2+ response in the MFP. The 

simulation results showed an increase in stimulation area of ATP with increasing flow rate (Figure 

3A). Furthermore, theoretical ATP concentrations over time were calculated for each flow rate (Figure 

3B). The ATP gradients within a ROI were converted to grayscale images; 256 tone levels were 

assigned from a minimum (0 μM) to maximum value (75 μM) by the simulation software. The 

intensity values of the stimulated area were averaged and normalized to the value at 0 s using the 

NIH ImageJ software. The average tone levels were converted to ATP concentration by multiplying 

by 0.29297. At a flow rate of 2.0:10.0 μL/min and 1.0:10.0 μL/min, the ATP concentration increased 

almost linearly and reached a plateau within 1 s (58 and 21 μM, respectively), and for a flow rate of 

0.1:1.0, the ATP concentration gradually increased (Figure 3B). These results suggest that control of 

the flow rate and flow ratio in the MFP enables spatiotemporal regulation of the local ATP 

concentration within the microenvironment. We further investigated the physiological response 

induced by ATP in a cell model. ATP induces an increase in intracellular Ca2+ in MDCK cells [39]. We 

measured the ATP-induced Ca2+ response using Fluo-4 AM, a calcium indicator that displays an 

increase in fluorescence intensity on Ca2+ binding [40]. MDCK cells treated with ATP showed a flow 

rate-dependent increase in intercellular Ca2+ (Figure 3C). The relative fluorescence intensity was 

quantified for each flow rate. The average fluorescence intensity values in the ROI were calculated 

and normalized to the value at 0 s using the NIH ImageJ software (Figure 3D). Consistent with the 

predicted ATP concentrations in Figure 3B, MDCK cells showed rapid elevation in fluorescence 

intensity at a flow rate of 2.0:10.0 μL/min (Figure 3D). Nevertheless, the estimated maximum ATP 

concentrations for 1.0:10.0 μL/min and 0.1:1.0 μL/min were similar in that the cells showed partial or 

no response to ATP stimulation (Figure 3D). A key difference between the two flow conditions was 

the flow velocity due to different flow rates. Previous studies indicate that shear stress induces Ca2+ 

response in MDCK cells [41–43]. These observations, taken together, suggest that the different Ca2+ 

response was caused by the increased shear stress associated with the increased flow rate. 

Interestingly, we observed Ca2+ response caused by both ATP concentrations and microfluidic shear 

stress using the device. Together, the strength and duration of the signaling response can be 

modulated by controlling the flow rate and flow ratio in the MFP. In this study, we showed that it is 

difficult to observe quick cell responses with conventional methods, while our device is 

advantageous in this respect. A key advantage of our device is that it can observe both the effects of 

concentration and shear stress, unlike conventional static cell culture systems. We tested that the 

stimulation area could be kept stable over 24 h using this device. Thus, the device can also be applied 

for chronic stimulation. Ca2+ signaling is involved in fertilization, embryogenesis, organogenesis, and 

other developmental events in a highly coordinated manner [44–47]. These processes require three-

dimensional control of the local environment such as gradients of biomolecules, flow conditions, and 

cell-cell communications. Moreover, the MFP can collect local stimulated cells by dissociating 

adherent cells for further analysis (Supplementary Figure S4). Figure S4 shows that the cells within 

the cell culture chamber were collected locally by controlling the chemical stimulation area in each 

flow ratio. Cells present in the chemical stimulation area before exposure lost their adhesion ability 

after being exposed to trypsin. A total of 1.4 × 104 to 9.0 × 104 μm2 cells were collected when the flow 
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ratios (QI:QA) were set to 0.10:1.00 and 0.25:1.00 μL/min respectively, and 70 to 450 cells could be 

harvested (assuming a cell size of 200 μm). The areas where the cells got detached corresponded to 

the chemical stimulation areas controlled by the flow ratios. Moreover, the cells surrounding the 

detached cells were not affected by the trypsin. The detached cell could be collected through the 

suction port. Therefore, we concluded that the cells can be collected site-selectively from the chamber, 

and evaluated via qPCR and other methods. Recent advances in single-cell analysis have contributed 

significantly to a better understanding of cellular physiology and pathogenesis of diseases [48–51]. 

Sarker et al. lysed single adherent cells and subsequently analyzed enzymatic activity in an MFP at 

the single-cell level. Thus, an MFP including the three-dimensional MFP developed in this study can 

also be applicable for numerous biological studies that require three-dimensional regulation of the 

microenvironment [26]. 

It is well known that many substances adsorb and adhere to the PDMS surface. Whether a 

substance is adsorbed on PDMS depends on the characteristics of the substance. For example, 

rhodamine B is a substance that is easily attached, while uranin (used in this study) is a substance 

that is relatively difficult to adsorb. Thus, using PDMS is not a problem for the functionality of this 

device. Rather, PDMS can be used to realize complex shapes at the laboratory level and has sufficient 

functions to allow the study of cellular mechanism and function. Blocking with FBS is also effective 

to some extent to avoid adsorption. Several coating techniques have also been proposed to prevent 

adsorption and attachment [52,53]. In the future, the usefulness of this device may be further 

enhanced by coating PDMS devices or fabricating devices of glass or polystyrene. These data 

demonstrated that the three-dimensional MFP integrated device spatiotemporally regulates 

physiological responses by controlling the extracellular microenvironment, providing an advanced 

method and tool for analyzing local cellular signaling response.  

4. Conclusions 

This study reports the design, fabrication, and practical applications of the three-dimensional 

MFP integrated device in studying cellular physiology. We predicted the flow profiles of a fluorescent 

molecule in the fabricated device via FEM-based simulation, and experimental data were in 

accordance with the simulation results. Control of flow rate and flow ratio in the microchannels 

regulated spatial diffusion of an injected fluorescent molecule within a restricted area. Furthermore, 

we verified that the device not only modulated spatial diffusion of biomolecules but also the temporal 

concentration within a region of interest, resulting in the tightly regulated physiological response of 

cells in a microenvironment. 
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Figure 3. Results of chemical stimulation on Madin-Darby canine kidney (MDCK) cells using the 

device. (A) Fluid analysis simulation results using ANSYS Fluent to estimate the stimulation area of 

adenosine triphosphate (ATP). Time-dependent changes in the stimulation area are shown in each 

flow ratio; 0.1:10.0, 1.0:10.0, and 2.0:10.0. (B) Time-dependent changes in mean ATP concentration in 

the stimulation area calculated using ANSYS Fluent. (C) Time-lapse fluorescence images of spatial 

chemical stimulation of the MDCK cells in the cell culture chamber using ATP solution. The flow 

ratios are the same as in the simulation. Areas surrounded by broken lines are the stimulation area 

estimated by the simulation. Green fluorescence shows increased Ca2+ concentration using Fluo-4 AM. 

(D) Fluorescence intensity of Fluo-4 caused by Ca2+ concentration increase in the MDCK cells. 
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Supplementary Materials: The following are available online at www.mdpi.com/2072-666X/11/7/691/s1, Figure 

S1: The dimensions of the MFP integrated device designed with CAD software, Figure S2: The dimensions of 

the jig designed with CAD software, Figure S3: Evaluation of the effect of mesh size on simulation results, Figure 

S4: Bright-field images of CHO cells when exposed to trypsin using the MFP on the device to harvest cells, Table 

S1: Detailed conditions for mesh size.  
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