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Abstract: Breast cancer cells of MDA-MB-231 express various types of membrane proteins in the
cell membrane. In this study, two types of membrane proteins in MDA-MB-231 cells were observed
using a plasmonic chip with an epifluorescence microscope. The targeted membrane proteins
were epithelial cell adhesion molecules (EpCAMs) and epidermal growth factor receptor (EGFR),
and Alexa®488-EGFR antibody and allophycocyanin (APC)-labeled EpCAM antibody were applied
to the fluorescent detection. The plasmonic chip used in this study is composed of a two-dimensional
hole-array structure, which is expected to enhance the fluorescence at different resonance wavelengths
due to two kinds of grating pitches in a square side and a diagonal direction. As a result of multi-color
imaging, the enhancement factor of Alexa®488-EGFR and APC-EpCAM was 13 ± 2 and 12 ± 2 times
greater on the plasmonic chip, respectively. The excited wavelength or emission wavelength of each
fluorescent agent is due to consistency with plasmon resonance wavelength in the hole-arrayed
chip. The multi-color fluorescence images of breast cancer cells were improved by the hole-arrayed
plasmonic chip.

Keywords: multi-color imaging; breast cancer cells; surface plasmon; fluorescence microscopy;
hole-array

1. Introduction

In recent years, a live-cell imaging technique combining surface plasmon resonance (SPR) with
microscopy has been developed [1–5]. The enhanced electric field provided by SPR enables highly
sensitive biosensing [6]. SPR can be divided into two main types, i.e., propagated and localized SPR [7],
among which is grating-coupled SPR (GC-SPR)—belonging to the former type—with its periodic
structure covered with thin metal films. GC-SPR can provide an enhanced electric field by direct
coupling with incident light without a special optical system. A wavelength-sized grating substrate
is called plasmonic chip [8–12] and the electric field enhanced on a plasmonic chip is generated by
coupling incident light with the collective oscillation of free electrons (referred to as surface plasmon)
on a metal’s surface [6]. Under observation using a fluorescence microscope, illumination light is
irradiated to the sample from various angles passing through the objective lens. However, incident
light can efficiently couple with plasmons using the grating vector at various azimuth angles [12].
Therefore, a brighter fluorescence image on the plasmonic chip is expected, compared with that on
a glass slide, although an electric field enhanced by surface plasmon decays within 200 nm of the
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chip’s surface [6,9,13]. The resonance condition of GC-SPR is described as expected by Equations (1)
and (2) [6,8,14]:

kspp = nkphsinθ±mkg (m = 0, 1, 2, . . .) (1)
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In Equation (1), kspp, kph, and kg indicate the wavenumber vector of the surface plasmon,
the incident light, and the grating, respectively, and m is the integer that indicates the order of a
plasmon mode. In the Equation (2), ω and c indicate the angler frequency and the speed of light,
respectively; ε1 and ε2 are complex dielectric constants of a metal and a dielectric, respectively; and θ, n,
and Λ are the incident angle, the refractive index for dielectric media, and the pitch of a grating,
respectively. As found from Equation (2), the SPR angle θ depends on the pitch Λ. In enhanced
fluorescence detection, surface plasmon resonance contributes to both excitation enhancement and
emission enhancement. Excitation enhancement refers to the application of an enhanced electric field
to excite fluorophores, whereas emission enhancement is due to surface plasmon-coupled emission
(SPCE), i.e., the fluorescence recoupled with surface plasmon again [15]. Enhancement by the effect of
reflection interference is included in both excitation and emission enhancement.

In sensitive cell imaging, fluorescence imaging and Raman imaging have been widely studied by
probes attached to cell membrane proteins [16–19]. Combining these conventional imaging techniques
with photo thermal treatment and magnetic resonance imaging (MRI) has also been conducted [20–22].
In our previous studies, sensitive imaging of breast cancer cells of MCF-7 and MDA-MB-231 was
obtained using a hole-arrayed plasmonic chip under an epifluorescence microscope [23], in which
one kind of membrane protein, an epithelial cell adhesion molecule (EpCAM), was observed with
APC-labeled antibody. The fluorescence microscopic imaging of cells is one of conventional simple
methods but the combination between a microscope and a plasmonic chip accomplishes highly sensitive
detection under the compact tool and simple operation. Furthermore, in the enhanced fluorescence
image of membrane proteins included in cells, only the proteins faced on the chip surface can be observed
due to the plasmon enhancement. Therefore, as an advantage of this technique, the distribution of
proteins into cell membrane was easily detected. In the adsorption face of MCF-7 cell, the fluorescence
intensity of EpCAM labeled with APC-antibody showed more than 10-fold on a plasmonic chip
than that on a glass substrate, whereas in the adsorption face of MDA-MB231 cells, it showed 6-fold.
The smaller enhancement observed in MDA-MB231 was considered to be underestimated due to too
small intensity in the fluorescence image on the glass slide based on the fewer expression rate of
EpCAM in MDA-MB231 compared with MCF-7 cells. Expression distribution of EpCAM, which in
MDA-MB231 is difficult to be observed on the glass slide with a fluorescence microscope, can be
sensitively detected with an improved plasmonic chip. Furthermore, the multi-proteins have not been
simultaneously measured with a multi-color fluorescence imaging. On the other hand, multi-color
fluorescence imaging of MDA-MB-231 was performed using a Bull’s eye-type plasmonic chip composed
of concentric circles [24]. Bull’s eye-type plasmonic chip was found to provide larger fluorescence
enhancement for single fluorescent nanospheres than that in the hole-arrayed plasmonic chip, because
of the overlap of propagated plasmon mode at a center point of Bull’s eye circles. The membrane protein
EpCAM and epidermal growth factor receptor (EGFR) of MDA-MB-231 were fluorescently labeled
with allophycocyanin (APC)-anti-EpCAM antibody and Alexa®488-anti EGFR antibody, and the
fluorescence enhancement of both APC and Alexa®488 were reported to be larger at a 400 nm pitch
than at a 480 nm pitch [24].

However, fluorescence enhancement depends on the position inside Bull’s eye-type plasmonic chip.
In order to eliminate a distribution of fluorescence intensity and to further improve the fluorescence
enhancement in multi-color imaging, a hole-arrayed plasmonic chip is used in this study with two
types of magnitude of kg based on a different pitch size of periodic patterns—along the square side
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direction kgx
(1) with m = 1 (pitch: 480 nm) and along the diagonal direction kgx45

(2) with m = 2 (pitch:
345 nm)—corresponding to two intrinsic resonance wavelengths (Figure 1).
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Figure 1. Schematic of kg vectors in a hole-arrayed plasmonic chip. The red and blue arrows correspond
to kgx

(1) and kgx45
(2), respectively.

The magnitude of kgx is determined by the pitch. Unlike the Bull’s eye-periodic structure having
kgx with only identical pitch, a hole-arrayed plasmonic chip with two types of kg is expected to result
in brighter multi-color fluorescence imaging when using two kinds of fluorescent dyes with different
emission wavelength ranges. The brightness in a fluorescence image is evaluated as the fluorescence
enhancement factor which is obtained from the ratio of the fluorescence intensities in the plasmonic
chip to that in the coverslip. In this study, as shown in Figure 2, at first, the appropriate thickness of a
thin silica layer prepared on the top of silver film is studied for obtaining a larger enhancement factor.
Silica layer make a role of distance suppressing a fluorescence quench and convenient environment for
cell adsorption. The appropriate distance from the silver surface has been evaluated as 20–30 nm for
protein detection [25,26], and the distance for the largest enhancement factor including a reflection
interference effect has been evaluated as 40–50 nm [9]. Though the plasmonic chip can enhance the
excitation electric field closer to the silver surface, the silver layer can also quench the fluorescence
within the Förster distance, and the electric field due to the reflection interference shows the maximum
at 80–100 nm from the surface. On the other hand, the appropriate distance has not been shown for
fluorescence imaging of cells. Cell is too large compared with protein and only fluorescence from
fluorescent dyes in the cell membrane adsorbed to chip surface can be enhanced. The appropriate
thickness of a silica layer is examined for maximizing an enhancement factor in this study. Then,
the enhancement factors in multi-color fluorescence images are evaluated and compared with those
values found in our previous study on a Bull’s eye-type plasmonic chip. More than 10-fold values are
expected for dual wavelength ranges.
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2. Materials and Methods

2.1. Fabrication of the Plasmonic Chip

A replica of a periodic structure was fabricated by the UV-nanoimprint method. A UV-curable
resin (PAK-02-A; Toyo Gosei, Tokyo, Japan) was dropped on a 25 × 25 mm2 coverslip and was exposed
to UV light after layering a mold, in which the center of the hole-arrayed pattern at 4 × 4 mm2 was
fabricated. The replica was coated with thin layers of Ti, Ag, Ti, and SiO2 by the Rf-sputtering method.
Each film thickness was < 1, 120 ± 10 < 1, and 30 or 80 nm, respectively. Two kinds of a silica layer
thickness were prepared. The surface of the plasmonic chip was evaluated by atomic force microscopy
(AFM; SPI3800N, SII), as shown in Figure 3a, b—which shows a pitch of 500 nm and a grove depth of
40 nm.
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Figure 3. (a) An atomic force microscopy (AFM) image of a plasmonic chip with a hole-arrayed
structure. (b) A cross-sectional view of the periodic structure.

In order to use the plasmonic chip for cell imaging, the collagen solution was dropped on the
surface of the chip. After incubation for 10 min, the solution was spread by a spin coater (1000 rpm, 30 s)
and the surface was washed with MilliQ water, followed by seeding of the cells prepared in advance.

2.2. Cell Culture and Preparation for Microscopic Observation

The MDA-MB-231 cell line was obtained from the American Type Culture Collection (Manassas, VA,
USA) and was cultured in Dulbecco’s modified Eagle medium (GIBCO, Life Technologies Co., Carlsbad,
CA, USA) containing 10% fetal bovine serum harvested using trypsin. EGFR and EpCAM are known
to be expressed on the cell membrane of MDA-MB-231 [27–29]; therefore, Alexa Fluor®488-labeled
anti-human EGFR antibody (Alexa®488-EGFR; Ex: 495 nm, Em: 519 nm; Biolegend, San Diego, CA,
USA) and APC-labeled anti-EpCAM monoclonal antibody (APC-EpCAM; Ex: 633 nm, Em: 660 nm;
Biolegend, San Diego, CA, USA) were used for immunostaining of the membrane proteins EGFR and
CD326 (EpCAM), respectively. The Alexa®488-EGFR and APC-EpCAM solutions were simultaneously
added to the same cell solution in concentrations of 5.0 × 107 molecules/cell and 1.0 × 105 molecules/cell,
respectively, and gently mixed for 30 min in a dark place. Then, the sample solution was gently
centrifuged at 1500 rpm for 3 min and the supernatant was discarded. The precipitate was finally
washed with the medium, and this process was repeated three times.
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2.3. Microscopy

2.3.1. Cell Observation

The cells were observed with an upright epi-illumination microscope (BX51WI; Olympus, Tokyo,
Japan) with a 40× objective lens (UPLAN FLN 40×; Olympus, Tokyo, Japan). The light source used was
a Hg lamp (BH2-RFL-T3; Olympus, Tokyo, Japan) and the detection camera was an electron multiplying
charge-coupled device camera (EM-CCD, iXon; Andor, Belfast, UK). A green fluorescent protein (GFP)
filter unit (UMGFPHQ; Olympus, Tokyo, Japan; λex (460–480 nm) and λem (495–540 nm)) and a Cy5
filter unit (Cy5-4040C; Semrock, New York, NY, USA; λex (605–650 nm) and λem (670–715 nm)) were
used for the multi-color fluorescence imaging of Alexa®488-EGFR and APC-EpCAM, respectively.

2.3.2. Microspectroscopic Measurement

In the microspectroscopic measurement, a reflection spectral image was observed using the
upright microscope mounting EM-CCD camera (Luca-r, Andor) and a spectrometer (KGGCLP-50, Just
Solution); a 2× objective lens (NA 0.06: Incident angle range between 0 and 3.4◦) and a bright-field
filter were installed, and a spectrometer was used at a slit width of 0.1 mm. Reflection spectral images
were observed at the four corners of the hole-array pattern of the plasmonic chip, and the wavelength
range was set at 450–750 nm. The exposure time was adjusted to ensure that the maximum intensity
didn’t exceed 12,000 counts/s, because the fluorescence intensity is saturated over counts of 16,000.

The X- and Y-axes for a spectral image correspond to the wavelength and y-position of a view,
respectively. Therefore, the reflection light intensities were integrated for the width of 100 pixels along
the Y-axis inside the hole-array pattern as well as outside, i.e., the flat area, and the reflectivity was
calculated by dividing the former intensities by the latter intensities.

3. Results

3.1. Appropriate SiO2 Layer Thickness for Fluorescence Imaging

An SiO2 film formed on a plasmonic chip can suppress fluorescence quenching by its silver
layer. An SiO2 layer is conventionally prepared at 20–30 nm on a plasmonic chip. In this study,
the SiO2 layer was prepared at a thickness of 30 nm (Figure 4a–c) and 80 nm (Figure 4d–f), and the
fluorescence intensities were compared between them in order to improve the sensitivity in multi-color
imaging. The fluorescence intensity was evaluated to be 1.4 ± 0.5 -fold larger at 80 nm than at 30 nm.
Fluorescence quenching by a metal’s surface is a function of the distance from the metal surface as
predicted from the Chance–Prock–Silbey (CPS) model [9,30], and the reflection interference effect can
increase as increasing SiO2 film thickness up to 80 nm. In the experimental results obtained in our
previous studies [9], 40–50 nm was identified as the best distance for enhancement with consideration
of the molecular size. In cell observation with a fluorescence microscope, only the fluorescence of a
labeled antibody adsorbed into the chip’s surface can be enhanced. The results of the fluorescence
intensity at 80 nm being 1.4-fold greater than that at 30 nm is not inconsistent with the above theory
and experimental results. Therefore, in this study, a plasmonic chip with an 80-nm-thick SiO2 layer
was prepared for the improvement of fluorescence images. As found from Figure 4e,f, EpCAM and
EGFR distributions in a MDA-MB231 cell were clearly observed individually with our improved
plasmonic chip.
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Figure 4. Bright field images (a,d), Alexa®488-EGFR fluorescence images (b,e), and allophycocyanin
(APC)-epithelial cell adhesion molecule (EpCAM) fluorescence images (c,f) for MDA-MB-231 cells.
The upper panels (a–c) and the lower panels (d–f) show the images taken on the plasmonic chip with a
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contrast in fluorescence images of Alexa®488-EGFR and APC-EpCAM were adjusted to lie within the
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3.2. Multi-Color Imaging of MDA-MB-231 Cells

Bright field images (Figure 5a,d), fluorescence images of Alexa®488-EGFR (Figure 5b,e),
and APC-EpCAM images (Figure 5c,f) taken on the plasmonic chip and the coverslip are shown in
Figure 5. The fluorescence intensities F were individually evaluated at different five bright points
selected from the center part of an identical cell for the Alexa®488 and APC images, and each
background intensity B for Alexa488 and APC was also evaluated at five different points outside of the
cell. The enhancement factor was calculated by using Equation (3):

Enhancemnt f actor =
Fplasmon − Bplasmon

Fglass − Bglass
(3)

where Fplasmon, Fglass, Bplasmon, and Bglass refer to the florescence intensity of the plasmonic chip,
the coverslip, the background of the plasmonic chip, and the coverslip. The enhancement factors were
calculated from twenty data, i.e., five points around a center of a cell observed on the four different
chips and mean value and standard deviation were obtained as shown in Table 1 and Figure 6.

In the hole-arrayed plasmonic chip, the mean enhancement factors of Alexa®488-EGFR and
APC-EpCAM were 13 ± 2 and 12 ± 2, respectively, as shown in Table 1. These values were found to be
improved compared to the values previously obtained in the Bull’s eye-type chip with a 400 nm pitch,
7 ± 2 and 9 ± 3, respectively [24].
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EpCAM is generally known to be a little expression in MDA-MB 231, and that APC-EpCAM is
difficult to be detected in MDA-MB231 on the conventional coverslip or glass slide [11,23]. However,
the dark image of EpCAM on the coverslip was improved by 12-fold brighter image with a hole-arrayed
plasmonic chip. The improved plasmonic chip is available to sensitively detecting expression
distribution of membrane proteins with small expression rate in a cell. In this study, EpCAM and EGFR
expression distributions were individually detected due to the fluorescence enhanced over 12-fold on
the hole-arrayed plasmonic chip

4. Discussion

A Bull’s eye-type plasmonic chip has the unique kg with the same magnitude [24]. On the
other hand, a hole-arrayed plasmonic chip has two kinds of kg, i.e., kgx

(1) along the square side
direction with m = 1 and kgx45

(2) along the diagonal direction with m = 2, which show the plasmon
resonance at different wavelengths, individually. For kgx

(1) and kgx45
(2), the resonance wavelengths are

theoretically calculated from the resonance condition described in Equations (1) and (2). Under vertical
incidence, the spectra of kspp, kgx

(1), and kgx45
(2) were derived from Equation (1), as shown in Figure 7b.

The intersections correspond to the resonance modes, i.e., kgx
(1) and kgx45

(2), and the resonance
wavelengths under vertical incidence at θ = 0 were obtained at 695 nm and 520 nm for kgx

(1) and
kgx45

(2), respectively.
Figure 7a shows the reflection spectra measured by microspectroscopy, and plasmon dips were

observed at 685–710 nm and 540 nm, which were almost consistent with the resonance wavelengths
of kgx

(1) and kgx45
(2) calculated from the theoretical equations. The small difference in resonance

wavelengths was due to the 80-nm-thick SiO2 layer—which was out of consideration in the theoretical
calculation; therefore, they were assigned to kgx

(1) and kgx45
(2), respectively. The plasmonic chip was

illuminated with incident light from objective lens at various angles, such as a cone shape. Even when
kphx , kg, i.e., the azimuth angle ϕ formed by the incident plane and kg is not 0, a resonance
condition is also satisfied, as described in Equation (1). Resonance angles were calculated against
the wavelength for Bull’s eye-type and hole-arrayed-type chips every 10◦ of the azimuth angle and
plotted in Figure 8a–c, in the illumination angle range between 0◦ and 48◦ for 40× objective lens used
in this study. The excitation and emission wavelength ranges of the GFP and Cy5 filters applied to
Alexa®488-EGFR and APC-EpCAM are shown by green and red vertical bands in Figure 8, respectively.
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The resonance angle spectra of kgx
(1) in the 400 nm pitch Bull’s eye-type chip are shown in

Figure 8a. In the excitation wavelength range of the GFP filter, the incident angles available for plasmon
coupling were limited to θ = 20–48◦ in a 400 nm pitch (Figure 8a), but they were improved by 10–48◦

for kgx45
(2) in the hole-arrayed plasmonic chip (Figure 8c). The excitation electric field intensity by

the kgx45
(2) in a 500 nm pitch (Figure 8c) was larger than that by kgx

(1) in a 400 nm pitch (Figure 8a)
due to resonance angles at small angles. In addition, the incident light available for plasmon coupling
was limited to ϕ = 0–70 in a 400 nm pitch (Figure 8a), but were improved by 0–90 for kgx45

(2) in a
hole-arrayed chip (Figure 8c). On the other hand, in the excitation wavelength ranges of the Cy5 filter,
the azimuth angles ϕ were limited to 0–60◦ in the Bull’s eye-type chip with a 400 nm pitch (Figure 8a),
but in the hole-arrayed plasmonic chip, the effective azimuth angles were improved by 0–90◦ by kgx

(1)

(Figure 8b). In the emission wavelength of the Cy5 filter, a hole-arrayed chip (Figure 8b) can also use
more effectively the azimuth angles compared to a 400 nm- pitch Bull’s eye-type chip (Figure 8a).
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As found above, two types of kgx
(1) and kgx45

(2) efficiently enhanced the fluorescence in a wide
range of wavelengths. The hole-arrayed plasmonic chip with a 500 nm pitch improved the enhancement
factors in the multi-color imaging of breast cancer cells in comparison to that of the values in the
Bull’s eye pattern obtained in a previous study. The pattern of the plasmonic chip including a pitch
and the fluorescently-labeled particles or proteins, should be selected according to the purpose,
e.g., a hole-arrayed pattern for multi-color cell imaging and a Bull’s eye pattern for multi-array
immunosensing. In the plasmonic pattern with several kinds of grating vectors corresponding to
different size of pitches, e.g., hole arrayed-plasmonic chip with different pitches in lateral, longitudinal,
and diagonal directions, individual fluorescence can be enhanced in excitation electric field or emission
recoupling [15] for more than three kinds of labeled-antibody without overlap of spectra for dyes in
the range of 400–700 nm A combination of the plasmonic pattern and the fluorophore is key to the
highly sensitive imaging required for single molecule imaging and kinetics measurement.

5. Conclusions

The quality in the enhanced multi-color fluorescence images of cells labeled with different
fluorophores was improved using a hole-arrayed plasmonic chip. The enhancement factors of
Alexa®488-EGFR and APC-EpCAM in MDA-MB-231 cells obtained with the hole-arrayed plasmonic
chip were 13 ± 2 and 12 ± 2, which were higher than the values obtained in a previous study with a
400 nm-pitch Bull’s eye pattern. The improved plasmonic chip is available to sensitively detecting
expression distribution of membrane proteins with small expression rate in a cell. The fluorescence
wavelength ranges of both Alexa®488-EGFR and APC-EpCAM were efficiently coupled with plasmons
by two kinds of kg vectors, namely, kgx

(1) and kgx45
(2), in a hole-arrayed structure. It is important

that the structure of a plasmonic chip is selected according to the purpose of multi-color fluorescence
imaging of cells. A plasmonic patterns with more than three kinds of grating vectors by the different
size of pitch will provide multi-color fluorescence imaging of more than three kinds of biomarker.
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