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Abstract: In inertial microfluidics colloidal particles in a Poiseuille flow experience the
Segré-Silberberg lift force, which drives them to specific positions in the channel cross section.
An external force applied along the microchannel induces a cross-streamline migration to a new
equilibrium position because of the Saffman effect. We apply optimal control theory to design the
time protocol of the axial control force in order to steer a single particle as precisely as possible from
a channel inlet to an outlet at a chosen target position. We discuss the influence of particle radius
and channel length and show that optimal steering is cheaper than using a constant control force.
Using a single optimized control-force protocol, we demonstrate that even a pulse of particles spread
along the channel axis can be steered to a target and that particles of different radii can be separarted
most efficiently.
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1. Introduction

The field of microfluidics is of utmost importance for numerous technological, biochemical,
and biomedical applications, especially for inexpensive lab-on-a-chip applications and parallelized or
automized studies [1–4]. The experimental realization of high throughput has led to the emergence
of inertial microfluidic systems [5,6], that open up new possibilities. One important characteristic of
the regime of intermediate Reynolds numbers, where flow is still laminar, is the breaking of Stokes
reversibility. This leads to self-assembly, such as the famous Segré-Silberberg effect discovered by its
namesakes in 1961 [7], where colloids travel to distinct lateral positions in the channel cross section
that are driven by inertial lift forces. Exploiting secondary flow and inertial effects leads to many
exciting applications [5], such as enhanced micromixing in curved channels [8], particle separation
and filtration [9,10], or focusing and self-assembly [11–13]. An intriguing aspect is the reaction to
external forces pointing along the axial direction of the microchannel. Under creeping flow conditions,
these forces do not cause lateral migration [14], but do so in inertial microfluidic based on the so-called
Saffman effect [15]. Thus, the particles’ lateral positions in the cross section of a microchannel can be
manipulated with axial external forces, which drive the particles, e.g., via electrophoresis [16–18].

Parallel to the experimental progress, there have been continuous and fruitful efforts to tackle
inertial microchannels via computer simulations [19]. Here, lift forces and particle dynamics can be
probed for different channels and particle types [20–22], or in complex fluids [23,24]. Using external
forces, optimal and feedback control has been applied to particle separation and steering under inertial
microfluidic conditions [25,26], also together with thermal noise. One example is the hysteretic control
scheme, as applied by Prohm and Stark [26]. Here, particles are periodically forced back to the channel
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center while using the Saffman effect, while the inertial lift force drives them away from the center.
Thus, the particle stays within a finite interval around the channel center.

In this article, we present the theoretical concept to realize precise particle steering with
time-dependent axial control forces. The main idea is to steer the particles to different outlets of
a microchannel in order to achieve particle separation and filtration. We use the Saffman effect and
optimal control theory [27] to design the time protocol of the axial control force in order to steer
particles from an initial to a target position in a microchannel (see Figure 1). These positions are
defined, e.g., by inlets and outlets of the microchannel. As an input for the optimization, we employ
the lattice-Boltzmann method to simulate particles in Poiseuille flow in order to obtain a whole set of
lift-force profiles, depending on the axial control force. Subsequently, we use analytical fit functions to
set up a system of ordinary differential equations that yield the particle trajectories. The time-dependent
axial control force for optimally steering the particle from an inlet to an outlet follows by numerically
minimizing a cost functional with respect to the control force under the condition that the target at the
end of the channel is reached. We thoroughly discuss this method of optimal steering and compare it
with steering by a constant control force. Using the optimal control-force protocol for a single particle,
we demonstrate that even a pulse of particles spread along the channel axis can be steered to a target.
Finally, we show how a single optimized control-force protocol can separate particles of different
radii. Here, we go beyond particle separation with constant axial forces suggested in ref. [26]. One can
further increase the lateral particle distance at the end of the channel by using the same time-dependent
control force for both particles.
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Figure 1. Sketch of the model system: a colloid flowing in the x-z plane experiences an axial control
force fctl(t). The occuring Saffman effect changes the lateral lift force flift and, thereby, the colloid can
be steered from the initial position (zi, xi) to the target (zt, xt).

We introduce the theory of inertial microfluidics and the Saffman effect in Section 2. We describe
the setup of our system, the lift force profiles, and the method of optimal control in Section 3. The results
of our study for single and multi-particle steering are presented in Section 4 and we conclude in Section 5.

2. Theory—Inertial Microfluidics

Segré and Silberberg first reported how colloidal particles self-organize on an annulus under pipe
flow conditions [7] that is located approximately halfway between the channel center and the confining
walls. Because deterministic lateral motion for rigid particles is impossible under strict creeping flow
conditions, this migration results from the inertial term of the Navier–Stokes equation. Hence, it was
termed inertial focusing and rationalized by a so-called inertial lift force [5,28,29]. For channels with
rectangular cross sections, these equilibrium positions are either located on the main axes or the
diagonals of the cross section, which depends on the particle radius and the cross-sectional aspect ratio
(see, for example, ref. [26]). If this ratio is sufficiently large, only two stable positions on the short axes
exist and it is sufficient to treat the flowing particle in a two-dimensional plane, as sketched in Figure 1.

The Poiseuille-flow profile in a rectangular channel is known analytically [30]. Because the flow
field along the channel axis obeys u = u(x, y)ez, the convective term of the Navier–Stokes equations
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vanishes, and for the stationary case the Stokes equations are recovered. Restricting fluid flow in
the cross section to x ∈ (−w, w), y ∈ (−h, h) with h > w and using no-slip boundary conditions at
the channel walls, u(x = ±w, y) = u(x, y = ±h) = 0, one can write the solution as a Fourier series
expansion [30]

u(x, y) =
16w2∆p

π3ηL

∞

∑
n=0

(−1)n 1
(2n + 1)3

1−
cosh

(
(2n+1)π

2w y
)

cosh
(
(2n+1)π

2w h
)
 cos

(
(2n + 1)π

2w
x
)

. (1)

Here, a constant pressure gradient ∆p/L is used and the dynamic viscosity of the fluid η. When
we employ this analytical formula in our numeric calculations, we truncate the series after n = 100.
The maximum flow velocitiy Um is reached at the center (x, y) = (0, 0) of the channel. It is determined
by the choice of the Reynolds number Re = ρUm2w/η, where ρ is the fluid density and 2w is the width
of the channel.

Inertial effects become observable if a colloid is subjected to a Poiseuille flow at finite Reynolds
numbers Re. This initiates a lift force acting on the colloid, which can be controlled via the Saffmann
effect by applying an additional axial control force (see Figure 1). We introduce those in the following.

2.1. Lift Force

Since the discovery of inertial focussing different scaling laws for the dependence of the inertial
lift force on particle radius a and Reynolds number have been derived [11,28,29,31,32]. For example,
Ho and Leal calculated the lift force for small particle radius (a � w) and small particle Reynolds
number Re(a/w)2. They arrived at the scaling law flift ∼ Re2(a/w)4 [31], whereas numerical
simulations at finite particle sizes arrived at flift ∼ (a/w)3 in the channel center for particle sizes
a < w [5]. Often, the lift coefficient f (a, Re) is introduced to correct for finite particle size and Reynolds
number [5]. In particular, it has been observed that the scaling exponent for the lift force as a function
of the particle radius depends on the lateral position in the channel [5,11]. Importantly, the fixed points
of the lift-force profiles indicating stable equilibrium positions change considerably with the geometry
of the channel cross section (see, for example, ref. [26]). In the following, we numerically calculate
the lift-force profiles using lattice-Boltmann simulations, as shortly explained in Section 3.2. Typical
examples for a zero axial control force are presented in Figure 2, left.
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Figure 2. (Left): lift-force profiles along the positive x axis for different particle radii a/w at zero axial
control force, fctl = 0. Note the larger strength of the lift forces for larger colloids and the shift of the
stable fixed point. The force unit ρν2 uses fluid density ρ and kinematic viscosity ν = η/ρ. (Right):
lift-force profiles for a colloid with radius a = 0.2w at different axial control forces and least-square fits
using Equation (4) (solid lines). In both cases, the Reynolds number Re = 10 is used.

The net inertial lift force is often described as a balance of two contributions. They arise from a
stresslet that is the leading force distribution on the particle surface under a shear-flow gradient [6,31]:
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the reflection of the stresslet from the channel wall induces a force, which pushes the particle away
from the wall, whereas the interaction with the shear gradient transports particles to regions of larger
shear, which is towards the wall in the case of a Poiseuille flow.

2.2. Saffman Effect

Applying an additional axial control force to the colloidal particle speeds up or slows it down
relative to the local Poiseuille flow velocity. This modifies the slip velocity field close to the particle
surface and, at finite Reynolds numbers, creates an additional lateral contribution to the lift force,
described by Saffman [15]. It depends on the shear rate γ, rather than the shear gradient, and it was
calculated to be fS ∼ va2γ1/2 in bulk at small Reynolds numbers, where v is the difference between
local flow field and particle velocity. Figure 2, right, demonstrates how the lift-force profile changes
when a control force is applied. The stable fixed point ( flift = 0 with a negative slope) moves from
the zero-force position ( fctl = 0) either to the wall or to the channel center, depending on whether
the control force is applied along the flow direction ( fctl < 0) or against it ( fctl > 0), respectively.
The respective stable equilibrium positions are plotted in Figure 3, left, also for different particle
radii. Because the inertial lift force grows more strongly with the radius than the Saffman force,
higher axial control forces are necessary to move the fixed point for larger particles towards the center.
Consequently, the curves in Figure 3, left, become flatter for larger particle radii.
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Figure 3. (Left): stable equilibrium positions (fixed points) as a function of control force for different
particle radii a/w. They were determined using the analytical fits to the relevant lift-force profiles
in Figure 2, right. (Right): hydrodynamic friction coefficients relative to the bulk value ξ∞ = 6πηa
plotted versus the lateral particle position for different particle radii. The solid lines are fits using
Equation (4).

3. Methods

3.1. Setup

We consider a rectangular microchannel with Poiseuille flow at Reynolds number Re = 10.
The channel has an aspect ratio w : h of 1:2, where x ∈ (−w, w) and y ∈ (−h, h). The length of the
channel is L with z ∈ (0, L), which we vary in the following. At such an intermediate Reynolds number,
the regime of inertial microfluidics is reached and solid colloids in a Poiseuille flow self-organize
towards distinct lateral focus positions [15]. For the aspect ratio chosen here, they equilibrate to the
plane y = 0 and, therefore, we only consider the particle dynamics in the x-z-plane [6,9,33]. Indeed in
our lattice-Boltzmann simulations, the position y = 0 is stable, i.e., a particle is immediately driven
back once it leaves the center plane. The stable fixed point at this location was numerically determined
in ref. [26]. Switching on the axial force, the induced Saffman force is strongest along the x axis, since,
in this direction, the velocity gradients are largest. Therefore, we expect the particle to stay in the
center plane. The stable equilibrium positions on the x axis ( flift = 0) depend on particle size as we
show in Figure 2, left. There is also a dependence on Re2 [13], which we do not further explore here.
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These positions are reached after the colloid has been advected for a sufficiently large axial distance L f
without any external forcing. Di Carlo and co-workers mention an estimate for this length [5,6],

L f =
πνw2

fLUma2 , (2)

with the maximum flow velocity Um = νRe/(2w), kinematic fluid viscosity ν, and particle radius a.
For our aspect ratio w/h = 0.5, ref. [5] gives a lift coefficient fL = 0.05. Furthermore, using Re = 10,
and a/w = 0.2, in Equation (2), we obtain the focus length L f ≈ 314w. Now, applying an additional
lateral force along the x direction, one can optimally steer particles to any position on the x axis, as we
showed in ref. [25].

Here, we propose an alternative strategy for optimal steering while using the Saffman effect.
We apply an axial control force and thereby modify the lift-force profile as demonstrated in Figure 2,
right. In Figure 3, we show how the stable equilibrium position now depends on the control force.
Subsequently, the idea is to use a time varying axial control force, which can be realized, for example,
by electromagnetic fields [17], for optimal steering. The goal is to optimally steer a particle from
an inlet, which is located at the start position (zi, xi), towards a target (zt, xt), fulfilling a criterion
of optimality, as we will outline below. To implement this approach, we first need lift-force profiles
flift(x, fctl) for different control forces as well as friction coefficients ξ(x) for different particle sizes.
We determined them with the help of lattice-Boltzmann simulations, and approximated them with
appropriate fit functions (Section 3.2). The lift force profiles are then used in dynamical equations for
the particle motion, which we solve with explicit Euler integration to determine the optimal steering
path (Section 3.3).

3.2. Profiles for Lift Forces and Friction Coefficients

Our lattice-Boltzmann simulations (including the immersed-boundary method) [34,35] of single
colloids in a microchannel in the inertial regime are described in detail in refs. [13,26], where we also
explain how to determine inertial lift forces for each particle position.

The simulated lift-force profiles for different particle radii and channel Reynolds number Re = 10
are shown in Figure 2, left. They display the well-known behavior of inertial focusing: colloids are driven
away from the unstable fixed point at the origin and towards their stable equilibrium positions (stable
fixed points) between the channel center and the wall, which depend on the particle radius. As in ref. [25],
we perform a least-square fit of the lift-force profiles to a third-order polynomial of odd degree together
with a wall-repulsion term as the particle approaches the walls. Additionally, we now also apply this fit
to the dependence of the lift force on the axial control force fctl using coeffients that are second-order
polynomials in fctl. Thus, the functional form for the fit of our lift-force profiles is as follows

flift(x, fctl) = φ1( fctl)x + φ3( fctl)x3 + φw fw(x)

φ1( fctl) = a1 f 2
ctl + b1 fctl + c1

φ3( fctl) = a3 f 2
ctl + b3 fctl + c3 (3)

fw(x) =
1

x− (1 + δ)xw
+

1
x + (1 + δ)xw

,

where xw = w− a and we use δ = 10−3 for numerical stability. The fit function works well, in particular,
for non-zero control force, as long as the region immediately at the wall is avoided, as Figure 2
demonstrates. Note that we did not attempt to include the dependence on particle radius in our fit
function, but, instead, perform a separate fit for each particle size. We do this in order to limit the
number of parameters.

We also determined the friction coefficients of the particles in the lattice-Boltzmann simulations
and plot their values as a function of the lateral position in Figure 3, right, for three different colloidal
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radii. The presence of the walls is clearly visible. We fit the position-dependent friction coefficient ξ by
the function

ξ(x) = ξ∞

(
d1 + d2

a
(w− a)− |x|

)
, (4)

where ξ∞ = 6πηa is the bulk friction coeffcient and d1, d2 are the fit parameters. The fits as solid lines
are presented in Figure 3, right.

3.3. Dynamical System and Optimal Control

Using the axial control force fctl, the fitted lateral lift force flift, and the friction coefficient ξ,
the overdamped motion of the steered particle in the Poiseuille flow profile u(x) = u(x, y = 0) is
governed by the following differential equations disregarding any thermal noise:

ż = u(x) +
1

ξ(x)
fctl(t) (5)

ẋ =
1

ξ(x)
flift (x, fctl(t)) . (6)

Here, z is the coordinate along the channel and x in lateral direction. The size of the suspended
particle influences the lateral motion implicitly via the friction coefficient and the fitted function for the
lift force, as described above. In axial direction we do not consider that a force-free colloid is slower
than the streaming fluid but simply set this velocity to the Poiseuille flow velocity u(x). We note that
the dynamics of the colloid is always confined to one half of the channel. At x = 0, the lift force—and,
hence, the total lateral force—is exactly zero; therefore, it is impossible for the colloid to cross the
center line.

Solving these equations for a given time protocol fctl(t) of the axial control force, determines x(t)
and z(t). We are looking for an optimal protocol f ∗ctl(t), which steers a particle as close as possible to
the target (zt, xt) at end time T∗. Thus, we define the cost functional [27]

J[ fctl(t), T] =
cx

2

∣∣∣xt − x(T)
∣∣∣2 + cz

2

∣∣∣zt − z(T)
∣∣∣2 + ε

2

∫ T

t0

| fctl(t)|2dt, (7)

and obtain the optimal steering control force by minimizing the cost functional with respect to fctl(t):

f ∗ctl(t) = arg min
fctl

J . (8)

For the total duration T of the trajectory, which is undetermined on the right-hand side of
Equation (7), the algorithm also finds an optimum T∗. In concreto, we set T∗ = N∆t∗, where ∆t∗ is
the time step of our time discretization, choose a constant N, and determine ∆t∗ together with the
force protocol by minimizing the cost functional. We always choose a control force that is constant
in time as our initial function. When optimizing the single-particle trajectories, we choose N = 500;
while, when looking at a pulse of colloids in Section 4.3.1, we take N = 2500, since a higher resolution
in axial direction is required. The functional in Equation (7) includes a regularization term, where we
integrate over the square of the total force, because otherwise arbitrarily large forces would be permissible.
Keeping this regularization term low decreases the energy cost for steering the particle along a specific
trajectory, for example, electrophoretically by applying an electric field [17]. We weigh the cost of
deviating from the target area differently for the x and z coordinates, because the velocities differ strongly.
The control parameters cx, cz and ε have to be manually adapted to find the right balance between the
cost of higher forces versus the precision of steering. When optimizing the single-particle trajectories,
we choose cx = 14,000, cz = 0.3, and ε = 0.003. For solving the differential equations, we use explicit Euler
integration. With this, we optimize the discretized cost functional J[ fctl(t), T] while using a sequential
quadratic programming (sqp) algorithm [36] provided by the package fmincon from MathWorks’
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software matlab (Release R2019b, https://mathworks.com/help/optim/ug/constrained-nonlinear-
optimization-algorithms.html). This robust and efficient method uses a Lagrangian representation of
a constrained problem: L = f (x) + λTc, where x is the vector of unknowns, c the vector of equality
constraints, and λ the vector of Lagrange multipliers. For the optimal solution x∗, the gradient of L
vanishes, which yields a non-linear equation. Here, x∗ can be approximated by iteration, xi+1 = xi + di,
where the differences di are determined in each step by a simpler approximated quadratic problem,
for which standard quadratic solvers are available [36]. We do not calculate the necessary gradients to
the functional ourselves, but leave this to the software matlab.

We also seek to maximize the lateral distance between two colloids, when approaching the target

with axial coordinate zt. Therefore, in the cost functional of Equation (7), we use
cx

2

∣∣∆x(T)− ∆x f
∣∣2

for the first summand, where ∆x(t) is the lateral distance between two colloids at time t and ∆x f is
the distance aimed for. In the second term involving the z coordinate, we add up the contributions
from the two particles. The coefficient cz takes the same values for both colloids. For the two-particle
optimization, we use cx = 500, cz = 30, and ε = 0.01.

We always obtained smooth solutions when solving the unconstrained problem. It was not
necessary to use a numerical constraint for the lateral coordinate x in order to keep the particle within
the channel due to the diverging repulsive lift force close to the walls. The sqp algorithm required 75
iterations on average in order to converge for the single-particle steering. For the separation of two
particles, 161 iterations were required on average.

4. Results and Discussion

In the following, we investigate steering strategies for single and multiple particles that make use
of the aforementioned inertial lift forces. First, we discuss steering with a constant axial control force
and then the outcome of our optimal control scheme. We investigate the implications for a particle
pulse spread along the channel axis using the results from single-particle steering. Finally, we use
optimal control to find control forces that maximize the separation of two particles so that they can be
carried off at different outlets of a channel.

4.1. Steering with Constant Axial Control Forces

Exploiting the Saffman effect, the easiest approach to steer a particle to a target position is to
use constant axial control forces. They shift the stable fixed point of the lift-force profile and, thereby,
in principle, the equilibrium position of a colloidal particle can be adjusted arbitrarily, as shown in
Figure 3. In the same way, also colloids of different sizes can be well separated within the microfluidic
channel while using a constant control force [25]. As Figure 3 shows, this is achieved by choosing the
control force, such that the smaller particle (e.g., a = 0.2w) is pushed to the center while the larger
particle still keeps a noticeable distance from the center.

In Figure 4, the lateral positions for the moving colloid are plotted versus time for specific control
forces (left) and when the forces are adjusted to give specific final positions (right). Negative forces
point along the direction of the channel flow and, thus, drive the equilibrium position closer to the
wall, whereas positive forces slow down the colloid and thereby induce motion towards the channel
center. A closer inspection of the two plots shows that the necessary travel time for focusing varies
with the initial position. However, more pronounced is the dependence on the final position as
Figure 4, right, demonstrates. Fixed points that are closer to the channel center are reached later than
those closer to the wall. This is consistent with the fact that the Saffman effect (or the shear-induced
lift force) increases with the shear rate, which is larger close to the walls. Thus, using the Saffman
effect for steering requires less time the closer the final position is situated to the wall. In Section 3.1,
we evaluated the focus length L f ≈ 314w for our setup. Indeed, it gives a good estimate for the
focus length in our simulations at zero control force. When plotting the lateral positions of Figure 4
versus the traveled axial distance z instead of time, the curves look very similar to the ones in Figure 4,
even though particles closer to the center (small x) should flow faster and the curves should stretch

https://mathworks.com/help/optim/ug/constrained-nonlinear-optimization-algorithms.html
https://mathworks.com/help/optim/ug/constrained-nonlinear-optimization-algorithms.html
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even farther close to the centerline. However, to reach these targets, the control force has to act against
the flow and, therefore, decreases the axial flow velocity of the particles.

Figure 4. Inertial focusing of a colloid with radius a = 0.2w starting from different initial positions
and using constant control forces. Lateral position versus time is plotted. (Left): for constant control
forces fctl/(ρν2) = −1.5,−1.0, 0, 1.0, 1.5 (which give an increasing equilibrium x position or stable
fixed point). (Right): for adjusted constant control forces such that the stable fixed point assumes the
values x/w = 0.1, 0.2, ..., 0.7.

In conclusion, in order to relax to the adjusted equilibrium position with the constant-force
strategy, considerably longer travel times and axial distances are required for targets that lie close
to the channel center. Therefore, long enough channels need to be used in order for the strategy to
work. Thus, it is not possible to use a single channel length to steer particles to different lateral target
positions using the constant-force strategy. Furthermore, steering with a constant axial force means
that it has to be maintained for the whole trajectory. We compare the cost of this constant-force scheme
with the optimal control scheme in the next section, which also allows for operating with channels of
one length.

4.2. Optimal Control of Single Colloids

We now turn to the optimization problem for the cost functional J[ fctl(t), T] of Equation (7) set up
in Section 3.3. This will provide us with a time-dependent control force and the particle trajectory in
the x-z plane. In the following, we provide optimal solutions of the cost functional for different start
and end positions in the channel. The optimization procedure is applied to two axial target positions
at zt = 300w and zt = 500w. Furthermore, three particle sizes with radii a = 0.2w, 0.25w, and 0.3w are
considered. Because the initial position is always set at zi = 0, we call zt channel length for short.

In Figure 5, we plot the optimal force protocol (left) and the trajectories (right) resulting from
different start and target positions while using the particle radius a = 0.2w and channel length
zt − zi = 500w. Interestingly, the regularization term generates solutions, where the force is zero at
first, meaning that all colloids travel towards the equilibrium position at zero control force except when
both xi and xt are close to the channel center. In particular, for xi = xt = 0.1w, the algorithm chooses
a nearly constant force protocol, clearly recognizable in Figure 5, left. In all other cases, the control
force increases or decreases monotonously starting around t = 300w2ν−1, which corresponds to a
traveled distance between z = 250w and 300w. At the end of the trajectory the target is reached with
high precision at z = zt.

Note that the control-force protocols are similar for the same target position (same color). However,
the increase/decrease from zero starts earlier if the initial lateral position is closer to the channel center.
This is because the flow velocity is larger and thus particles travel faster downstream.
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Figure 5. Optimal control-force protocols (left) and particle trajectories in the x-z plane (right) found
for steering colloids with radius a = 0.2w from a set of initial positions to a set of targets, which both
assume the same values {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7}. The same color refers to trajectories ending at the
same target position xt. The vertical dashed line indicates zt.

From the explanation so far, one could assume that the particle instantaneously follows the stable
fixed points of the lift-force profiles that are associated with the optimal control-force protocol fctl(t).
We plot the sequence of fixed points as dashed lines in Figure 6 in the x, z plane together with the
realized particle trajectories starting at xi = 0.2w and ending at different target positions. Clearly,
the particle does not follow the sequence of stable fixed points, since migrating there is hindered by
viscous friction. For target positions that are close to the channel center, the control force induces a
fixed point at the center (x = 0) for the last part of the trajectory to accomplish the trajectories bend
downward in Figure 6.

Figure 6. Solid lines: Optimal particle trajectories in the x-z plane found for steering colloids with
radius a = 0.2w from the initial position xi = 0.2w to a set of targets {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7}.
Dashed lines: Sequence of fixed-point positions of the lift-force profiles resulting from the optimal
control-force protocols fctl(t) (same colors represent the same force protocol).

4.2.1. Comparison with Constant-Force Strategy

We compare the costs of the constant-force strategy and the optimal control-force scheme while
using the cost functional I :=

∫ T∗
0 | f ∗ctl|2(t)dt. It integrates the square of the control force along the

particle trajectory, where lateral initial and target positions are equal for both strategies. Note that I is a
measure for the energy costs needed to realize the control schemes. To compare both of the strategies,
we decided to work with a constant channel length zt as a typical situation in experiments. While the
optimal-control scheme can be adjusted to such a specific axial target zt, for the constant-force strategy
the necessary channel length varies, depending on the lateral target position, as we discussed in
Section 4.1. In Figure 7, left, we plot the cost functional I for both strategies versus target position
xt for different initial lateral positions xi. The channel length is always zt = 500w. Interestingly,
the curves for each strategy are all very similar and, therefore, independent of xi. The reason is that the
control-force profiles for different xi but same xt in Figure 5 all have very similar shape and are mostly
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shifted relative to each other. Clearly, the optimal-control scheme is less costly than the constant-force
strategy up to an order of magnitude, besides for the smallest target position xt/w = 0.1. Here, we note
that, for the constant-force strategy, the channel length zt = 500w is not sufficient for reaching targets
with xt/w ≤ 0.4. Taking the need for longer channels into account, the costs of the constant-force
strategy goes up. In contrast, for large xt ≥ 0.5, a channel length that is smaller than 500w is sufficient,
which reduces the costs. However, those do not fall below the costs of the optimal-control scheme.

Figure 7. Comparison between the constant-force strategy (solid lines) and the optimal control-force
strategy (dashed line), for different inital lateral positions and a channel length zt = 500w. We show a
semi-logarithmic plot of the cost functional I of the axial control force versus lateral target position xt.

4.2.2. Dependence on Particle Size

Increasing the particle size strongly increases the strength of the inertial lift force ( flift ∝ (a/w)4

for very small particles). Thus, the fixed-point position at the initially zero control force is reached
faster, as a comparison of the force protocols and the particle trajectories in Figures 5 and 8 for different
radii shows. The control force remains longer at a zero value before it steers the particle to its target
position. However, for the larger particles, this then also requires larger control forces to steer them
laterally, because they experience a higher drag force and it is therefore harder to move them relative
to the external flow. Furthermore, as before for target positions further away from the zero-force
fixed-point position, larger control forces are necessary for steering, which makes sense. Finally, as we
already noted in Section 2.2, since the Saffman force ( fS ∝ a2) grows less strongly with the radius than
the focusing inertial lift force, one again needs larger control forces for particle steering, which also
drives up the whole costs. Thus, in all trajectories, the particles utilize inertial focusing at first to relax
towards the zero-force equilibrium positions and the control force is then switched on.

Figure 8. Cont.
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Figure 8. Optimal control-force protocols (left column) and particle trajectories in the x-z plane
(right column) found for steering colloids with radius a = 0.25w (top row) and a = 0.3w (bottom row)
from a set of initial positions to a set of targets, which both assume the same values {0.1, 0.2, 0.3, 0.4, 0.5, 0.6}.
The same color refers to trajectories ending at the same target position xt. The vertical dashed line indicates
zt.

4.2.3. Dependence on Channel Length

Because the control forces obtained in Figures 5 and 8 all remain at zero at the beginning of the
particle trajectories, it should be possible to further decrease the channel length. Indeed, we managed
to obtain numerically stable solutions for a channel length of zt = 300w, which we show in Figure 9.
Here, the trajectories do not (a/w = 0.2 and 0.25) or only shortly (a/w = 0.3) stay on the lateral focus
position and, thus, the control force is always non-zero or zero for a short time. Interestingly, the algorithm
chooses relaxation towards the equilibrium position for the largest radius a = 0.3w. Again, the inertial
lift force increases strongly with the particle radius and, therefore, it is too costly to compete against it
with a non-zero control force over the whole simulation time. Instead, the algorithm chooses to drive
up the control force to high absolute values, but for a shorter time period at the end of the trajectory.

Figure 9. Cont.
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Figure 9. Optimal control-force protocols (left column) and particle trajectories in the x-z plane
(right column) found for steering colloids with radii a/w = 0.2, 0.25, and 0.3 (top, middle,
and bottom row) to an axial target position zt = 300w. The vertical dashed line indicates zt.

4.3. Controlled Steering of Multiple Colloids

We use our model to steer two or more particles to their respective targets. As a first approximation,
here we neglect two-particle interactions. It is known that the lift-force profiles of two particles are
influenced due to secondary flows, when their axial distance is smaller or of the order of the channel
width [6,13]. In the following, we first consider the steering of a pulse of equal-sized particles,
and then investigate the lateral separation of two particles with different radii under the same
control-force protocol.

4.3.1. Steering a Pulse of Colloids

In the following, we consider the situation where a pulse of colloids is injected at the inlet of a
microchannel. We assume that they all have the same initial lateral position xi, but are spread along
the axial direction according to a Gaussian distribution, as shown in the inset of Figure 10, right.
At time t = 0 the center of the Gaussian is at zi = 0. Now, we ask which final lateral position x f the
colloids attain when reaching the axial target position zt under the action of the optimal control force
f ∗ctl(t). For the latter, we use the optimal force protocol calculated for the central initial position at
zi = 0. It is switched on at t = 0 and switched off at the time T∗ when the particle moving on the
original optimized trajectory with zi = 0 has reached the axial target position zt. Because all particles
start on the same initial lateral position xi at t = 0, they move on replicas of the opimized trajectory,
but shifted along the z direction by zi. Colloids with zi > 0 precede the original optimized trajectory
and therefore experience the control force until they have reached zt. However, for colloids lagging
behind the optimized trajectory (zi < 0), we simply turn off the control force once the optimized time
period T∗ has passed and wait until they have reached z = zt. During this time, the lateral motion is
completely determined by inertial focusing without any Saffman force, where the focusing position is
x0

eq. This allows for two scenarios: if the lateral target position xt is closer to the channel center than
the focusing position (xt < x0

eq), then we know from Section 4.2 that the optimal trajectory approaches
the target from above. Therefore, the preceding and lagging colloids will both reach a final lateral
position x f > xt. In contrast, for targets closer to the channel wall than the focusing position (xt > x0

eq),
both leading and lagging colloids end up closer to the center than the target (x f < xt).

The qualitative description is confirmed by Figure 10, left„ the ons x f versus zi for different target
positions xt. They follow piecewise linear functions, where the two arms have different slopes, since
different mechanisms determine the final positions of preceding and lagging colloids. Only for the
target position xt = 0.6 do the final positions x f deviate from the linear course for very negative zi. We
note that the deviations of x f from the target remain small, even when the axial particle positions are
spread over 30w to both sides of zi = 0.
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Figure 10. (Left): Final lateral position x f for particles with initial axial position zi when steered by the
axial control force f ∗ctl(t), which is opimized for steering the central particle with zi = 0 and xi = 0.2
to different target positions xt/w = 0.2, 0.3, 0.4, 0.5, and 0.6 at the axial target position zt = 500w.
The linear fits by solid lines are hardly visible. (Right): Distributions of final lateral positions x f for the
Gaussian distribution of initial axial positions zi shown in the inset. The colors indicate different target
positions xt/w as in the plot on the left.

Taking the Gaussian distribution of initial axial positions in the inset of Figure 10, right,
with standard deviation σz = 10w and assuming the linear dependence x f (zi) for the final lateral
positions, one can readily write the distribution p(x f ) of final lateral positions. It is a superposition of
two Gaussian functions, where only one half is used from each Gaussian (see below). The resulting
distributions for the different target positions are presented in Figure 10, right. Although the axial
width of the initial distribution is ca. 50w, the final positions only deviate a little from the target
position. The distribution p(x f ) for xt = 0.4w (green curve) is the sharpest, since xt = 0.4w is closest to
the zero-force focusing position x0

eq. The distributions become broader when xt is moved towards the
wall or the channel center, respectively. Thus, here we demonstrate that a pulse of colloidal particles
fairly spread in the axial direction can be focused into one target position at the channel outlet using
one control-force protocol for all of the particles.

At the end, we shortly present the derivation of the distribution p(x f ) of final positions at the
channel outlet. Because particles with a specific initial axial position zi move to a specific x f , one can
directly derive p(x f ) from the distribution pz(zi) and obtain:

p(x f ) = pz( f−1
+ (x f ))|( f−1

+ )′(x f )|+ pz( f−1
− (x f ))|( f−1

− )′(x f )|. (9)

Here, x f = f±(zi) = a±zi + xt is the piecewise linear function from fitting the curves in Figure 10,
left, zi = f−1

± (x f ) is its inverse function, and ( f−1
± )′(x f ) = 1/a±. Taking a Gaussian distribution for

pz(zi), the final distribution p(x f ) is a sum of two shifted and rescaled Gaussians with means at xt.
However, because the value range of f± is either (−∞, xt] or [xt, ∞), the end result is a sum of two
half-normal distributions, either to the left (xt > xeq) or to the right (xt < xeq) of the mean xt of the full
Gaussian. This is readily seen in Figure 10, right. To have a quantitative measure for the width of the
distribution p(x f ), we calculate its mean value:

µ = xt ±
σz√
2π

(|a+|+ |a−|), (10)

where the plus sign applies to xt < x0
eq and vice versa. The deviation from xt provides a measure for

the width of p(x f ). It is determined by the slopes a± of the linear fits to x f = x f (zi). Because they are
also small, the width is small and it decreases when xt approaches x0

eq. Ultimately, this small width
comes from the fact that drift velocities in lateral channel direction are much smaller than the axial flow
velocity. This means that inertial transport is much weaker than axial transport due to Poiseuille flow.
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4.3.2. Separation of Particles

In the end, we examine the case where two particles of different size are steered using the same
control-force protocol. Thus, we assume here that both particle types experience the same external
force independent of their sizes. From Figure 3, we already know that this is possible: a properly
chosen constant axial force can drive the smaller particle to the center while the larger particle stays at
a finite distance from the center. Here, we aim to maximize the lateral distance after both particles have
traveled the distance zt in axial direction. At the end of Section 3.3, we already formulated the appropriate
cost functional for maximizing the lateral distance between both particles. In Figure 11, we show the
resulting trajectories (left) and force protocols (right) for two particles with radii a1 = 0.2w and a2 = 0.3w
and the axial target zt = 500w. Without control force, these particles would arrive at very similar positions,
because their zero-force equilibrium positions are very close to each other. We present results for two cases
where both particles start at the same initial position at either xi = 0.2w or xi = 0.5w. Again, we assume
that they do not interact. Interestingly, the control-force protocols for both cases look rather different
in the beginning. However, in both cases, the smaller particle (solid lines in Figure 11, left) is pushed
towards the centerline, while the larger particle (dashed lines) moves towards the channel wall during
the second half of the trajectories. The separation reached at the end is ∆x = 0.45w for xi = 0.2w and
∆x = 0.43w for xi = 0.5w, which is not attainable with any passive method.

Figure 11. Maximizing the lateral distance of two particles with different radii a/w = 0.2 and 0.3 using
the same control-force protocol f ∗ctl(t). The particles both enter at the same inlet at xi and travel an axial
distance with optimal value zt = 500w during time T∗. (Left): trajectories of the two particles for both
initial conditions. Inset: axial separation over time of the two particles. (Right): optimal control-force
protocols for the two initial lateral positions xi = 0.2w and 0.5w.

To develop a better understanding for the optimal control-force protocols of Figure 11, right,
we show in Figure 12 the momentary stable fixed points for the smaller and larger particles
corresponding to the momentary axial control force, when the particles are at position z. The path
of the momentary fixed points reflects the particle trajectories of Figure 11, left, where the algorithm
attempts to steer the smaller particle (solid lines) to the channel center and the larger particle (dashed
lines) towards the wall. For initial position xi = 0.5w (blue lines), the fixed point at zero control force is
closer to the channel center (around 0.4w); therefore, the control force close to zero is sufficient to move,
in particular, the smaller particle towards the center. Subsequently, it rises noticeably, bringing the
smaller particles to the center, as documented by the course of the momentary fixed point. In contrast,
the initial position xi = 0.2w (orange color) is already closer to the channel center. Thus the control
force is switched on immediately to push the smaller particle (orange solid line) to the channel center,
where the momentary fixed point is located. As we know from Figure 3, left, the fixed point of the large
particle does not react so strongly to the control force. It is only shifted towards the center, but hardly
reaches it. Nevertheless, this initial behavior causes the minima in the dashed trajectories of Figure 11,
left. Afterwards, in both cases the axial control force identified by our algorithm becomes strongly
negative and the momentary fixed points are pushed towards the wall, even stronger for the smaller
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particles. Nevertheless, because the lift force scales with the particle radius a2, the larger particles are
pushed towards the wall, while the smaller particles stay close to the channel center and hardly move
away from it (see Figure 11, left).

Figure 12. Instantaneous stable fixed points resulting from the applied forces in Figure 11 (left).

5. Conclusions

We applied concepts from optimal control theory to a setup from inertial microfluidics and
managed to precisely steer single particles from a microchannel inlet to an outlet while using
a time-dependent axial force, which controls the lateral inertial lift force via the Saffman effect.
Our results show that the optimal control force exploits conventional inertial migration, since, in the
beginning, it is zero, so that the particle drifts towards its lateral equilibrium position. Only then the
control force is switched on, so that the particle is pushed towards a target position. Because of this
property, steering with an optimized control force is cheaper than a strategy where a constant axial
force is used for steering. Additionally, the optimal-control strategy can be implemented for different
channel lengths, which makes this approach versatile. We also used the optimal control-force protocol
for a single particle to demonstrate that even a pulse of particles spread along the channel axis can
be steered to a target with only a small spread around the exact target position. Finally, we showed
how a single optimized control-force protocol can separate particles of similar radii a1 = 0.2w and
a2 = 0.3w. The lateral distances reached for a channel length of 500w and different initial positions are
considerably larger than a passive strategy could achieve.

It would be interesting to explore different channel geometries in the future, such as rectangular
cross sections with different aspect ratio or triangular cross sections [37], because they strongly influence
the locations of the fixed points of the inertial lift force. For triangular microchannels, this would require
determining the lift-force profile in the cross-sectional plane and not just on one axis.

We consider particle steering by an optimal axial control force as an innovative method for
targeting precise positions at the channel outlets, which will then have implications for particle
separation and filtration. We hope that our work stimulates future efforts towards an experimental
realization. As we outlined above, to realize the axial control force, we suggest the use of electric fields
in combination with electrophoresis, which has already been applied in experiments on the Saffman
effect and inertial migration [16,17] and also studied in theory [18]. Typically, micron-sized particles
can exhibit electrophoresis and it is also realized for biological cells [38].
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