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Abstract: This is a second part of the paper presenting a miniature, combustion-type gas sensor
(dubbed GMOS) based on a novel thermal sensor (dubbed TMOS). The TMOS is a micromachined
CMOS-SOI transistor, which acts as the sensing element and is integrated with a catalytic reaction
plate, where ignition of the gas takes place. Part 1 focused on the chemical and technological aspects
of the sensor. In part 2, the emphasis is on the physical aspects of the reaction micro-hot plate on
which the catalytic layer is deposited. The three main challenges in designing the hot plate are
addressed: (i) How to design a hot plate operating in air, with a low thermal conductivity; (ii) how to
measure the temperature of the hot plate during operation; (iii) how to reduce the total consumed
power during operation. Reported simulated as well as analytical models and measured results are
in good agreement.

Keywords: CMOS-SOI-MEMS gas sensor; catalytic micro hot-plate; thermal gas sensor; MEMS
simulations and modeling

1. Introduction

There is an ongoing effort to fabricate miniature, low cost, sensitive, and selective gas sensors
for domestic and industrial uses [1–11]. The miniaturization and reduced power consumption of gas
sensors allow for a wide range of application in wearable and portable devices, such as mobile and
smart phones. Recently we reported a miniature, combustion type gas sensor (dubbed GMOS) based
on a thermal sensor, where a micro-machined CMOS-SOI transistor acts as a sensing element and is
integrated with catalytic reaction plate and embedded heater [12–16]. The suspended transistor-dubbed
TMOS exhibits extremely high sensitivity to the change of the temperature [17–22]. Ref. [16] presents
Part 1 of the present paper, which emphasizes the GMOS chemical performance modeling, as well
as the two deposition techniques of Pt catalytic layer suitable for wafer level processing, magnetron
sputtering, and nanoparticle inkjet printing.

The present paper, Part 2, focuses on the physical modeling of the hot catalytic plate of the GMOS
sensor. The three main challenges in designing the hot plate are addressed: (i) How to design a hot
plate operating in air, with a low thermal conductivity (Section 2); (ii) how to measure the temperature
of the hot plate during operation (Section 3); (iii) how to reduce the total consumed power during the
sensing (Section 4).

In order to understand the nature of the above challenges let us bear in mind the following:
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(i) The catalytic layer requires heating to the operation ignition temperature as well as periodic
thermal refreshment at ~400 ◦C in order to avoid its degradation. At the same time, a large area
reaction plate is preferred since the measured signal scales with the area and a larger area facilitates
the deposition of the catalytic layer. It is shown in Section 2 that there is a trade-off between these
two requirements.

(ii) The selectivity of the GMOS is achieved by monitoring the ignition temperature of the sensed
gas, denoted by T* and discussed in Part 1. The temperature control as well as its monitoring is
therefore of paramount importance.

(iii) IoT applications and mobile applications require battery operation. Hence, reducing the
overall power during operation is essential.

The main simulation tool of the present study is ANSYS FLUENT [23]. The simulations are
corroborated by analytical modeling, which also gives a better physical insight. The results are
confirmed by measurements. The device under study (DUT) is shown in Figure 1 and more details
can be found in Part 1 [16]. It should be noted that the design is a compromise between a small die,
with overall dimensions of less than 4 mm2 and a pixel area that facilitates the deposition and increases
the signal, thus enabling high sensitivity even at low concentrations of the detected gases.
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2. Hot Plate Operating in Air, with a Low Thermal Conductivity

2.1. Modeling Supported by Simulations

As shown in Figure 1, the device includes several layers. Small features and layer thickness require
denser mesh and more elements, which obligate large computations resources and running simulation
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time. Two modeling methods were used to reduce the number of elements: (i) layers with small
thickness were neglected by the assumption that the materials have similar thermal properties. (ii)
Calculating the solid equivalent thermal conductivity, keq, which is direction dependent

(
keqx , keqy , keqz

)
,

with Equation (1a,b) of parallel and serial materials and substituting the solids with one equivalent
solid in the 3D model as can be shown in Figure 2.

(a) keqserial = L·
(

n∑
i=1

( li
ki

))−1

(b) keqparallel =
1
A ·

n∑
i=1

kiAi

(1)

where n is the number of solids connected. A and Ai are the areas of the solid that the heat flux go
through. L and li are the distances the heat flux go through (note: A =

∑n
i=1 Ai and L =

∑n
i=1 li) and

k, µW
K is the thermal conductivity.
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demonstration of the parallel equivalent thermal conductivity, assuming T1 > T2. (e) 3D model
demonstration of the serial equivalent thermal conductivity, assuming T1 > T2.

As can be seen in Figure 3, the sensor is thermally insulated from the frame by holding arms.
The thermal conductance, Gth, is determined by the thermal conductance of the sensor solid parts
and by the air conduction around the plate. A 3D Finite Elements Analysis software is required for
modeling and simulation the thermal conductance of the sensor.

Boundary and operating conditions to the 3D model were set. The bottom of the device was set to
a constant temperature. A power heat source was set to the tungsten heater in the stage. The actual
device had a meandered heater, however in the simulation we used a single metal plate. We assume

that the volume of the film produces a power PJoule =
V2

Heater
RHeater(T)

, in that way we enforce the film to
produce the same heating power as a meander shape heater with resistance of RHeater(T) and applying
voltage VHeater. Since the meander shape is uniform across the plate, the results are very similar. The air
density is determined by the ideal gas law. The air flow is caused by natural convection. The air flow
direction is in the y direction on the ANSYS Fluent software. The solid material thermal properties
were provided by the FAB (Table 1).
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Table 1. Materials thermal and mechanical properties used in this article simulations. The thin
film silicon device layer is assumed to have the thermal conductivity of polysilicon rather than bulk
crystalline silicon.

Property Description SiO2 Poly Si Si(c) Tungsten Platinum Silicon Nitride

k [W/(mK)] Thermal conductivity 1.4 40 40 173 21,450 31
CP [J/(kgK)] Heat capacity at constant pressure 730 700 700 134 126 1100
ρ [kg/m3] Density 2200 2320 2329 19,300 71.6 3250
E [GPa] Young’s modulus 70 160 - 411 - -

ν Poisson’s ratio 0.17 0.22 - 0.28 - -

The thermal conductance of a solid can be calculated by:

Gth =
kA
L

(2)

where A is the area of the solid that the heat flow, which caused by a temperature difference, go through
and L is the solid length. For example, in our DUT (device under study) a temperature difference
develops on the arm and L is the length of the arm from the frame to the plate as shown in Figure 3.
The thermal conductivity of the arm can be calculated using Equation (1).

A Joule heating was applied to the heater resistor on top of the plate P joule =
V2

applied

Rheater(T)
. The tungsten

heater resistance dependency is the following:

Rheater(T) = R0(1 + TCR1(T − T0) + TCR2(T − T0)
2 (3)

where R0 is the initial resistance at the room temperature, and TCR1 = 2.05× 10−3 K−1 and TCR2 =

0.2× 10−6 K−2 are temperature coefficients of resistance parameters, which define the change of the
resistance due to the change of the temperature. The TCR values were provided by FAB (XFAB, Erfurt).
In this work, three values of resistors were studied. Figure 4 shows the resistance and the Joule heating
power dependencies for R = 1000 ohm. Figure 5 exhibits the uniformity of the temperature across
the plate. The simulation was done for a bare stage as well as with silicon nitride layer of 0.75 µm
and platinum catalytic layer of 0.5 µm on top of the stage. Furthermore, this simulation took into
consideration the temperature dependency of the thermal conductivity of the air which increases
approximately linearly with the temperature. As can be seen, the temperature variation on the stage
occurs mostly at the corners, especially at the holding arms contacts. The presence of silicon nitride
and platinum catalytic layers on top of the stage significantly improves the temperature uniformity.
In addition, to compensate the temperature variations a non-uniform resistor should be designed
with local variations of the resistance at the corners. At the corners, a narrower meander which
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provides locally a higher resistor value and hence higher local Joule heating, may further increase the
temperature uniformity.Micromachines 2020, 11, x 5 of 15 
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Figure 5. Steady-state thermal simulation results of the DUT design for Vheater = 3 V, and Rheater =

1000 ohm: (a) Distribution of the temperature over the bare plate. (b) The temperature of the plate
among the line between point x and y in Figure 5a. (c) 2-D temperature distribution over plate with
platinum catalytic layer and silicon nitride. (d) 3-D temperature distribution over the plate with
platinum and silicon nitride layers.
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Note: The Joule power, which develops is PJoule =
V2

Heater
R(T) . Since the TCR (temperature coefficient

of resistance) is positive for tungsten resistor, applying voltage rather than current is mandatory to
avoid thermal run away. In contrast, since, PJoule = I2R(T), if the current is applied, a positive feedback
develops, and the Joule power may increase too much thus causing burning of the heater.

The temperature increase of the hot plate due to the Joule heating is given by:

∆TJ =
PJoule−heating

Gth
(4)

For refreshment of the catalytic plate, a temperature difference of ~350–400 ◦C is required [16,24].
Accordingly, the required Joule heating power is PJoule−heating = 400 ·Gth and for Gth of 50 µWatt/K it is
PJoule-heating = 400 × 50 ×10−6 = 20 mWatt. For battery operation, this sets a practical limit to the plate
area, as shown below (see Figure 6).
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Figure 6. (a) Ideal hot plate thermal conductance and the FOM Area/Gth. Vs. stage area for Vheater = 3 V,
and Rheater = 1000 ohm. The hot plate is ideal since the effect of the holding arms is neglected. (b)
Steady state simulation temperature result of the DUT with holding arms, with the overall following
dimensions: Plate area: 45.45× 103 µm2; Holding arms width 6.4 µm: Gap 18 µm; for applied heater
voltage of 3 V. (c) Steady state simulation temperature result of the DUT without holding arms.

2.2. Simulations Supported by Modeling

In this section, the thermal simulations have been performed to determine thermal conductance,
and optimal plate area for a fixed pixel size. In the simulations, the heating power was applied to the
reaction plate, and the temperature increase ∆T of the plate was obtained. Then, to determine the Gth,
the applied power was divided by the average ∆T (according to the Formula (4)). In Part 1 of the
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present paper [16], it was shown that the sensor response vsig(V) is proportional to the reaction plate
area and inversely proportional to the Gth.

vsig =

(
dVDS

dT

)
·Cg·

( 1
ks

+
δ
D

)
·Aplate·

(
∆HC

Gth·NA

)
(5)

where VDS—drain-source voltage of the transistor, V; T—transistor temperature, K; ks—reaction rate,
m/s; Cg—gas concentration in air, molecules/m3; D—gas diffusion constant, m2/s; δ—stagnant film
thickness, m; ∆HC—combustion enthalpy, Joule/mole; NA—Avogadro number, 1/mole.

In order to achieve a higher signal from the chemical reaction a larger hot-plate area is required [16],
but on the other hand the enlargement of the hot-plate area increases the thermal conductance, as shown
in Figure 6. It shows that as A—the plate area increases, Gth also increases almost linearly, and thus
the required Joule power needed for heating the plate for operation and refreshment also increases.
Therefore, we have defined Ahot-plate/Gth as the figure of merit (FOM) of the hotplate since it expresses
the tradeoff between the reaction efficiency and the needed power for operation and refreshment.
Figure 6a shows that A/Gth starts to saturate at the plate area of about 45 × 103 µm2. This value was
taken for the actual design of the device. However, if we print catalytic nano particles on the hot plate,
then the actual surface area is larger than the physical area of the hot plate, and the latter can be further
scaled down.

An ideal model with no arms with fixed pixel area of 384 × 384 µm2, while the reaction area of the
plate varied, was simulated and the results can be seen in Figure 6. As the plate area increases the gap
between the frame and the plate decreases. The FOM saturates for a hot plate of ~250× 250 µm2, and a
total gap (no arms) to the pixel’s frame is 67 µm.

As can be seen in Figure 6b the average temperature difference is 146.52 K and for the same model
but without the solids arms, the average temperature difference is 155.9 K. The thermal conductance
of the device with holding arms is Gth = 47.36µW

K , and for the ideal model, without solids arms is

Gth = 43.8 µW
K . By comparing the Gth of Figure 6b with that of Figure 6c it can be seen that for the large

hot plate the effect of the thermal conductivity of the arms is quite small.
The simulated Gth may be supported by modeling, assuming that the main heat convection is

upwards since hot air has lower density. Moreover, we may assume a stagnant film of air, through
which the sensed gas diffuses. The temperature on the upper part of the stagnant air is the ambient
temperature whereas the temperature on the lower part is determined by the hot plate. The stagnant
film model is briefly considered in [25]. By assuming a stagnant film of several tens of microns denoted

by L, the modeled Gth corresponds to the simulated one since: Gth = 0.026·
Aplate

L W/K, where the air
thermal conductivity is assumed. The stagnant film thickness assumed here is determined from
experiments where T* is determined [16].

In addition, we have compared our sensor design with traditional full membrane sensor-without
a gap between the stage and the frame (Figure 7). The simulations show that the thermal conductance
of the traditional full membrane design is more than an order of magnitude higher than that of DUT.

Assuming that in the full membrane case, the heat transfer via contact with the bulk frame
dominates over that through the air, the Gth (for the membrane size 213× 213 µm2 and thickness of
4.6 µm) can be analytically calculated as: Gth ≈ 4·1.4· 4.6·10−6

·213.2·10−6

10−6 = 550µW
K . By adding the thermal

conductance component caused by air heat transfer Gth = 50 µW
K , the total Gth becomes about 600 µW

K
which is in good correspondance with the simulation results.

These results show the advantage of suspended hot plate over the traditional one in reduction of
power consumption due to the decrease of thermal conductance. The specific holding arm structure of
DUT provided an optimal fill factor for the given pixel size. Furthermore, the arm meandering helped
for the relaxation of stresses. Although it is more difficult to fabricate, the wafer level fabrication of the
devices showed almost 100% mechanical yield.
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Figure 7. (a) Steady state simulation temperature results and Gth for: (a) full membrane having a pixel
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Vheater = 3 V, and Rheater = 1000 ohm.

3. Measuring the Hot Plate Temperature during Operation

3.1. Background

There are several options to determine the dependence of the plate temperature as a function of the
voltage applied to the embedded heating resistor; for example, by measuring on-line the resistance of the
heater [26–29]. In this study, the integrated CMOS transistor, dubbed TMOS, was applied for monitoring
the plate temperature as a function of the voltage applied to the heating resistors, as described below.
The off-line I(T)-V characteristics of the TMOS were measured using a semiconductor parameter
analyzer (SPA), while heating the plate by applying voltage to the heating resistor. The hot plate
temperature was evaluated from the slope and the swing of the TMOS characteristics at subthreshold.

Figure 8 exhibits a typical set of characteristics at subthreshold, as a function of the voltage applied
to the heating resistor. The well-established exponential behavior of the current upon gate voltage
at subthreshold is observed. The I0 and VT0 are extracted from the experimental log IDS-Vgs curve
of the TMOS sensor operating at subthreshold. I0 and VT0 are obtained directly from the measured
characteristic exhibited at Figure 8 when no voltage is applied to the heating resistor. The threshold
voltage at subthreshold region is defined by the uppermost point where the log I is linear. VT0 = Vgs
= 1.33 V in this case. I0 is the lowest current which is not a leakage current while maintaining the
subthreshold region operation also at higher temperatures. Accordingly, we apply Vgs = 0.97 V in
this case. The theory may be found in many textbooks, see for example the book by Sze [30]. Figure 8
also exhibits the increased leakage current as the temperature increases as well as the decreasing slope
at subthreshold.

By measuring the slope and evaluating the swing (the inverse of the slope), the temperature of the
hot plate is evaluated.

3.2. Analytical Modeling of the Measurements

The TMOS is operated at subthreshold. The well-known expression for the transistor current is
used by taking into consideration the dependence of the mobility upon temperature, which follows a
simple expression for n-mos transistors.

T0 is the reference temperature where no voltage is applied to the heater and is determined by the
lab ambient temperature. In this study the temperature is assumed to be 300 K.

The transistor in the hot-plate is operating at subthreshold condition. The subthreshold current
for VDS >

3kT
q is:

IDS = µ(T)COX

(W
L

)(kT
q

)2

(n− 1)e
q

nkT (VGS−VT) (6)
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µ(T) = µ0

(
T
T0

)−2

(7)
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Combining Equations (6) and (7):

IDS(T) = I0e
q

nkT (VGS−VT)where I0 = µ0COX

(W
L

)(kT
q

)2

(n− 1). (8)

n is determined by the relation in Equation (9) and typically has a value of 1.4–2:

n = 1 +
Cs + Css

COX
(9)

where Css is the capacitance of the fast surface states, Cs is the semiconductor capacitance and COX is
the oxide capacitance.

The threshold voltage dependency on the temperature:

VT(T) = VT(T0) +
dVT

dT
(T − T0) (10)

For n-mos dVT
dT is a negative constant and is several mV

K .
W/L is based on our design (Table 2). However, I0 is obtained directly from the

measured characteristic.
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Table 2. Typical values for the CMOS-SOI process of the fabricated DUT.

Study Parameters Value Units

µCox 2.8× 10−5 A
V2

N 2 -
dVt/dT −2.5× 10−3 V

K
VT(T0) (from the graph when Vheater = 0) 1.3 V

T0 300 K
W/L 1425 -

Rheater 1000 Ω
I0 (extracted from Figure 7) 1.187× 10−5 A

The swing S of the I-V at subthreshold is the inverse of the slope of the logarithmic current vs VGS
and is given by [30]:

S =
dVgs

d
(
log10 Ids

) ≈ 2.3·
kT
q
·n (11)

The value of n is determined by the swing of the measured plot where no heating is applied,
namely no voltage is applied to the heating resistor. We assume that this plot describes the behavior at
the lab temperature—our reference temperature T0. Furthermore, we assume that the dependence of n
upon temperature is negligible. Hence, the temperature can be extracted from the swing, for various
applied heater voltages. To illustrate this approach, please refer to Figure 8, assuming that the device
is operated at Vgs = 1 V. The evaluated temperatures for the applied heater voltages are shown in the
Table 3.

Table 3. The plate temperature as a function of heater voltage evaluated from the measurements of
Figure 8.

Vheater (V) 0 1 2 3 4 5

Temperature (K) 301.44 318.90 368.34 449.01 570.29 774.44

3.3. Simulations

In this study, the 3D hot plate temperature including the holding arms, was modeled and simulated
in ANSYS fluent software [23] as a function of the heater voltage for several values of heating resistors
(Figure 9).
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Figure 9. The hot-plate simulation results: applied heater voltage vs. the steady-state average hot plate
temperature for different Rheater values.



Micromachines 2020, 11, 587 11 of 15

Mechanical simulations with modal analysis and harmonic response have been made on the DUT
design of Figure 1c. In order to evaluate the resonance frequencies, we assumed vacuum operation,
and the results are shown in Figure 10. As can be seen in Figure 10b, the first resonance occurs at
~6.3 KHz.
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Figure 10. (a) The mechanical model, assuming vacuum and fixed support on the arm edges.
(b,c) Average deformation of the plate versus frequency for applied force of F = (0,−0.1 µN,0) on the
stage in Y (b) and X (b) directions.

The profilometer measurements of the hot-plate shape showed that the stage is concaved with the
center being lower than the corners by 5µm. The measurement does not agree with Figure 10b. However,
it makes sense since the BOX introduces compressive stresses, which are released by increasing the
surface area on the bottom. The tensile stresses which develop compensate the compressive stresses.
It is evident that the mechanical simulation requires a model which takes into consideration the vertical
gradients of the internal stresses.

3.4. Measurement and Discussion

The drawbacks in the measurements modeling are the facts that some values such as I0 and VT0

are extracted from the experimental log IDS-Vgs curve and can cause inaccuracies as well as the inability
to extract the temperature when high heater power is applied because the subthreshold formulas are
no longer valid (see Figure 8). Even with those drawbacks, Figure 11 exhibits the simulations and
measurements results. There is a good correlation between the results.
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Figure 11. Simulation (solid lines) and measurements (dashed lines) results. Applied heater voltage vs.
the average hot-plate temperature for different heater resistor. Note: Measured temperatures for high
heater voltages (4–5 V) were ignored in this figure because the sub-threshold assumption is not valid at
such Vgs values and for resistor of 300 ohms.

4. Reducing the Total Consumed Power during Operation by Applying Duty Cycle Operation

The total consumed power consists of the power consumed by the thermal sensor namely
the TMOS transistor and the power consumed by the heater for operation and refreshment cycles.
The thermal sensor of the GMOS gas sensor of Parts 1 and 2 is a micro-machined CMOS transistor
operating at subthreshold (dubbed TMOS). The operation point is typically with Vgs~1 V and current
up to 10 µA, hence they require very low power. The main required power is for the heating resistor
and consists in turn of the power needed for the ignition temperature and the power needed for the
periodic refreshment procedures. For ignition, a heating to about 200 ◦C is needed, so the heating
power is about 10 mWatt (as can be estimated using simulation data of Gth:PJoule−heating = 175 ·Gth
or calculating PJoule−heating = V2/R(T)). For the refreshment, the Joule heating power is of the order of
20 mWatt because a heating to 400 ◦C is required. To achieve 400 ◦C, we preferred to use devices with
heaters having resistance of 300 ohm and 600 ohm and applied voltage of 3.3 V and 4.5 V, respectively.
Since overall PJoule−heating = I ·V ∼ 30 mWatt, the average current can be estimated as 10 mA. Such high
currents are unaccepted for battery operation. Hence, the GMOS should be operated by reduced
duty cycle.

To prove this opportunity, the thermal time constant τ of GMOS was simulated (Figure 12) and
measured (Figure 13) to estimate the time needed to reach the desired temperature of the device.
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Figure 12. Transient simulation of the DUT (plate area 213.2 µm × 213.2 µm, arm width 6.4 µm and
a gap of 18 µm), applied heater voltage of Vheater = 5 V, and Rheater = 1000 ohm. The thermal time
constant is 5.25 msec.
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The thermal time constant τ is determined from the measurement as exponential fit parameter.
Time dependencies were measured by means of semiconductor device analyzer (SDA) B1500A.
Two types of experiments have been done:

• Current was supplied to the transistor in 2T mode (drain and gate were shorted); heater did not
operate (Figure 13a).

• Current was supplied to the heater; transistor did not operate (Figure 13b).

The pulse operation is indeed feasible since the thermal time constant τ of the GMOS is of the order
of few milliseconds, as shown by simulation (Figure 12) and confirmed by measurements (Figure 13).
By operating at reduced duty cycle and applying the refreshment heating pulse with a duty cycle of
1%, namely every 100 sec for 1 sec, the power is reduced to 300 µWatt. The sensing duty cycle can
also be optimized. In the Part 1 [16], a 50% duty cycle of 500 ms was used resulting in the average
power of 5 mWatt. It can be further reduced by taking into account the small time constant exhibited
in Figures 12 and 13. However, the time needed for the data readout as well as for the stabilization
of the gas combustion reaction should be also considered. In fact, a 10% duty cycle of 100 ms is
quite reasonable leading to further reducing of the average power to 1 mWatt. By taking a reading
every 10 s, the power may be further reduced. Thus, the total average power for the sensing and
the refreshment can be less than 1 mWatt. Then, the corresponding average battery current is about
100 µA, which is acceptable for a battery operation. However, although the sensor, heater and readout
circuitry require low power, the MCU (microcontroller) on the board of the sensing system consumes
relatively high power. Therefore, battery and wireless operation require careful programming of the
sensing system, applying “sleeping mode” operation to the MCU. Thus, the entire sensing board may
be battery operated although the battery life time is shortened by the MCU.
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5. Conclusions

The advantages of the innovative GMOS gas sensor are outlined in Part 1 and in Ref. [12].
These advantages of GMOS allow fabricating low-cost gas sensor that requires low power, and make it
a promising technology for future smartphones, wearables, and IoT applications. The present paper
emphasizes on the role of a careful design based on MEMS advanced simulations. Moreover, it exhibits
the need to take into consideration the designing of the overall physical aspects, including thermal,
electrical, mechanical, and power requirements.

The heart of the sensing system is the sensor. However, the users require high performance
achieved by the entire system, rather than that of just the sensor. Therefore, battery and wireless
operation require careful programming of the entire sensing system residing on a board. The design of
the entire sensing system based on the GMOS will be reported elsewhere.
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