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Abstract: Nowadays, the display industry is endeavoring to develop technology to provide large-area
organic light-emitting diode (OLED) display panels with 8K or higher resolution. Although the
selective deposition of organic molecules through shadow masks has proven to be the method of
choice for mobile panels, it may not be so when independently defined high-resolution pixels are to be
manufactured on a large substrate. This technical challenge motivated us to adopt the well-established
photolithographic protocol to the OLED pixel patterning. In this study, we demonstrate the two-color
OLED pixels integrated on a single substrate using a negative-tone highly fluorinated photoresist
(PR) and fluorous solvents. Preliminary experiments were performed to examine the probable
damaging effects of the developing and stripping processes upon a hole-transporting layer (HTL).
No significant deterioration in the efficiency of the develop-processed device was observed. Efficiency
of the device after lift-off was up to 72% relative to that of the reference device with no significant
change in operating voltage. The procedure was repeated to successfully obtain two-color pixel
arrays. Furthermore, the patterning of 15 µm green pixels was accomplished. It is expected that
photolithography can provide a useful tool for the production of high-resolution large OLED displays
in the near future.

Keywords: organic light-emitting diode (OLED), photolithography; pixel patterning; high resolution;
highly fluorinated materials

1. Introduction

The display industry has been evolving from liquid crystal displays (LCDs) towards organic
light-emitting diode (OLED) technology that can implement paper-thin displays with excellent viewing
angle and more vivid colors, and now OLED has successfully entered the commercialization stage.
The basic structure of OLEDs was first published in 1987 by Ching, W. Tang and Steven Vanslyke, and
these have since led to huge studies by many research groups [1–4]. At present, OLEDs are adopted
not only for televisions, but also for mobile phones and other portable smart devices. In addition,
innovative technologies, such as visualization of virtual reality (VR)/augmented reality (AR) and
deformable displays that can be folded and stretched, are also being actively sought for with OLED
technology [5–7].

Along with the challenges in extending the applications, the display industry is moving rapidly
towards producing ultra-high-resolution (≥8K) large OLED displays [8–10]. To enhance the resolution
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of OLEDs, the number of pixels per unit area must be increased. Hence, the area occupied by red,
green and blue (RGB) subpixels must be further decreased. The current commercial pixel patterning
protocol for mobile OLEDs is selective deposition using fine metal masks (FMM method). A shadow
mask composed of a thin metal plate and tiny holes perforated on it (FMM) is positioned below a
substrate in a vacuum chamber, and electrically active layers, including a light-emitting layer (EML)
of the desired color, is deposited only at the open regions of the FMM. This means that the holes on
the mask must be extremely small and densely assembled if an ultra-high-resolution display is to be
fabricated using the FMM method. Furthermore, it is required that the thickness of the metal plate
must be thinner than the size of the pixels to avoid the shadow effect, and FMM must be sufficiently
light to prevent it from sagging by its own weight. Production of such metal masks with these physical
constraints is technically challenging and costly, thus limiting the production of an ultra-high-resolution
OLED displays [11–13].

To overcome the limits of the FMM method, various RGB pixel patterning techniques such as
ink-jet [14,15], organic vapor jet printing (OVJP) [16,17], laser-induced thermal imaging (LITI) [18,19],
laser-induced pattern-wise sublimation (LIPS) [20], etc. have been studied. Recently, we have paid
attention to photolithography as a potential scheme for vacuum-deposited OLED multicolor pixel
patterning. Photolithography with its high-resolution capabilities and well-established registration
method is the only reliable patterning tool for integrated circuits in the semiconductor industry.
This technical benefit motivated several research groups to apply it to OLED pixel patterning.
They used a bi-layer resist approach [21–23] or photo-crosslinkable electroluminescent polymers as
EML [24]. In case of a bi-layer resist approach, the choice of shielding layer and photoresist is important.
The complete removal of the shielding layer is essential and the proper processing time is desirable.
Introducing a photo functional group to EML material is difficult because of a complex synthetic route.

Unlike general photosensitive materials that use organic solvents and aqueous developers,
highly fluorinated photoresists (PR) can be processed with fluorous solvents which do not affect
significantly the physical and electrical properties of the robust polymeric electronic materials
or organic functional films made of pentacene [25,26]. In a previous report [27], the lift-off

step of a resorcinarene-based PR film was carried out in a fluorous solvent mixture containing
1,1,1,3,3,3-hexamethyldisilazane (HMDS) or isopropyl alcohol (IPA). However, it is difficult to apply
the protocol to the lift-off process of vacuum-deposited organic thin-films made of various OLED
materials, in particular, EMLs consisting of small molecular hosts and Ir-based phosphorescent dyes.
In this study, we performed OLED pixel patterning on a common hole-transport layer (HTL) using
a newly developed, highly fluorinated PR [28] which is soluble in pure fluorous solvents without a
co-solvent, such as propylene glycol methyl ether acetate (PGEMA), and a removing agent (dimethyl
amino)trimethylsilane (DMTS) in the lift-off process. The photolithographic pixel patterning enables
the exclusive positioning of EML materials at the desired places which are defined by the selective
removal of the PR film through ultraviolet (UV) light exposure and fluorous solvent wash. Through this
approach, the photo-patterning of 15 µm light-emitting pixels were achieved. A step further, red and
green two-color pixels on a single substrate could finally be demonstrated with the acquisition of
a photoluminescence (PL) image and an electroluminescence (EL) image of the configured pixels.
This result strongly implies that OLED pixel-patterning using photolithography can be a promising
candidate applicable to the production of high-resolution display panels.

2. Materials and Methods

2.1. Materials and Equipment

Negative-tone fluorinated photoresist, RF’-calix-OtBoc was synthesized according to literature [28].
CGI-1907 (photoacid generator, PAG) was purchased from BASF (Ludwigshafen, Germany). DMTS
(>95%), and tris(trimethylsilyl)silane (>90%, TTMSS) were obtained from TCI (Tokyo, Japan)
and used without purification. 1,1,1,2,3,4,5,6,6,6-Decafluoro-3-methoxy-4-trifluoromethylpentane
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(HFE-7300) was purchased from Kemis (Hwaseong, Korea) which is a distributor of 3M (St. Paul, MN,
USA) in Korea. 1,4,5,8,9,11-Hexaazatriphenylene hexacarbonitrile (HATCN), N,N′-di(1-naphthyl)-N,
N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine (NPB), tris[2-phenylpyridine-C2,N]iridium (III) [Ir(ppy)3]
were purchased from OSM (Goyang, Korea). Tris(4-carbazoyl-9-ylphenyl)amine (TCTA) was obtained
from TCI (Tokyo, Japan) and used with purification. 1,3,5-tri(m-pyridin-3-ylphenyl)benzene (TmPyPB)
was purchased from Aldrich (St. Louis, MO, USA) and tris(1-phenylisoquinoline)iridium(III) [Ir(piq)3]
from Lumtec (New Taipei, Taiwan). Lithium fluoride (LiF) and aluminum (Al) was purchased from
iTASCO (Seoul, Korea).

Surface treatment was carried out using plasma equipment (CUTE-1MPR manufactured by Femto
Science Inc., Hwaseong, Korea). A 352 nm ultraviolet light-emitting diode (UV-LED, LABSYS LIT-2000
lithography system manufactured by NEXTRON, Busan, Korea) was used for UV irradiation.
Spin coater (POLOS Spin 150i, APT Automation, Bünde, Germany) in a glove box was used for
PR coating.

The current-voltage-luminance characteristics are measured using a source meter (B2912A,
Agilent technology Inc., Santa Clara, CA, USA) and a National Institute of Standards and
Technology (NIST) calibrated Si-photodiode FDS1010 (THORLABS Inc., Newton, NJ, USA) following
standard procedures reported by Forrest et al. [29]. Electroluminescence spectra are obtained by a
spectroradiometer (CS-2000, Minolta, Tokyo, Japan). An optical micrograph is taken using an optical
microscope (Axio scope. A1, Carl Zeiss, Oberkochen, Germany).

2.2. Photolithographic Pixel Patterning

Figure 1 shows the steps involved in the lithographic patterning of two-color light-emitting
pixels. In step (a), a HTL is thermally evaporated on a patterned indium tin oxide (ITO) substrate in
a vacuum chamber (10−7 to 10−8 Torr). This is followed by the spin-coating of a highly fluorinated
PR solution onto the HTL substrate under an N2 atmosphere in step (b). Spin coating was carried
out at 1500 rpm for 1 min. The PR solution [28] used in the present work consists of a negative-tone
material (RF’-calix-OtBoc) and PAG (CGI-1907) in HFE-7600 (3M) and the PR layer thickness is about
120–150 nm. After spin-coating, the substrate is soft-baked at 60 ◦C for 1 min under an N2 atmosphere.
In step (c), the PR pattern is formed by UV exposure in air using a chrome mask with the desired pixel
patterns. The irradiated substrate is then post-exposure baked (PEB) at 65 ◦C for 1 min in the air and
the development process is performed in the air [step (d)]. During the development, the substrate is
immersed in a fluorous solvent (HFE-7300, 3M), for 2 min to which a trace amount [0.005%(v/v)] of
DMTS is added prior to use. Another rinsing step is carried out by dipping the substrate in HFE-7300
again for 1 min to which a trace amount [0.1%(v/v)] of TTMSS is added [30]. After development, a PR
pattern is obtained for two-pixel formation along the diagonal line. An EML of a desired color is
then deposited in the vacuum chamber [step (e)]. In some cases, an electron-transport layer (ETL) is
deposited at the same time for the protection of the EML. Finally, in step (f), a lift-off step to remove
the PR layer and organic film placed on it is carried out in the air by immersing the substrate in a
fluorous solution for 3 min. HFE-7300 with an addition of an appropriate amount [1–3%(v/v) as the
various thickness of stacked OLED layers] of DMTS is employed for this treatment. As a result, the
substrate obtains a patterned EML (3.5 × 3.5 mm2) while the HTL is exposed in other parts of the
substrate. Because of the concern about a possible increase in the driving voltage due to the PR residue,
the substrate is rinsed with fresh HFE-7300 for 3 min. Then, the PR coating, soft-baking at the same
condition was carried out to build the second color emitting pixels. UV exposure was performed using
a chrome mask with the opposite pattern for the first emitting pixel. The development using same
fluorous solvents, second EML deposition, and lift-off process are repeated. After the photo-patterning
process, the electron injection layer (EIL) and metal cathode are deposited on the patterned substrate.
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Figure 1. Schematic illustration of the photolithographic patterning process: (a) hole-transport layer 
(HTL) deposition on the indium tin oxide (ITO) substrate; (b) spin-coating of the photoresist (PR); (c) 
ultraviolet (UV) exposure through a photomask; (d) development of the photoresist film; (e) light-
emitting layer (EML) deposition; (f) lift-off of the resist film and organic layer on it. 
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ITO glass substrates (AMG, Korea) used in this work (Figure 2a) are patterned with 150 nm-
thick of ITO and 1 μm-thick of polyimide (PI) bank acting as the pixel-defined layer (PDL). They are 
cleaned by ultrasonication in distilled water for 10 min, and dried in the air. Prior to organic layer 
deposition, O2 plasma surface treatment is performed for 5 min. The organic and metal layer 
deposition is then carried out by thermal evaporation in an ultra-high vacuum (10−7 to 10−8 Torr). The 
evaporation rates and layer thickness are measured by quartz crystal microbalance. The device 
consists of the following consecutive stacks: ITO, hole-injection layer (HIL), HTL, EML, ETL, EIL, and 
metal cathode. In detail, the 10 nm-thick HIL is composed of HATCN; the 50 nm-thick HTL consists 
of 40 nm film of NPB and 10 nm film of TCTA; the green EML is composed of TCTA and TmPyPB as 
the host material, which is doped with Ir(ppy)3. The thickness and doping concentration of the EML 
layer vary according to the experimental batch. The 40 nm-thick ETL is composed of TmPyPB, and 
the 0.7 nm-thick EIL consists of lithium fluoride (LiF). The 75 nm-thick cathode is composed of 
aluminum (Al). All the completed devices are encapsulated in an N2 atmosphere for measurement 
outside the glovebox (Figure 2b). Encapsulating glass lids possessing a moisture remover (HD type 
made of CaO, DYNIC, Tokyo, Japan) was placed over the OLED substrate and fixed with UV sealant 
resin (Figure 2c). 

Figure 1. Schematic illustration of the photolithographic patterning process: (a) hole-transport layer
(HTL) deposition on the indium tin oxide (ITO) substrate; (b) spin-coating of the photoresist (PR);
(c) ultraviolet (UV) exposure through a photomask; (d) development of the photoresist film;
(e) light-emitting layer (EML) deposition; (f) lift-off of the resist film and organic layer on it.

2.3. Organic Light-Emitting Diode (OLED) Fabrication

ITO glass substrates (AMG, Korea) used in this work (Figure 2a) are patterned with 150 nm-thick
of ITO and 1 µm-thick of polyimide (PI) bank acting as the pixel-defined layer (PDL). They are cleaned
by ultrasonication in distilled water for 10 min, and dried in the air. Prior to organic layer deposition,
O2 plasma surface treatment is performed for 5 min. The organic and metal layer deposition is then
carried out by thermal evaporation in an ultra-high vacuum (10−7 to 10−8 Torr). The evaporation rates
and layer thickness are measured by quartz crystal microbalance. The device consists of the following
consecutive stacks: ITO, hole-injection layer (HIL), HTL, EML, ETL, EIL, and metal cathode. In detail,
the 10 nm-thick HIL is composed of HATCN; the 50 nm-thick HTL consists of 40 nm film of NPB and
10 nm film of TCTA; the green EML is composed of TCTA and TmPyPB as the host material, which is
doped with Ir(ppy)3. The thickness and doping concentration of the EML layer vary according to the
experimental batch. The 40 nm-thick ETL is composed of TmPyPB, and the 0.7 nm-thick EIL consists
of lithium fluoride (LiF). The 75 nm-thick cathode is composed of aluminum (Al). All the completed
devices are encapsulated in an N2 atmosphere for measurement outside the glovebox (Figure 2b).
Encapsulating glass lids possessing a moisture remover (HD type made of CaO, DYNIC, Tokyo, Japan)
was placed over the OLED substrate and fixed with UV sealant resin (Figure 2c).Micromachines 2020, 11, x 5 of 13 
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Figure 2. (a) ITO glass substrate image with patterned ITO and pixel-defined layer (PDL); (b) structure
of green pixel patterned electroluminescent device used in this work; (c) the image of the encapsulated
organic light-emitting diode (OLED) substrate covered with a moisture remover-containing glass lid.
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3. Results and Discussion

3.1. Development Process on Hole-Transport Layer (HTL)

To verify the applicability of the proposed photo-patterning scheme to the OLED pixel construction,
we first examined the effect of the lithographic conditions upon the HTL because the PR pattern
formation was carried out on top of it. After coating a PR layer on the deposited HTL substrate, the whole
surface excluding the two diagonally placed rectangles was irradiated by UV light. The substrate
was washed in a fluorous solution containing chemical additives (0.005%(v/v) of DMTS in HFE-7300
and 0.1%(v/v) of TTMSS in HFE-7300) the formulation of which had been reported in our previous
study [30].

Figure 3a shows the processed substrate in which the two non-irradiated pixels along the left
diagonal are not covered by the PR layer and thus have the color of the HTL. These two pixels
constituted the light-emitting regions. The device fabrication was then completed by successive
thermal evaporation of the EML, ETL, EIL, and cathode without the lift-off process of the PR layer.
The EML stacks used in this batch consisted of TCTA:Ir(ppy)3 (15 nm, dopant concentration 8%) and
TmPyPB:Ir(ppy)3 (15 nm, dopant concentration 8%). To evaluate the device characteristics, a reference
device was also fabricated, which did not undergo the patterning work but was exposed to the air after
the HTL deposition. Figure 3b shows the reference one in which the four pixels defined by the PDL
have the color of the HTL.
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Figure 3. Photographic images of (a) the patterned device substrate after photoresist (PR) development
and (b) the reference device substrate.

Typical current-voltage-luminance (JVL) characteristics of the patterned and reference devices are
presented in Figure 4a–d. As summarized in Table 1, the current efficiency of the patterned device
was 54.3 cd/A at 1000 nit (cd/m2), which is around 95% of that of the reference device. Data of the
other devices in a same batch are shown in a Supplementary Materials (Figure S1 and Table S1).
Furthermore, the power efficiency was 36.5 lm/W and the external quantum efficiency (EQE) was
15.6%. It could be concluded that no significant negative effect occurred during the PR coating, UV
exposure, post-exposure bake and develop process using fluorous solvents.
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Table 1. Performance summary of a reference device and a develop processed device.

Processing
Stage Device

Current
Efficiency 1

(cd/A)

Power
Efficiency 1

(lm/W)

External
Quantum

Efficiency 1

(%)

Driving
Voltage 1

(V)

Turn on
Voltage 2

(V)

Development
on HTL

Reference 57.4 38.6 16.5 4.7 3.0
Processed 54.3 36.5 15.6 4.7 3.0

1 at 1000 nit, 2 at 1 nit.

3.2. Lift-Off Process

After formation of a PR pattern on the HTL and deposition of the 10 nm-thick EML and the
40 nm-thick ETL, we attempted the lift-off step to remove the PR layer, EML, and ETL placed on
top of it. Here, the EML stack consisted of TCTA:Ir(ppy)3 (5 nm, dopant concentration 8%) and
TmPyPB:Ir(ppy)3 (5 nm, dopant concentration 8%). By immersing it into HFE-7300 containing an
appropriate amount of DMTS [2.5%(v/v)], the lift-off process could be completed within 6 min in the
air. To minimize the PR residue in the pixel area, the substrate is rinsed with fresh HFE-7300 and
washed again with a syringe. In case of a previous bi-layer resist approach, around 2 h treatment in
HFE solvent was required for lift-off [21]. For performance comparison, a reference substrate was also
prepared by leaving it in the air without the patterning steps.

The photographic image of the processed substrate, (a) in Figure 5, shows the patterned EML at
the pixels along the left diagonal after the lift-off step under a UV lamp. In the case of the reference one,
the substrate was fully covered by the EML, (b) in Figure 5. Examination of the JVL characteristics in
Figure 6 indicates that the current efficiency of the processed device was 36.1 cd/A, which is at the 72%
level of the reference device. The power efficiency of the processed device was 27.5 lm/W, and the EQE
was 10.5% at 1000 nit. The performance of each device is summarized in Table 2. The operating voltage
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of the processed device was comparable to that of the reference one. Thus, it could be confirmed that
photo-patterning of single-color pixels on top of the HTL can reach as high as 72% performance level
of the non-patterned reference without the operating voltage deteriorating much. Other devices that
have gone through lift-off steps under slightly different conditions, including different exposure time
and stripper concentration, show nearly similar performances to the lift-off processed device using
2.5% of DMTS (Figure S2 and Table S2). It was assumed that the performance degradation after the
lift-off step could be associated with the several percent concentration of the removing agent DMTS.
Furthermore, it was found that an effective rinsing with fresh solvent was necessary to minimize the
increase in operating voltage that could occur due to the deposition of the PR residue.
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Table 2. Performance summary of a reference device and a processed device after lift-off.

Processing
Stage Device

Current
Efficiency 1

(cd/A)

Power
Efficiency 1

(lm/W)

External
Quantum

Efficiency 1

(%)

Driving
Voltage 1

(V)

Turn on
Voltage 2

(V)

Lift-off
Reference 50.0 38.6 14.5 4.0 2.8
Processed 36.1 27.5 10.5 4.1 2.8

1 at 1000 nit, 2 at 1 nit.

The photo-patterning scheme was then examined in the construction of precisely defined emitting
pixels of micrometer scale size. The optical micrograph in Figure 7a shows an EL image of the OLED
device with the 15 µm photo-patterned EML, and Figure 7b depicts the OLED stack structure in the
region indicated by the segmental line A in Figure 7a. In this case, the emitting area was not defined
by the PDL pattern on the ITO, but by the photo-patterned EML itself on the common HTL. Inside a
2 × 2 mm2 region defined by the PDL, there is an array of 15 µm rectangles of the patterned EML with
30 µm pixel pitch. It is noteworthy that the lift-off step in the micrometer-scale pixel size regime could
be carried out successfully, compared to the current state of the art in the FMM method of OLED pixel
patterning [31,32].
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3.3. Two-Color Pixel Patterning

Two-color light-emitting pixel patterning was undertaken on the same substrate by repeating the
single-color patterning process as shown in Figure 8 in order to verify the potential of our approach.
We encountered a difficult situation for a second PR coating on first patterned green EML and ETL.
The process step is shown from (6) to (7) in Figure 8. Due to the difference in wettability of the PR
solution on HTL and ETL materials, a PR film could not be perfectly coated on the first patterned
EML/ETL. As shown in Figure 9a, we used a single TCTA host instead of double TCTA/TmPyPB hosts
into a green EML to resolve the de-wetting problem of the PR solution in the second photolithography
process. Therefore, the lift-off step was performed on top of the EML rather than on EML/ETL.
After lift-off of the red EML, substrate was patterned with two-color EMLs as step (11) of Figure 8.
Then, the ETL, EIL, and metal cathode were deposited and encapsulated in an N2 atmosphere with
a moisture remover and UV sealant resin (Figure 9b). To achieve preliminary working two-color
light-emitting pixels, the EML composition and structure was slightly modified with an adjusted
stripper concentration.
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The PL image in Figure 10a shows the diagonally patterned, two different EMLs (3.5 × 3.5 mm2).
Figure 10b presents the actual operating pixels of the device with the photo-patterned two-color EMLs.
The emitting area (2 × 2 mm2) is smaller than that of the patterned EMLs (3.5 × 3.5 mm2) because it
was further defined by the PDL inside the EML patterns on top of the ITO electrode. Further study is
aimed at finding conditions to increase the efficiency of the first patterned light-emitting pixels which
undergo two lift-off steps. This includes the implementation of a new process scheme and materials,
such as applying a protective layer on top of the patterned pixel and performing a lift-off step with a
benign additive.
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4. Conclusions

In this study, we demonstrated the two-color OLED pixels integrated on a single substrate
using a negative-tone highly fluorinated PR and fluorous solvents performed on a common HTL.
Preliminary experiments were performed to examine the probable damaging effects of the developing
and lift-off steps on a HTL. No significant deterioration in the efficiency of the develop-processed
device was observed at 1000 nit. The processed device after lift-off achieved an efficiency of up to
72% relative to the reference device at 1000 nit, with no change in the operating voltage. The same
procedure for the single color patterning was repeated once more to successfully obtain two-color pixel
arrays. In addition, the patterning of 15 µm green pixels was accomplished. These results tell us that
photolithography can provide a useful tool for the production of high-resolution large OLED displays
in the near future.
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