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Abstract: Atomization of liquid media is a key aim in various technological disciplines, and solutions
that improve spray performance, while decreasing energy consumption, are in great demand.
That concept is very important in the development of liquid fuel spray atomizers in high-efficiency
microturbines and other generator systems with low inlet pressure and a wide range of power supply.
Here we present a study of the liquid atomization characteristics for a new mechanical atomizer that
has optimal geometric parameters and a preliminary swirl stage. In our air-assisted atomizer, air is
introduced through a swirl chamber positioned at the exit of the mechanical atomizer. The optimized
mechanical atomizer alone can achieve D32 drop diameters in the range of 80 to 40 µm at water supply
pressures of 2 to 5 bar, respectively. The addition of an air swirl chamber substantially decreases drop
sizes. At an air–liquid ratio (ALR) equal to 1, water pressures of 2.5 to 3 bar and air supply pressures
0.35 to 1 bar, D32 drops with diameters of 20–30 µm were obtained. In an air-assisted atomizer the
parameters of the mechanical atomizer have a much stronger influence on drop diameters than
do characteristics of the air-swirl chamber. Using a mechanical atomizer with optimal geometrical
dimensions allows limiting the liquid supply pressure to 5 bar; but when an air-assisted component
is introduced we can recommend an ALR ≈ 1 and an air supply pressure of up to 1 bar.

Keywords: mechanical atomizer; air-assisted atomizer; swirl chamber; drop diameters; air/liquid
mass flow ratio

1. Introduction

Atomization of liquid media is an essential process in many different industries, so solving the
technological challenges it presents is of significance for a wide range of applications. Efforts to
improve the atomization process are being made in order to increase combustion efficiency in internal
combustion gasoline and diesel engines [1,2], to reduce the cost of air humidification and cooling in
hothouses [3–5], to aid in air purification [6,7], to improve firefighting appliances while minimizing
water usage [8], and to achieve better product solidification for food industries [9]; liquid atomization
is also used in the production of pharmaceuticals [10], in the treatments of plants and field for
agriculture [11], in textile and tobacco-processing plants [12], and many others.

The atomization of the liquid is accomplished via various atomizer designs. The current designs
for liquid atomization may be broadly classed into the following groups:

- Centrifugal nozzles, in which the working medium is given a tangential velocity component and
exits through an outlet coaxial with the swirl chamber [13,14].

- Nozzles with impediments, in which the working medium discharges from the nozzle under high
pressure and interacts with an obstacle installed in front of the nozzle [15,16]. Both of the above
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atomizer types use only the working pressure of the medium transformed into flow velocity to
break the liquid up into small-sized particles. Such atomizers are described as mechanical.

- Atomizers that use gaseous media (air, steam, gas) to atomize the liquid. Such atomizers are of
the air-assisted (two-phase) type [17–19].

The main benefit of pressure-swirl atomizers is their high energy-efficiency, and many industrial
processes use them because of their combination of reliability, ability to achieve droplets of small
dimensions, and high performance [20]. In many widely used pressure swirl atomizers, a liquid
enters the swirl chamber through a number of tangential holes or slots. Centrifugal force causes the
liquid to spread within the chamber as a hollow conical spray, with spray angles ranging from 30◦ to
almost 180◦ depending on the application. Atomization occurs not only because of the break-up of the
liquid sheet but also because of collisions between droplets and the interaction between droplets and
air [21–23]. The finest atomization occurs at high pressures and at wide spray angles [24]. Atomizer
performance has been found to be related to physical and experimental properties such as surface
tension, viscosity, mass flow rate, density and injection pressure [25–28]. The mean diameter of drops
is strongly associated with the injection pressure. With an increase in the pressure-drop across the
atomizer, the liquid exits from the nozzle with a greater velocity, which then creates more intense
disturbances on the liquid surface, increasing the quality of atomization. The effect of varying the
injection pressure is usually more visible at low injection pressures than at high injection pressures [29].
Rashad et al. found that increasing the injection pressure from 8 bar to 12 bar decreases the D32 drop
diameters from 69 µm to 55 µm [30]. However, if increasing pressure from 2 to 10 bar reduces the drop
diameters by 45%, then an increase from 10 to 20 bar reduces the drop diameters by 28% and from
20 to 90 bar the reduction rate is just 42% [31]. It has been found that there exists a critical injection
pressure of 15 bar beyond which the spray angle and drop sizes become practically independent of the
pressure [32].

The geometrical parameters of the atomizer, such as the exit diameter of the swirl chamber (dn)
and its length (l0), the swirl chamber diameter (Ds) and its length (Ls), the atomizer characteristic (A)
and inlet tangential cross sectional area (Ft), have direct effects on the swirling motion inside the swirl
chamber and consequently are characteristics of the atomization process [33,34]. Chen et al. studied
the influences on drop sizes of the ratio of length to swirl chamber diameter (Ls/Ds) the number of feed
slots, the injection pressure, and the liquid’s viscosity, and concluded that an increase in the Ls/Ds ratio
and liquid viscosity decreases the swirling motion [35]. The relation Ls/Ds should be low to minimize
any friction loss. However, the swirl chamber should be designed with a proper height to separate the
streams flowing out through the liquid inlet ports. For many designs, an Ls/Ds ratio ranging from 0.5
to 1.0 is assumed, although it was suggested that higher values of Ls/Ds, up to 2.75, might improve
atomization [36]. Observations have indicated that the D32 decreases discernibly and continuously
with decreasing l0/dn, with the effect on D32 in the range of 0.4–2.82 µm [37]. The drop diameters also
diminished with a reduction of the inlet port area (Ft) [38]. The length of the tangential channels (lt) of
the swirl chamber also affects the characteristics of the atomizer. Short inlet channels are not effective
and, if the channel is not long enough, the flow cannot be tangential, and will instead deflect to the axis
of the swirl chamber. This deflection will decrease the momentum, increase the discharge coefficient,
decrease the spray angle and diminish the quality of atomization. It may be concluded that beginning
from lt/dt > 2, the value of the discharge coefficient and spray angle remains constant, where dt is the
diameter of tangential channels [39].

Another geometrical parameter is the convergence angle α of the swirl chamber. Considerable
research findings indicate that the convergence angle has an inverse effect on performance parameters,
with film thickness and discharge coefficient increasing with the increase of angle α. Increasing the
angle of the swirl chamber to the nozzle from 60◦ to 90◦ increases the nozzle discharge coefficient
from 0.3 to 0.35. That said, in cases when the spray angle is smallest and the film thickness is largest
at a convergence angle of 90◦, this geometry might be preferred as it is easier and less expensive to
manufacture compared to a geometry with a smaller convergence angle [40].
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The atomization of liquid by a mechanical atomizer can be improved by introducing a swirl-air
component. Air-assisted atomizers have many advantages due to their ability to work at relatively low
fuel supply pressures and to produce finer spraying. Rizkalla and Lefebvre reported that D32 becomes
smaller with the increase of air velocity, air/liquid ratio, and air density [41]. Fraser et al. found that the
air-to-liquid mass flow ratio has little effect on D32 for ratios exceeding 1.5 [42]. Those investigations
describe a two-phase atomizer, in which after the pressurized liquid exits from the chamber the air is
delivered as spray through the radial channels. When the vane angle is 45◦, it was shown that the
air-pressure drop has little effect on droplet size, if the drop in pressure exceeds 0.02 bar. However,
the droplet diameter decreases drastically when the air pressure drop grows from 0 to 0.02 bar [43].
An analysis of the operational parameters of two-phase atomizers shows that the air supply pressure is
2 bar and above. For example, the atomizer of the JS company operates at 2.2 bar, that of the PNR
company at a range of 2–4 bar, that of the Lechler company at 2 bar, that of Armstrong at 9.3 bar,
and that of Optiquide Ltd between 6 and 8 bar. It should be noted that the compressed air supply
pressure has the main effect on the energy consumption of the two-phase atomizers. Development of
an atomizer for liquid fuel spray that will operate in a wide range of flow rates and low inlet pressure
will reduce the energy consumption in microturbines and other generators.

The current work is a study of our mechanical atomizer with optimized geometric parameters,
conducted as the first stage of the research, followed by an investigation of the utility of adding to
the system an air supply through a swirl chamber having tangential channels of various diameters.
The effect of the interaction of the liquid spray with the swirling air is investigated while changing the
various operational and geometrical characteristics of the atomizer.

2. Materials and Methods

2.1. Mechanical Atomizer

The mechanical atomizer design is presented in Figure 1a. The atomizer is comprised of a swirl
chamber with tangential ducts made in separate bush {2}. The bush is installed in the body {1} with the
output nozzle of the chamber sealed from the inlet cavity by an o-ring {4} and compressed by the bush
{2}. The water is supplied to the atomizer through a nosepiece {3}.
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The characteristics of the liquid sheet emanating from the atomizer depend on the geometrical
parameters of its swirl chamber. These can be expressed in dimensionless form as atomizer characteristic
A, and defined as [39]:

A =
R·rn

n·r2
in

(1)

where rn is the radius of the discharge nozzle (Figure 1a), R is the swirl radius, rin is the radius of the
tangential inlets (Figure 1c), and n is their number. The characteristic A is usually defined as the ratio
of the axial flux of angular momentum to the axial linear momentum flux, which in this case is closely
approximated by A = Ut/Uax, where Ut and Uax are the liquid tangential and axial velocities at the
nozzle exit. According to the theory of the centrifugal nozzle, the impact of characteristic A on the
velocities’ ratio is considerable up to the values of A = 2.5–4, after which the rise in A has little effect on
the liquid’s flow rate coefficient and spray angle [39]. Increasing it further leads to rising hydrodynamic
losses in the swirl chamber due to the friction of the flow against the end surfaces, which also lowers
the ratio between the tangential and axial velocities, increases the flow rate coefficient, and diminishes
the spray angle. Hence, for an available value of inlet pressure, the geometry of the above-listed
parameters must be set so as to provide for the highest value of tangential velocity, while reducing the
diverse hydrodynamic losses. In view of the above, the geometrical parameters of the experimental
atomizer were optimized at the following values: R = 2 mm, Ls = 1.5 mm, rn = 0.4 mm, rin = 0.25 mm,
n = 4, A = 3.2. This geometry was adopted in order to provide a water flow rate of mw ≈ 2.0 × 10−3–2.5
× 10−3 kg/s with a supply pressure of 2 bar. In the atomizer we developed, Ls/Ds was equal to 0.3, l0/dn

= 2, lt/dt = 2, and the convergence angle α of the swirl chamber was equal to 90◦.

2.2. Air-Assisted Atomizer

The design of the air-assisted atomizer is shown in Figure 2. The atomizer consists of a mechanical
atomizer with a swirl chamber {1} and bush {7}, and with tangential channels for introducing air at the
exit of the mechanical atomizer. Water enters the swirl chamber from collector C through the tip {9}
and the radial channels {10}.
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Figure 2. Design of an air-assisted atomizer. (a) Atomizer assembly: 1—swirl chamber, 2—grooves,
3—nozzle, 4—body, 5, 11—sealing ring, 6—nut, 7—bush, 8—adapter, 9—tip, 10—radial channels.
(b) Cross section of the air swirl chamber.

This design, with the output channel of the mechanical atomizer positioned as a separate part {3},
is meant to create the possibility of changing the diameter of the swirl chamber outlet nozzle so as
to study the effect of various channel diameters on spray quality. The swirl chamber has a nozzle {3}
pressed to the edge of the body {4} by nut {6}, with the cavity sealed with a ring {5}. Body {4} holds in
place the swirl chamber {7} installed in the adapter {8}. The swirl chamber {7} is of an open design and
contains four tangential channels (Figure 2b). The region for installing the swirl-air chamber {7} is
sealed with a ring {11}.
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The tangential ducts of the swirl chamber in the mechanical atomizer take the form of two grooves,
of width b and the depth h (Figure 3a,b); the water is subsequently let out via the channel with diameter
dn (Figure 3c) in the nozzle (Figure 2a—3).
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To obtain an optimal geometry for the mechanical atomizer, the diameter of the swirl chamber Ds

was set to be 4 mm, the width of the grooves (equal to 2) b = 0.5 mm, depth h = 0.4 mm, the swirl radius
R = 1.65 mm, and the outer diameter De = 6 mm (Figure 3). The height of the swirl chamber was set
at Ls = l1 + l2 = 2 mm. The nozzle exit channel was set to have diameters dn = 0.6 and 0.8 mm, and
length l0 = 2 mm. At these dimensions, the parameters were Ls/Ds = 0.5; l0/dn = 3.3 (dn = 0.6 mm) and
2.5 (dn = 0.8 mm); lt/b ≈ 2. The convergence angle of the swirl chamber was α = 90◦. In line with the
derivation of geometrical dimensions of Equation (1), it was determined that A = 3.88, with a nozzle
exit channel dn = 0.6 mm, and A = 5.18 with dn = 0.8 mm. The air swirl chamber was adjusted to
have diameter Da = 7 mm and tangential channels (n = 4) dt = 1.8, 2 and 2.4 mm and Ra = 2.2 mm
(Figure 2b). The geometrical characteristics Aa of an air swirl chamber are as follows: Aa = 2.4 at
dt = 1.8 mm; Aa = 1.9 at dt = 2 mm; and Aa = 1.34 at dt = 2.4 mm.

2.3. Experimental Setup and Methodology

Atomization parameters were measured by the TSI application software (TSI Inc., Co, Shoreview,
MN, USA), which is part of the TSI phase Doppler particle analyzer/laser Doppler velocimeter
(PDPA/LDV) system. PDPA is an optical technique based on an LDV, which allows simultaneous
measurement of sizes and velocities of spherical particles by use of a coherent laser beam. The basics
of the TSI PDPA/LDV measurement system are described elsewhere [44,45].

The experimental set-up is presented in Figure 4. Measurements of spray characteristics were
carried out 50 mm downstream from the atomizer tip with 5 mm steps perpendicular to the spray cone
diameters. According to Valencia-Bejarano et al., a distance of 50 mm is sufficient to form droplets but
not sufficient to affect droplet size by coalescence [46]. The system automatically measured the drop
diameters, after entering the measurement volume, which is less than 10−3 mm3. The spray angle was
measured based on the liquid flux distribution and digital photographs.

The atomizer’s water and air flow rates were obtained in the tests, as well as histograms for the
drop diameter distribution under inlet water pressure values of Pw = 2–7 bar in the experimental
mechanical atomizer. During the experiment with the two-phase atomizer, the presented characteristics
were obtained with a water pressure of 2–3.5 bar and air supply pressures of 0.35, 0.7 and 1 bar.

The resulting data were used for calculation of the mean D32 drop diameter, defined by the
following relation:

D32 =

∑N
i=1 D3

i∑N
i=1 D2

i

(2)



Micromachines 2020, 11, 584 6 of 15

Here, D32 is the Sauter mean diameter, which gives the mean diameter value in terms of the
volume/surface ratio.Micromachines 2020, 11, x FOR PEER REVIEW 6 of 16 
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3. Results and Discussion

3.1. The Mechanical Atomizer

The mechanical atomizer was designed to have optimal geometrical parameters, taking into
account data from numerous publications regarding the minimal value of the flow coefficient and thus
providing a high-quality liquid spray. Using the test results the flow rate coefficient (Cd) was calculated
by Equation (3) [39]:

Cd =
Qw

πr2
n

√
2
ρw

Pw

(3)

where Qw is water volume flow rate (m3/s), Pw is the inlet water pressure (Pa), ρw is the water density
(kg/m3), and rn is the radius of the discharge nozzle (m). In the atomizer test, under an inlet water
pressure of Pw = 5 bar, a flow rate of 3.5 × 10−3 kg/s was obtained; the flow rate coefficient was Cd
= 0.22. This value of the coefficient was compared to the value that was estimated empirically by
Equation (4) [27]:

Cd = 0.35·
( Ft

Ds·dn

)0.5
·

( Ft

dn

)0.25
(4)

where Ft is the inlet tangential cross sectional area (m2), dn is the exit nozzle of the swirl chamber (m)
and Ds is the diameter of the swirl chamber (m). The received flow coefficient Cd from Equation (4) is
equal to 0.244. The experimental value of Cd is lower than the empirical value, which attests to the
optimal choice of the atomizer’s geometrical parameters (with minimal hydrodynamic losses and the
high possible ratio between the tangential and axial velocities).

Atomization can be represented by the widely used Weber number (We), which estimates when
the liquid jet is likely to break up (Equation (5)).

We =
ρaUrdn

σ
(5)
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where Ur is the relative velocity between the liquid jet and ambient (m/s), ρa is the air density (kg/m3),
dn is the exit nozzle of the swirl chamber (m), and σ is the surface tension (kg/s2). Taking into account
the value Ur equal to 31.6 m/s at Pw = 5 bar, We = 14 is considered as favorable condition for the liquid
jet break-up (We must be� 1. The inlet ports Reynolds number is defined as:

Re =
Uin·2rin

ν
(6)

where Uin is the water velocity in the tangential ports (m/s), rin is the radius of the tangential ports (m),
and ν is the water viscosity (kg/m·s).

U =
Qw

4π·r2
in

(7)

Changing pressure in the diapason of 2–7 bar, the Reynolds number is in the range of 1.4 × 104–2.6
× 104. For the given Reynolds numbers, the length of the input ports (lt/dt = 2) is sufficient to completely
fill it [38].

The distribution of drop diameters of the mechanical atomizer are presented in Figure 5. At a
pressure of 2 bar, the D32 of the water drops on the torch axis was 80 µm. As the distance from
the axis of the torch to its periphery (the radius) was increased, the drop diameter rose to 110 µm.
Under increased water pressure the drop diameter in the paraxial zone of the torch decreased, as has
been noted by many researchers, and was 58 µm at Pw = 3 bar, 48 µm at Pw = 4 bar, 40 µm at Pw = 5 bar
and 37–32 µm at Pw = 6–7 bar. But in the peripheral zone the decrease in the atomized drop diameter
as the pressure increases was less significant.
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Figure 5. Distribution of D32 drop diameters over the radius of the spray torch.

Experiments that were carried out with a Danfoss company atomizer at a water pressure of
Pw = 8 bar yielded spray particle diameters of D32 equal to 60 µm with radius R = 0, and 115 µm
with R = 10 mm, while at Pw = 13 bar the spray particle diameters were 40 and 50 µm, respectively.
Rashad et al. investigated the influence of certain geometric ratios of swirl chamber parameters on
drop diameters. The authors obtained D32 equal to 60–70 µm at the supply pressure of Pw = 8 bar,
and 50–60 µm at Pw =12 bar [30]. It must be noted that, according to Xue et al., 58% of the pressure drop
converts into the kinetic energy of the rotational motion in the swirl chamber, an energy loss which
includes both hydraulic loss and friction loss [40]. Consequently, optimization of the atomizer swirl
chamber geometry can significantly improve the quality of the spray. In addition, the D32 drops of the
developed mechanical atomizer were calculated using empirical Equation (8) [27] and Equation (9) [47]:

D32 = 2.25σ0.25µ0.25
l m0.25

l ρ−0.25
g ∆P−0.5

l (8)
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D32 = 4.4σ0.6µ0.16
l ρ−0.16

l m0.22
l ∆P−0.43

l (9)

For example, at Pw = 5 bar the D32 according to Equations (8) and (9) were expected to be 64
and 82 µm, respectively. The difference between the empirical and measured results is due to several
reasons. First is the limited region in which the PDPA measurements were taken. Droplets can
experience secondary breakup and produce smaller droplets further downstream, beyond the range
of the physical apparatus at our disposal. Additionally, since the physical phenomena involved in
atomization processes are not fully understood, the empirical correlations cannot fully represent the
physical principles determining the droplet formation process. Finally, these empirical models were
developed based on fuel spray measurements in high pressure conditions such as engine combustion,
whereas in our study the sprays operate at a much lower pressure, thus some deviation is inevitable.
It must be noted that the D32 drops in the pressure range of 2–5 bar on the torch axis decrease by 50%,
but in the range of 6–7 bar they decrease only by 13.5%. Therefore, when using an atomizer with the
optimal geometrical dimensions as we have stated, the fluid supply pressure should be limited to 5 bar.

The standard histograms for the distribution of drop diameters and velocities in the paraxial zone
(R = 0) are presented in Figure 6. As can be seen from the data obtained, the peak of the histogram
occurs within 15–25 µm. This is in accordance with the finding of Chang et al. [48], who reported that
the smaller drops are mostly confined to the core regions of the spray. The larger drops, more than
40 µm, occupy the peripheral part of the spray.
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The droplets’ axial velocity distribution helps to facilitate the expansion of the spray, and the
diffusion to the ambient air, which is more intense in the downstream region of the spray where it
promotes turbulent mixing. In Figure 7 the change in axial drop velocity is shown for pressures of 2
and 3 bar, where bigger drop diameters are produced, and for pressures 6 and 7 bar, where smaller
drop diameters are produced.

As can be seen from these measurements, in the cross section at 50 mm downstream from the
nozzle, most droplets have a velocity ranging from 3 m/s to 5.5 m/s. This figure also illustrates
that droplets of different sizes at various locations, can have the same velocities depending on their
trajectory. However, most of them are in a speed range that gives them sufficient momentum to
penetrate the surrounding medium. A higher water supply pressure, together with smaller droplets
(pressure 6–7 bar), yields higher velocities because of their larger drag-to-momentum ratio. The initial
discrepancies between the velocities of various sizes drops are preserved over the entire jet torch
cross section.

The generated spray of a cone-shaped pattern of volume flux is illustrated in Figure 8, which is
characterized by the high concentration of water drops at the edges of the spray cone and low
concentration in the central part of the spray.

It is essential to know the spatially distributed flux density of a mechanical atomizer for the design
of a spray system. These measurements are complementary to the drop size, the coefficient of discharge
and the spray cone angle. From the obtained data shown in Figure 5, the smallest drops are located
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in the central part of the spray cone. These small-sized drops have a large surface/volume ratio, and
evaporate more quickly than the larger ones, which is why the central part of the spray has a low drop
concentration. The volume flux in the central part is at a minimum and decreases with increased water
pressure, which yields the smallest drop sizes. For example, the volume flux in the central part was
0.007 cm3/(cm2

·s) at Pw = 5 bar, and 0.032 cm3/(cm2
·s) at Pw = 2 bar. Because large drops evaporate with

relative difficulty and hence accumulate at the edge of the spray, the bigger flux volume is concentrated
on the jet periphery, as is shown in Figure 8. In the peripheral region the jet volume flux is equal to
0.075 cm3/(cm2

·s) at Pw = 2 bar, and 0.106 cm3/(cm2
·s) at Pw = 5 bar. Additionally, the spray angle

slightly increases with increased water pressure, as seen in Figure 9, and is in the range β = 65◦–78◦.Micromachines 2020, 11, x FOR PEER REVIEW 9 of 16 
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3.2. The Air-Assisted Atomizer

To obtain small diameters of liquid droplets at low supply pressures, a gas flow is introduced into
the atomizer. In our studies, a liquid atomizer with an optimal geometry was installed at the first stage
for liquid spraying. At the second stage the effluent conical jet interacts with the air flow which is
introduced through the tangential channels of the swirl chamber. The test results of the mechanical
atomizer that provides preliminary water spray in the air-assisted atomizer with different exit nozzle
diameters dn = 0.6 mm and 0.8 mm are shown in Figure 10.
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Figure 10. Water flow rate characteristic of the mechanical atomizer.

The flow rate coefficient Cd of the mechanical atomizer, calculated by Equation (3), was equal to
0.27 and 0.19 with the nozzle diameters 0.6 mm and 0.8 mm, respectively. With the air flow, using
a channel diameter of 0.6 mm, the value of A was higher than the value was without the air flow
(3.88 vs. 3.2). The calculated value of Cd in the presence of air flow was actually higher, though we
expected it to be lower. This is explained by a significantly larger value l0/dn (3.3 and 2.5), leading to an
increase in hydraulic losses, which corresponds to the data obtained in [32,38]. The Reynolds number
(Equation (6)) for flow from the exit nozzle at operating parameters was in the range 8.5 × 103–1.1 ×
104 for diameter dn = 0.6 mm and 1.1 × 104–1.5 × 104 for dn = 0.8 mm. The values of coefficient Cd
for these test variants were also determined in accordance to Equation (4) and found Cd = 0.23 for
dn = 0.6 mm, Cd = 0.185 for dn = 0.8 mm, which approximates to the experimental data.

Air flow rate characteristics of the swirl chamber are shown in Figure 11.
The test results show that the air flow rate through the swirl chamber is determined not only by

its supply pressure and the diameter of the tangential channels, but also by the operating parameters
of the mechanical atomizer. This can be explained by the influence of the torch angle of the liquid jet
and its energy, which, when interacting with the air flow at the outlet of the tangential channels, has a
certain resistance to its flow. For example, at Pa = 1 bar and in a mechanical atomizer with a diameter
of the exit nozzle of dn = 0.6 mm at Pw = 2.5 bar, the air flow rate was 2.2 × 10−3 kg/s (dt = 1.8 mm).
Using these operating conditions for the air swirl chamber but with mechanical atomizer parameters
set at dn = 0.8 mm and Pw = 3.2 bar, the air flow rate was 1.95 × 10−3 kg/s (−11.5%). At dt = 2 mm,
Pa = 0.7 bar and for a mechanical atomizer with dn = 0.6 mm, water supply pressure Pw = 2.6 bar,
the air flow rate was 1.88 × 10−3 kg/s, but when the nozzle was set to dn = 0.8 mm and Pw = 2.7 bar the
air flow rate was 1.73 × 10−3 kg/s (−8%). As can be seen from Figure 11, increasing the diameter of the
nozzle dn reduces the air flow rate. This corresponds to the influence of the liquid jet torch angle which
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is determined by the geometrical characteristic A. According to theory [39], the torch angle β increases
with increasing the characteristic A:

tgβ/2 =
2Cd·A√(

1 +
rϕ

dn/2

)2
− 4C2

dA2
(10)

where rϕ is a cavity zone radius (mm) and equal rϕ = dn/2
√

1−ϕn.
The ϕn is determined by:

A =
(1−ϕn)

√
2

ϕn
√
ϕn

(11)

This is in accordance with the calculation for amechanical atomizer with dn = 0.6 mm β/2 = 48◦,
with dn = 0.8mm β/2 = 62◦. Thus, an increase in the jet torch angle at the exit of the mechanical atomizer
reduces the air flow rate.
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Introducing swirling air flow at the exit of the mechanical atomizer affects the radial velocity
component. This effect should lead to a widening of the spray cone angle and have a significant
influence on the drop size. The spay torch angle of the air-assisted atomizer increases to β = 90◦–95◦

and is shown in Figure 12.
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One of the parameters determining spray quality in the air-assisted atomizer is the air to water
flow ratio (ALR). The distribution drop sizes of some versions of the atomizer assembly are given in
Figure 13.
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(a) dt = 2.0 mm, dn = 0.6 mm, ALR = 0.69, Pw = 2.5 bar, Pa = 0.35 bar; (b) dt = 2.0 mm, dn = 0.6 mm,
ALR = 1.19, Pw = 3 bar, Pa = 1 bar; (c) dt = 2.4 mm, dn = 0.8 mm, ALR = 0.67, Pw = 2.5 bar, Pa = 0.35 bar;
(d) dt = 2.4 mm, dn = 0.8 mm, ALR = 0.97, Pw = 2.9 bar, Pa = 1 bar.

As can be seen from Figure 13, the introduction of a swirling air flow at the exit of the jet from the
mechanical atomizer significantly reduces the diameter of the droplets, even at low supply pressures for
water and air. Moreover, with an increase in ALR, the diameter of the droplets decreases to 20–30 µm.

The dependence of D32 water drop diameters on the ALR of an operating air swirl chamber
that has various tangential channels and that uses a mechanical atomizer equipped with various exit
nozzles is shown in Figure 14.

Installing the air swirl chamber substantially decreases drop sizes, as these are affected by the
energy of the air. For all ranges of values of ALR = 0.47–1.25 and Pw = 2–3.4 bar, the D32 drops were
in the range of 25–48 µm respectively (using only the mechanical atomizer, the D32 ranged from 58
to 110 µm at Pw = 2–3 bar). The test results show that the geometrical characteristic of the air swirl
chamber (Aa = 1.34–2.4) does not exert a considerable influence upon atomization quality. At the same
time, the geometrical characteristic A of the mechanical atomizer does influence the results via the
quality of the preliminary atomization. Thus, a mechanical atomizer with A = 5.18 (dn = 0.8 mm) has all
the necessary prerequisites for producing more finely dispersed water atomization. For example, the
D32 drop diameters equal to 35 µm at ALR = 1.13 were obtained in the test with the air swirl chamber
when the tangential ducts were set at dt = 1.8 mm and the nozzle diameter at 0.6 mm; but with the
nozzle diameter set at dn = 0.8 mm, results were D32 = 30 µm at ALR = 0.8 (Figure 14). In the test with
the air swirl chamber with tangential channels diameter dt = 2 mm and nozzle dn = 0.6 mm, the D32

drop diameter was equal to 48 µm at ALR = 0.69, while with the nozzle set at dn = 0.8 mm, D32 = 45 µm
was obtained at ALR = 0.54. It must be noted that in the test of the air-assisted atomizer in [49], D32 of
40–35 µm was obtained at ALR = 5–9.

Finally, it should be noted that an air supply pressure of over 1 bar does not have a significant
influence upon the quality of atomization. This two-phase atomizer provides small diameters of
spray droplets at significantly lower air supply pressures than two-phase atomizers of well-known
companies. Since the compressed air supply pressure has the main effect on the energy consumption



Micromachines 2020, 11, 584 13 of 15

compared to liquid pressure, the use of this atomizer will reduce the energy cost. Consequently, we are
able to recommend an air and water flow rates ratio setting of ALR ≈ 1.
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4. Conclusion

The possibility of improving liquid atomization by using a mechanical atomizer and introducing
an air-assistance component has been investigated. We have shown that with optimization of the
atomizer’s geometric parameters, it is possible to obtain drop diameters of D32 = 80 µm at a water
supply pressure of Pw = 2 bar, and D32 ≈ 40 µm at Pw = 4–5 bar. In this design variant, further increases
in pressure beyond 5 bar do not, practically speaking, influence the atomization quality.

This high-quality atomization was obtained with a low consumption of energy by using an
air-assisted component, with the mechanical atomizer optimized for its geometric parameters installed
as the first stage for preliminary spray of the water, and with a swirl air flow interaction supplied at low
pressure as the second stage. Results obtained from the experimental test produced drop diameters
of D32 = 20–30 µm at the water pressures of 2.5–3 bar and air-supply pressures of 0.35–1 bar, and at
ALR ≈ 1. The drop diameters decrease if the ALR is increased. Further increasing air-supply pressure
beyond 1 bar does not result in significant decreases in water drop diameters. The supply of an air
flow increases the spray torch angle to 90◦–95◦.

From this study’s results, it can be seen that the micro-droplet atomizer works in wide range
of flow rate and low inlet pressure of liquid and gas. This suits for development of liquid fuels
micro-turbine and other generator systems.
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