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Abstract: We propose a thin, single-layered circular dichroic filter with Au nanospiral structures on 

a polydimethylsiloxane (PDMS) thin film that has strong circular dichroism at visible wavelengths. 

Au nanospiral structures with a diameter of 70 nm were fabricated by cryogenic glancing angle 

deposition on a substrate with a nanodot array template patterned with the block copolymer PS-

PDMS. The Au nanospiral structures were transferred onto a transparent and flexible PDMS thin 

film to fabricate a thin, single-layered circular dichroic filter. The filter had a very large circular 

dichroism peak of −830 mdeg at 630 nm. The results show that the Au nanospiral structures 

transferred onto PDMS thin film exhibit large circular dichroism at visible wavelengths. 
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1. Introduction 

Structures whose mirror images cannot be made to overlap by simple rotations or translations, 

such as the secondary structure of biomolecules, present either right-handed or left-handed 

structures and are called chiral structures [1,2]. Since chiral structures have different dielectric 

constants for right circularly polarized (RCP) and left circularly polarized (LCP) light, they exhibit 

circular dichroism, which is a difference in the transmittance between RCP and LCP light. Circular 

dichroism is usually very weak in the case of natural materials and mainly exhibits the largest value 

in the ultraviolet region [2]. In recent years, since they present optical characteristics whose amplitude 

is significantly larger than those of natural materials [2,3], artificial micro/nanostructures called 

metamaterials have been attracting much attention [1–16]. In particular, chiral plasmonic 

metamaterials achieve strong circular dichroism by either shaping the plasmonic material into a 

shape that does not have a mirror symmetry plane or arranging the plasmonic particles to from spiral-

like shapes [2]. Nanosized metal chiral structures have circular dichroism in visible wavelength 

[6,8,9,13–15,17–20]. In particular, nanosized metal three-dimensional helical chiral structures exhibit 

very strong chirality under visible light [14,17–20]. Taking advantage of this remarkable performance, 

an optical filter that is very thin and has unprecedented performance could be achieved. By 

controlling the circular polarization, an optical isolator could be constructed, which is a very 

attractive technology because it has the potential to realize anti-reflection functions with a very thin 

structure. It can also be employed to construct single-layered circular dichroic filters for visible light, 

which has never been seen before. In a previous study, metal nanospiral structures were formed, 

released and dispersed into a liquid, and they exhibited large circular dichroism in the visible range 

[18]. Ni nanospiral structures formed on a transparent substrate were also reported to present an 

enhanced circular dichroism when subjected to a strong magnetic field [17]. However, although 
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many examples of film-like configurations on hard substrates [7,21–23], or meta fluids which have 

chiral structure in a liquid [15,18,24], have been reported, there have been no reports of a response to 

visible light when transferred onto a flexible film. 

In this paper, we describe a thin circular dichroic film in which an Au nanospiral structure is 

transferred onto a flexible and transparent polydimethylsiloxane (PDMS) thin film and examine its 

strong circular dichroism in the visible light region (Figure 1). We used this property to realize a 

circular dichroic film. In the device fabrication, nanodot templates were fabricated from block 

copolymers on a Si substrate. Three-dimensional Au nanospiral structures were fabricated by 

cryogenic glancing angle deposition on the nanodot template substrate. The nanospirals were 

selectively grown on each nanodot. A circular dichroic filter was fabricated by transferring the Au 

nanospiral structure onto a transparent flexible PDMS film to construct a film exhibiting circular 

dichroism. Measurement of the light transmitted through the fabricated circular dichroic film was 

performed, and strong circular dichroism was observed in the visible light range. 

 

Figure 1. Proposed circular dichroic film at a visible wavelength with Au nanospiral structures 

transferred on a polydimethylsiloxane (PDMS) thin film. 

2. Fabrication 

Au nanospiral structures were fabricated by cryogenic glancing angle deposition on a block 

copolymer nanodot array template formed on a Si substrate. A simple block copolymer, polystyrene–

PDMS (PS-PDMS), was used to make a dot template to improve the accuracy of the three-dimensional 

helix formation. Au nanospiral structures were then transferred onto a PDMS film to construct a film 

exhibiting circular dichroism in the visible range. 

2.1. Fabrication of Nanodot Templates Using Block Copolymers 

Glancing angle deposition has been mainly used to fabricate nanoscale three-dimensional 

structures in dielectric materials [13,25–28], and its schematic for nanospiral formation is shown in 

Figure 2. When a noble metal, such as Au, is used as a deposition source in thermal evaporation, the 

metal vapor tends to form a continuous film after coming in contact with the substrate due to 

relocation of deposited metal. To inhibit this relocation and obtain noncontinuous separated metal 

structures, deposition was performed with cooling of the substrate [14,17,18]. The cooling of the 

substrate to cryogenic temperatures leads to immediate solidification of the metal vapor on the 

substrate and prevents the solidified metal vapor from forming a continuous film, providing island-

like metal nanostructures. However, if cryogenic deposition is simply performed on a flat substrate, 

then the lateral spacing between the Au nano metal structures on the substrate becomes random, so 

the shape might be nonuniform and there is a risk that the structures will be connected to each other 

and become continuous. The effect of nanodot templates will be referred in later in our preliminary 

examination. It was found that without the nanodot template many metal structures tended to 



Micromachines 2020, 11, 641 3 of 12 

 

connect and could not form a clean spiral structure. We therefore employed Au nanodot templates 

on a Si substrate so that nanospiral structures can be formed with a moderately uniform lateral 

spacing. When the metal is deposited with an acute glancing angle, as shown in the upper part of 

Figure 2a, the nanodots shadow the metal vapor, and the metal vapor is thus selectively deposited 

on the nanodots. The shadow length L that the nanodot creates is expressed as 

� =
ℎ

tan ���
, (1) 

where ��� is the angle at which the Au vapor is irradiated and h is the height of the nanodot. Since 

the dot template used in this paper is about h = 20 nm, considering the distance that each dot creates 

a shadow, the ��� of about 80° < ��� < 87° is expected to be suitable and was set to 85°. From the 

top view, cryogenic glancing angle deposition is performed with the nanodot template Si substrate 

being slowly rotated against the substrate surface around the vertical axis, as shown in Figure 2b. 

Then, as shown in Figure 2c, the metal vapor attaches to the apex of the nanodots and consolidates 

due to the cryogenic condition without relocation. Repeating this process leads to growth of the Au 

dots into nanospirals, as shown in Figure 2d. In the following, the detailed fabrication process is 

described. 

 

Figure 2. Overview of fabrication of Au nanospiral structures with cryogenic glancing angle 

deposition. (a) The PDMS nanodot templates are irradiated with Au vapor from 85°, the dots shadow 

each other, and Au is deposited at the tips of the dots. (b–d) Since the substrate is at an extremely low 

temperature, the Au solidifies instantaneously, and when the stage is rotated, a three-dimensional 

helical structure is formed. 

The block copolymer PS-PDMS (P6194-SDMS Mn:47100-b-9000, Polymer Source Inc, Dorval, 

QC, Canada) and a hydroxy-terminated PS (P2996-SOH, Polymer Source Inc, Canada) were used for 

the fabrication of the nanodot template. The self-assembly of block copolymers is often used to 

fabricate nanosized large-area periodic nanostructures such as a nanodot array [29–32]. In particular, 

PS-PDMS is adopted in this work because it is advantageous for the fabrication of smaller dot patterns 

such as on the 10 nm scale [29,31]. Figure 3 shows the fabrication procedure. First, the surface of the 

Si substrate was activated by O2 plasma at 50 W for 5 min (Figure 3(1)). Then, the hydroxy-terminated 

PS was adjusted to 1 wt % dissolved in microelectronic-grade propylene glycol methyl ether acetate 

(PGMEA, Showa Denko, Tokyo, Japan). The hydroxyl-terminated PS was spin coated on the Si 

substrate at 2000 rpm for 30 s. The substrate was then baked at 200 °C for 10 min in an oven. Since 

both the surface of the Si substrate and the hydroxy-terminated PS have −OH functional groups, H2O 

desorbs, and the Si surface and the hydroxy-terminated PS covalently bond with −O− (Figure 3(2)). 

After baking, the excess PS that did not form a covalent bond was removed by rinsing with PGMEA. 

Consequently, the surface of the Si substrate was coated with a thin layer of PS [29]. On this substrate, 
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1 wt % PS-PDMS dissolved in PGMEA was spin coated at 1500 rpm for 30 s (Figure 3(3)) and baked 

at 150°C for 30 min in an oven. Upon being baked, PS-PDMS separated into PS and PDMS. The 

separated PDMS aggregated to form spheres. The size of the PDMS sphere depends on the ratio of 

PS and PDMS [29,31]. After the separation process, the surface of this film was covered by several 

nanometer-thick PDMS film because PDMS has the low surface energy [31], and the PDMS spheres 

were beneath this thin film (Figure 3(4)). The surface PDMS layer is not likely to be affected by the 

PS-PDMS ratio because it was very thin. The PDMS thin film was selectively removed by O2 plasma 

at 50 W for 2 s (Figure 3(5)). After removal of the surface PS thin film, the PS between the PDMS 

spheres was etched with O2 plasma at 10 W for 60 s (Figure 3(6)). The PDMS spheres were thus 

exposed, becoming nanodot array templates with a 20 nm diameter. The PDMS nanodots were 

arranged at a pitch of 40 nm, as shown in the SEM (scanning electron microscopy) image of Figure 

3(6). In Figure 3(6), although slightly difficult, protruding white dots, which correspond to PDMS 

spheres, can be observed, and the visible dots other than PDMS spheres are Au spatter grains. 

 

Figure 3. Patterning of nanosized dot templates on Si substrates using polystyrene–PDMS (PS-

PDMS), a type of block copolymer. 

2.2. Cryogenic Glancing Angle Deposition 

As shown in Figure 4a, a vacuum deposition system was constructed for cryogenic glancing 

angle deposition with a stage temperature of −100 °C, stage rotation, and irradiation of Au vapor at 

85°. This system was constructed using a commercial thermal evaporation machine (SVC-700TMSG, 

SANYU Electron, Tokyo, Japan). Most of the system was embedded in a vacuum chamber. The metal 

vapor is produced by resistive heating with W (Tungsten) boat at the bottom of the system, and the 

vapor is deposited on the nanodot template Si substrate attached to a rotating stage. A vacuum-

compatible stage (VSGSP-60YAW, Siguma-koki, Tokyo, Japan) was used as the rotating stage. An 

aluminum stage for fixing the nanodot template Si substrate was attached to the rotating stage. The 

rotating and aluminum stages were mechanically fixed inside the chamber such that the metal vapor 

reached the Si substrate with an angle of incidence of 85°, as shown in Figure 4a. The top of the 

aluminum stage was fabricated to be cylindrical, and a ball bearing (MT2-SEB206J1ZZ1C3/0G, NTN, 

Osaka, Japan) was attached to the cylindrical aluminum stage. Moreover, a copper tube (Cu tube) 

was looped around the ball bearing and was in thermal contact with the ball bearing via soldering. 

Then, liquid nitrogen was provided through the Cu tube. In this way, the stages were cooled by liquid 

nitrogen via the contact between the ball bearing and the aluminum stage, and the handmade 

vacuum system realized simultaneous rotation and cooling of the Si substrate. The actual evaporation 

process was performed as shown in Figure 4b. The inset of Figure 4b shows the rotating Si substrate 

seen from a viewport of the vacuum chamber. Liquid nitrogen was circulated inside the Cu tube, and 

its flow direction is indicated by the blue arrows. In the fabrication, Au was used as the deposition 
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source material. The stage temperature was approximately −100°C during evaporation. The chamber 

pressure was typically 5.0 × 10−4 Pa. The stage rotation speed was 0.34 rpm, the deposition time 

duration was 180 s, and the deposition rate was 0.4 nm/s. During the deposition, Au was solidified 

and deposited on the PDMS nanodots, and the spiral structure was formed by rotating the stage. 

After deposition, Au nanospiral structures with a diameter of 70 nm were formed on the Si substrate. 

An SEM image of a side view of the fabricated nanospirals is shown in Figure 5a. The shape of the 

nanospiral structures can be adjusted mainly by changing the deposition rate and the stage rotation 

speed; for example, the diameter increases as the stage rotation speed is slowed down [26]. At this 

time, nanospiral structures were single turn because the stage was rotated only once. The fabricated 

film was not a uniform film but contained distinctive structures due to the cryogenic deposition. 

Focusing on a single structure enclosed by the dotted circle in Figure 5a, the structure is twisted, 

which can be attributed to the rotating glancing angle evaporation. When the rotation direction of 

the stage was changed to the opposite direction, the spiral handedness became the opposite 

handedness. Thus, nanometal spirals were fabricated using cryogenic glancing angle deposition in 

the handmade vacuum evaporation system. 

 

Figure 4. A rotating stage with an aluminium stage was mounted in the vacuum chamber at 85°. A 

Cu tube, acting as a channel for liquid nitrogen, is bonded to the aluminium stage via a bearing, and 

rotational deposition can be performed while cooling to −100 °C. (a) Schematic of the deposition 

system. (b) Photographs taken during deposition. 

2.3. Transfer of Au Nanospiral Structures onto Polydimethylsiloxane (PDMS) Thin Films 

The Au nanospiral structures were then transferred onto isotropic, transparent thin and flexible 

PDMS thin films to form a film that exhibits transmissive circular dichroism. In the fabrication of the 

PDMS thin films, the main agent and hardener (Sylgard 184, Dow Corning, Midland, MI, USA) were 

mixed in a 10:1 ratio and defoamed in a vacuum desiccator for one hour. After defoaming, the PDMS 

was deposited onto a glass substrate by spin coating at 1000 rpm for 60 s and then heated at 130 °C 

for 2 h. The PDMS films on glass substrates were cut into 150 mm squares with a scalpel, peeled off, 

and placed on a Si substrate with fabricated Au nanospiral structures. In general, the bond strength 

between Au and PDMS is weak, and surface treatment is often performed prior to the transfer of a 

pattern [33]. However, the Au nanospiral structures could be transferred only by self-adhesion to the 

surface of the PDMS thin film without such treatment because the PDMS nanodots had weak 

adhesion to the Si substrate. Applying pressure on the PDMS film to enhance the adhesion between 

the PDMS film and the Au nanospiral structures was thus not necessary. In this way, a single-layered 

Au nanospiral-transferred PDMS film was fabricated. The transferred Au nanospirals are shown in 

Figure 5b. The transferred Au pattern was clearly seen on the surface of the Si substrate, where the Si 

surface appeared due to the transfer of Au nanospiral structures (Figure 5c). A photo of the substrate 

after transferred to a PDMS thin film taken with an optical microscope with dark field showed that 

almost all of the Au nanospiral structures could be transferred to PDMS because a plasmonic red 
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scattered light derived from the Au nanostructures was not observed in the transferred area (Figure 

5d). There is possibility that the orientation of the Au nanospiral structures changed during the 

transfer to the PDMS thin film. This was not an obstacle in the following verification experiments. 

Because the Au nanospiral structures has chirality even when the orientation changes, the circular 

dichroism can be observed regardless of the quality of transferal. In a practical use, the orientation 

will be important. The use of micro transfer printing technique may be promising when transferring 

the Au nanospiral structure to the PDMS thin film without changing its orientation [34,35]. 

 

Figure 5. A thin, single-layered circular dichroic filter was fabricated by transferring the Au 

nanospiral structure fabricated on a Si substrate onto a flexible and transparent PDMS thin film. (a) 

SEM image of a side view of the left-handed Au nanospiral structures with a diameter of 70 nm on a 

Si substrate. (b) Transferred Au nanospiral structures. (c) A photo of the substrate after transferred to 

a PDMS thin film taken with an optical microscope with bright field. (d) A photo of the substrate after 

transferred to a PDMS thin film taken with an optical microscope with dark field. 

3. Evaluation of Circular Dichroism 

The transmission characteristics of the fabricated film were evaluated with a circular dichroism 

spectrometer (J-720W, JASCO, Tokyo, Japan). The film was mounted on a glass cell such that the light 

was vertically incident on the film (Figure 6a). The glass cell was then placed on an adjuster to be 

installed in the spectrometer (Figure 6b). Since the glass cell can be rotated around the light 

propagation direction, indicated by the yellow lines in Figure 6c, the azimuth rotation angle θ of the 

film can be altered. The angle at which the glass cell contacts the slider of the adjuster was defined as 

θ = 0°, indicated by a dotted line in Figure 6b. The angle θ = 0°, or orientation, of the Au nanopiral 

structure film was arbitrary taken. In the following, θ = 90° was defined to be relative to this angle. 

To measure the circular dichroism without a linear birefringence, we measured the circular dichroism 

spectra at two azimuth rotation angles, θ = 0° and 90°. In addition, circular dichroism spectra were 

obtained for two light incidence directions, where the light was incident on the film from the front 

side or from the back side. In this case, the front side was defined as the surface on which the Au 

nanospirals were formed. The measured spectra are shown in Figure 6d. The measurement 

wavelength ranged from 300 nm to 800 nm, covering the whole visible wavelength range. The film 

exhibited strong circular dichroism at approximately 650 nm. The amplitude of the circular dichroism 

differed depending on the azimuth rotation angle, which can be attributed to the liner birefringence. 

In contrast, the circular dichroism was almost the same regardless of the incident direction. This result 

is consistent with the chiral structure’s reciprocal characteristic that the circular dichroism is the same 

regardless of whether the light is coming from the front or the back [36], so the result is reasonable. 

The linear birefringence is expected to be due to the Au nanospiral configuration in which the Au 

nanospiral structures are oriented in the same direction, which can be reduced by averaging the 
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circular dichroism at θ = 0° and 90°. In the following measurements, to reduce the linear birefringence 

effect, the device characteristics were evaluated by averaging the results of four patterns of 

measurements in which light was incident from the front and back of the film at θ = 0° and at θ = 90°. 

Notably, the measurement error may include a component that is independent of the rotation [37], 

so small errors may still remain in the evaluated results. 

 

Figure 6. Transmission characteristics when light is incident from the front and back of the device and 

from the front and back of the device at a 90° tilt. The transmission characteristics of the front and 

back surfaces at the same angle were almost identical. The circular dichroism measurement error is 

confirmed by the linearity of the birefringence. (a) PDMS thin film with Au nanospiral structures on 

a glass cell. (b) Glass cell holder and tilt angle of the glass cell. (c) Setup of the circular dichroism 

measurement. (d) Circular dichroism spectrum of the device which has left-handed Au nanospiral 

structures for front side and back side illumination with θ = 0° or 90°. 

The circular dichroism spectra of the right- and left-handed Au nanospiral structures, which 

were prepared by changing the rotation direction during cryogenic glancing angle deposition 

(Figures 5a and 7a), are shown in Figure 7b. Figure 7c is an SEM image of a top view of the right-

handed Au nanospiral structures. Figure 7d is an SEM image of a top view of the left-handed Au 

nanospiral structures. The top view images indicated that the structures are moderately curing. Their 

curling direction are reversed between the Figures 7c,d, which are corresponding to the handedness 

of the nanospirals. As a control, the data for a flat Au film with a thickness of 30 nm are also plotted. 

The flat Au films were fabricated under almost the same conditions as when fabricating the Au 

nanospiral structures, but the Si substrate did not have a nanodot template and evaporation was 

performed at room temperature. The flat Au film was almost uniform because a plasmonic red 

scattered light derived from the Au nanostructures was not observed in the surface with an optical 

microscope with dark field. No circular dichroism was observed for the flat Au film. Distinctively 

large circular dichroism was observed for the Au nanospirals. Moreover, the Au nanospiral 

structures with the opposite handedness exhibited opposite polarity circular dichroism. This result 

is consistent with the fact that these films had opposite chirality. The amplitude of the circular 

dichroism for the left-handed Au nanospiral structures showed a negative value peak of −830 mdeg 

at the 630 nm wavelength. In contrast, the right-handed Au nanospiral structures exhibited a positive 

value peak of 518 mdeg at 742 nm. Although the peak polarity reversed depending on the chirality 

of the nanospiral structures, the peak wavelength positions were not the same. This difference can be 

attributed to the fluctuation of the deposition rate of Au. In the constructed vacuum evaporation 

system, a deposition rate control system was not installed, so open loop rate control was adopted. 

Therefore, a slight difference in the deposition rate might have resulted in a spiral height difference 

between the right- and left-handed spirals, thus producing different resonant frequencies and 

deviation of the peak wavelengths. The reason why the right-handed Au nanospiral structures, which 

were smaller in size than the left-handed ones, had a peak on the longer wavelength can be attributed 
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to the height difference of the structure. Figure 8a shows the calculated transmission spectra of the 

Au nanospiral structures as a function of height of the structure. The simulation was performed using 

COMSOL Multiphysics 5.5. One unit cell of the Au nanospiral structure is modelled with periodic 

boundary conditions to simulate an infinite 2D array (Figure 8b). The dielectric constant of Au was 

defined as a function of the Lorentz-Drude model, and the dielectric constant of air was set to 1 [38]. 

The size of the unit was set at 80 nm × 80 nm × 300 nm. This corresponds to the Au nanospiral 

structures spaced 80 nm apart in a 2D plane. The shape of the Au nanospiral structure was as follows. 

The number of turns was 0.8. The diameter of the rolls, which is the diameter of the nanospiral seen 

from the infinitely distant point in the longitudinal direction, was 40 nm. The cross section of the 

nanospiral wire was determined to be circular and the diameter of the wire width was 30 nm. The 

turning pitch, which is the longitudinal distance for the spiral to take one turn, was 40 nm. The height 

of the structure was denoted as hsp, and was 0.8 times of the turning pitch. The RCPs and LCPs were 

illuminated through the lower port of the unit cell and the transmitted light intensity was acquired 

at the upper port of the unit cell. The changes in transmission spectra were investigated by varying 

only the structural height hsp (Figure 8b). As hsp increased, the peak wavelength tended to become 

shorter. This result suggests that the right-handed Au nanospiral structures, which is lower in height 

than the left-handed ones, had a peak at longer wavelength because of the relatively low height of 

the structures. As described above, the peak wavelength of the transmission spectrum may change 

due to changes in the height of the Au nanospiral structures, which is presumably due to difference 

in the deposition rate. Since this problem can be solved by monitoring the deposition rate, 

improvement of the evaporation system will solve it. The maximum circular dichroism amplitude 

obtained in this study, −830 mdeg, is comparable to the results in a previous study [18], where circular 

dichroism of ~2 deg was observed for chiral meta-fluids with an optical path length of 1 cm. The 

thickness of the active layer with respect to the circular dichroism of the proposed spiral-transferred 

PDMS film was only approximately 100 nm, so the Au nanospirals transferred onto the PDMS film 

were confirmed to exhibit significantly large circular dichroism per medium thickness at visible 

wavelengths. 

 

Figure 7. The Au nanospirals with reverse winding directions had opposite polarity circular 

dichroism to each other, meaning that the filter has chirality. (a) SEM image of a side view of the right-

handed Au nanospiral structures with a diameter of 50 nm on a Si substrate. (b) Circular dichroism 

spectra of the right- and left-handed Au nanospiral structures and a flat Au film. (c) SEM image of a 

top view of the right-handed Au nanospiral structures. (d) SEM image of a top view of the left-handed 

Au nanospiral structures. 
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Figure 8. One unit cell of the Au nanospiral structure is modelled with periodic boundary conditions 

to simulate an infinite 2D array. The right circularly polarized (RCPs) and left circularly polarized 

(LCPs) were illuminated through the lower port of the unit cell and the transmitted light intensity 

was acquired at the upper port of the unit cell. (a) Transmission spectra of the Au nanospiral 

structures as a function of height hsp. (b) An overview of the unit cell containing the Au nanospiral 

structure. 

Furthermore, Au nanospiral structures fabricated with and without a dot template were 

transferred onto PDMS thin films, and their transmission characteristics were measured to 

investigate the role of the nanodots in generating circular dichroism (Figure 9). Figure 9a,b shows 

SEM images of a side view of Au nanospiral structures before transferred to a PDMS film. Figure 9a 

shows Au nanospiral structure with the nanodot template and Figure 9b shows Au nanospiral 

structure without the nanodot template. From Figure 9b, we can see that under the condition without 

the nanodot template, many structures are connected to each other and do not form clear nanospiral 

structures. In the absence of the nanodot template on substrate, Au tended to form a continuous film 

because Au particles which formed on the substrate as the vapor solidified with very small diameter 

at random locations were less likely to shadow each other. In both cases, stronger circular dichroism 

than those natural materials was observed [2,3]. However, the film fabricated with the nanodot 

template showed over 17 times stronger circular dichroism than the non-template film. These results 

indicate that the nanodot templates assisted the formation of fine Au nanospiral structures, providing 

strong circular dichroism. 

 

Figure 9. SEM images showing that the PDMS periodic nanodot template is important for the 

formation of fine Au nanospiral structures. When focusing on the circular dichroism, the condition 
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with a template produced a peak that was 17 times larger than that for the condition without a 

template. (a) SEM image of a side view of the right-handed Au nanospiral structures evaporated on 

a PDMS nanodot template. (b) SEM image of a side view of the right-handed Au nanospiral structures 

evaporated without a template. (c) Circular dichroism spectra of the two cases with and without the 

template. 

4. Conclusions 

We proposed a thin, single-layered circular dichroic film with Au nanospiral structures on a 

PDMS thin film that has strong circular dichroism at visible wavelengths. Au nanospiral structures 

with a diameter of 70 nm were fabricated by cryogenic glancing angle deposition on a Si substrate 

with a nanodot array template patterned with the block copolymer PS-PDMS. The Au nanospiral 

structures were transferred onto a transparent and flexible PDMS thin film to fabricate a thin, single-

layered circular dichroic film. The film had a very large peak amplitude of circular dichroism of −830 

mdeg at 630 nm. The results showed that the strong circular dichroism of Au nanospiral structures 

in the visible light region can be transferred to thin circular dichroic films. This study showed that 

the nanometal spirals can be applied for optical filter use. The nanospiral structures in this report 

were not clear and the structures are distorted ones. To obtain clearer spiral shapes, finer patterning 

of PS-PDMS is necessary. This will be possible by tuning the nanodot formation process. Electron 

beam lithography will provide highly aligned nanodot templates. Moreover, precise control of the 

thermal evaporation rate is indispensable for fabricating finer spirals. In addition, if the chiral 

structure is arrayed in the form of C4 rotation symmetry, then birefringence with respect to linear 

polarization can be eliminated in principle [39]. The combination of nanospiral formation and 

microfabrication technology that aligns spirals in such symmetrical manners will provide a new way 

to construct practical metamaterial-based optical components. 
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