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Abstract: Chitosan (CS) is one of the commonly affluent polysaccharides that are attractive biomaterials
as they are easily found in different organisms and are biocompatible. An environment-friendly
multi-bit biomemory was successfully achieved on the basis of CS as a favorable candidate for
resistive-switching memory applications. By incorporating graphene oxide (GO) into CS, the multi-bit
biomemory device (indium tin oxide (ITO)/CS:GO/Ni) was obtained through the solution-processable
method, which had a high current ratio among a high, intermediate, and low resistance state as well
as a low SET/RESET voltage. GO acting as trapping sites in the active layer might be responsible
for the biomemory mechanism. This research opens up a new avenue towards renewable and
environmentally benign CS-based materials for biodegradable electronic devices.
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1. Introduction

Resistive-switching memory devices, originated from the beneficial properties like high density,
large scalability, low power consumption, and high endurance and retention performance, have emerged
as promising candidates for future high-performance nonvolatile data memory [1,2]. They mostly
perform binary digital data storage by encoding “0” and “1” as a high and low resistance state
(HRS and LRS) in response to an applied external electric voltage, substituted for flash memory and
dynamic random access memory (DRAM). Nevertheless, the memory capacity on the basis of electrical
bistability is limited at 2n. A promising method to enhance the data storage capacity is by promoting
the number of conductive states in memory devices to 3 or higher [3,4]. For next-generation ultrahigh
density and high-speed biomemory, multi-bit resistive-switching biomemory devices can be seen as
promising building blocks.

Si-based electronic devices have dramatically extended approaches in the domain of high-speed
computers, high-efficiency photovoltaic cells, and portable consumer electronics [5–9]. As their
operating lifetime gradually becomes shorter, not only a rapid depletion of natural and nonrenewable
resources, but also a generation of large amounts of electronic waste with toxic or nondegradable
materials has become ubiquitous nowadays. Hence, there is a great demand of sustainable
biomaterial electronics. Biological polymers offer novel opportunities for nonvolatile memory
by virtue of their biocompatibility, environmental benignity together with sustainability [10–13].
Biomaterial-based passive or active components in biocompatible and biodegradable devices
revolutionize state-of-the-art electronic devices and systems that currently have counted on conventional
semiconductor technologies [14,15].
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Chitosan (CS), obtained from deacetylation of chitin, is the second most abundant element after
cellulose. Its hydrophilic, biocompatible, moldable, biodegradable, nontoxic, cheap, good absorbent,
and renewable properties contribute to applications in medicine, pharmaceutical industry, food
production, plant growing, and chemical engineering [16]. Graphene oxide (GO), with functional
groups on its basal planes and edges, is a layered material consisting of hydrophilic oxygenated
graphene sheets. Apart from that, the amino and hydroxyl groups in CS are treated as reaction sites to
GO in adsorption studies and biosensor applications [17,18]. This contribution was to prepare CS:GO
nanocomposite films by a simple spin casting method to avoid sophisticated instruments or vacuum
filtration techniques. Amino groups of CS become polyelectrolytic by carrying R-NH3+ in the solution,
which result in a cathodic biopolymer [19]. CS, however, is a poor conductor [20].

Biomemory devices on account of biocompatible materials, such as ferritin, cellulose, and DNA,
typically exhibit binary resistive-switching behavior [21]. Multi-bit biomemory behaviors based on
CS, however, have never been reported [19,22]. Herein, a multi-bit biomemory device (indium tin
oxide (ITO)/CS:GO/Ni) was first successfully manufactured. Compared to the binary device with the
memory capacity of 2n, the ternary biomemory capacity can reach up to 3n. The multi-bit memory
performance based on CS:GO nanocomposites was achieved by varying chemical component ratios.
The following reasons suggest that our choice (CS:GO nanocomposites) for biomemory behaviors is
feasible. (1) CS is an insulator in the native state. An appropriate amount of GO in the CS matrix
can play a role in charge-trap elements to tune the conductivity of the film. (2) Abundant carbonyl
and hydroxyl groups in carboxylated CS qualifies it to be water-soluble, which then allows for easy
device processing. (3) Existence of amino and hydroxyl groups in CS can absorb GO, which will
facilitate the charge transfer. (4) CS can be easily processed as uniform and stable films under normal
conditions in air. Apart from a simple fabrication process, the proposed device features outstanding
resistive-switching properties and reliability. As for biomemory materials, CS:GO nanocomposites are
more advantageous for multi-bit data storage. Advances render CS:GO nanocomposites suitable for
applications in next-generation high-density green data-storage devices and biointegrated electronics.

2. Materials and Methods

Multilayers of GO (black powder) were purchased from Tanfeng Tech. Inc. (Suzhou, China) when
carboxylated CS (Mn = 48 kg/mol and a degree of deacetylation = 90 mol%) with molecular formula
(C6H11NO4)n was purchased from Aladdin (Tianjin, China). For the manufacture of biomemory
devices, CS:GO nanocomposite solutions (5 mg/mL) with a concocting mass ratio between chemical
components (2:1, 5:1, and 10:1, w/w) were homogeneously prepared in deionized water by ultrasonic
vibration for 24 h. The substrates were precleaned by a sonication-aided washing process that included
the following steps: acetone for 1 h → absolute alcohol for 1 h → deionized water for 40 min →
drying in an oven at 40 ◦C for 30 min. At ambient temperature, biomemory devices were fabricated by
subsequent steps. The nanocomposite solution was spun onto the precleaned glass slide coated with
an ITO layer (the square resistance Rsq ≤ 6 Ω/sq, 185 nm thick, transmittance ≥84%), during which
the spin casting method was employed at a speed of 5000 rpm for 60 s. The spun films were dried
on a hot plate at 60 ◦C overnight to remove the residuals of deionized water. The thickness of the
obtained CS:GO nanocomposite films (~30 nm) was determined by NanoMap 500LS (3D Profilometer
aep Technology, Santa Clara, CA, USA). With a shadow mask, Ni electrodes were eventually deposited
onto nanocomposite films (coated on the substrates) by means of thermal evaporation at pressure
approaching 10−5 Torr. The top metal electrodes were determined to have a thickness of 200 nm and a
size of 1.0 × 1.0 mm2.

Techniques like scanning electron microscopy (SEM), fourier transform infrared (FTIR)
spectroscopy, Raman spectroscopy, and thermogravimetric analyses (TGA) were implemented to
characterize the morphological, structure, and thermal properties of CS:GO nanocomposites. Both
morphological and cross-sectional profiles of the CS:GO nanocomposite films were implemented
by Apreo Scanning Electron Microscope (Themoscientific; Waltham, MA, USA). FTIR spectroscopy
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(Foss DS 2500 Infrared Spectrometer; Munkedal, Sweden) using KBr pellets were carried out, sweeping
from 400 cm−1 to 4000 cm−1. Raman spectroscopy (Horiba Jobin Yvon; Villeneuve-d’Ascq, France)
equipped with a 532 nm laser was employed to achieve the structure information of CS:GO
nanocomposites, scanning from 100 cm−1 to 3200 cm−1. Furthermore, TGA (TA Instruments; New
Castle, DE, USA) was utilized to analyze thermal properties of CS:GO nanocomposites at a heating
rate of 10 ◦C/min under N2 of 100 mL/min. X-ray Diffraction (XRD) of GO powder was tested by
X’Pert PRO XRD meter (Panalytical, Almelo, Finland) with Cu Kα radiation (wavelength = 1.540598 Å).
The scan was taken in the 2θ range of 5◦–30◦ with a scan step size of 0.0131303◦/mm. HR-TEM images
for GO were characterized by a JEM-2100 TEM (JOEL; Tokyo, Japan) operated at 200 kV. The electrical
measurements were fulfilled by a semiconductor parameter analyzer (Keithley 4200SCS; Solon, OH,
USA). All electrical experiments were conducted without any device encapsulation. The device was
initially scanned from 0 V to 6 V (1st sweep) and then scanned once more (2nd sweep), which was
followed by a reverse scan from 0 V to −6 V (3rd sweep). Next, the succeeding step repeated it (4th
sweep). The top Ni electrode was grounded as the bias voltage was applied to the bottom ITO electrode.

3. Results

3.1. Characterization of CS:GO Nanocomposites

As exhibited in Figure 1a, a CS:GO nanocomposite film with ternary biomemory performance
is sandwiched between an ITO bottom electrode and a Ni top electrode (i.e., ITO/CS:GO/Ni).
The cross-sectional profiles of these three CS:GO nanocomposite films with a distinct weight ratio of
2:1, 5:1, and 10:1 (w/w), respectively, present a layered structure of GO (Figure 1b–d) with a thickness of
roughly 30 nm. The reason for better compatibility between CS and GO is that amino and carboxyl
groups in CS can be used to form hydrogen bonding with a variety of oxygen-containing groups in GO
and simultaneously inhibit the aggregation of GO [23–26]. The morphological observation (Figure 2)
without agglomeration illustrates that more content of GO brings about more wrinkled nanocomposite
film. The strong p–p stacking within GO is responsible for it [25,26]. It indicates that GO is well
dispersed in CS, which is beneficial for the use of wrinkled surfaces for this application. For further
insight into the wrinkled surface of CS:GO nanocomposite films, the GO aqueous solution (5 mg/mL)
was spin-coated onto the glass substrate with ITO layer for which the SEM images of the GO film
(Figure 3) were employed to confirm that GO was responsible for the wrinkled surface of CS:GO films.
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Figure 2. Scanning electron microscopy (SEM) images of the morphology for CS:GO nanocomposite 
films with the chemical component ratio (a–c) 2:1, (d–f) 5:1, and (g–i) 10:1 w/w, respectively, in terms 
of distinct magnification 10,000×, 40,000×, and 100,000×, respectively. (HV: 20 kV, WD: 10.4 mm, 
dWell: 5 μs). 

Figure 1. (a) Chemical structure of carboxylated chitosan (CS) and graphene oxide (GO) and sandwiched
structure of ITO/CS:GO/Ni (right); (b–d) the cross-sectional profiles of CS:GO nanocomposite films
coated on the ITO/glass substrates with a mass ratio of the chemical component CS:GO 2:1, 5:1,
and 10:1, respectively.
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Figure 2. Scanning electron microscopy (SEM) images of the morphology for CS:GO nanocomposite
films with the chemical component ratio (a–c) 2:1, (d–f) 5:1, and (g–i) 10:1 w/w, respectively, in terms of
distinct magnification 10,000×, 40,000×, and 100,000×, respectively. (HV: 20 kV, WD: 10.4 mm, dWell:
5 µs).
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Figure 3. (a–c) SEM images of the morphological GO film in terms of distinct magnification 10,000×,
40,000×, and 100,000×, respectively. (HV: 20 kV, WD: 10.4 mm, dWell: 5 µs).

FTIR spectroscopy was applied to examine the chemical composition of GO, CS, and CS:GO
nanocomposites. The spectra of CS and its blends were similar since they were polysaccharides
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(Figure 4). The characteristic peaks of pure CS included a N–H bending peak at 1590–1660 cm−1,
a bridge−O stretching peak at 1154 cm−1, and a C–O stretching peak at 1032–1094 cm−1. The vibration
of the OH group facilitated the peak at 3264 cm−1 when giving rise to the peak at 3270 cm−1 for all
CS:GO nanocomposites. Moreover, the peak at 1152 cm−1 stemmed from the vibration of the saccharide
structures that caused the peak at 1136 cm−1, 1135 cm−1, and 1152 cm−1 for CS:GO nanocomposites
with 2:1, 5:1, and 10:1 (w/w), respectively. Observed from the FTIR spectrum of GO, GO had a
variety of hydrophilic oxygen groups [27]. Among them, the peak at 3348 cm−1 was attributed to
the asymmetric telescopic vibration peak of the hydroxyl (O–H) when the telescopic vibration of
the carboxyl group (–COOH) brought about the peak at 1716 cm−1. The stretching vibration of the
undamaged carbon–carbon double bond (C=C) was attributed to the peak at 1621 cm−1. These results
suggested that both CS and GO could be spun together by this mixing system.
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For a characterization of the layered structure, TEM, XRD together with Raman spectroscopy
were performed. HR-TEM micrographs showed a two-dimensional (2D) multilayer structure of GO,
demonstrated in Figure 5a,b. The selected area electron diffraction (SAED) pattern obtained from
TEM is shown in Figure 5c. The formed diffuse ring pattern showed that GO was amorphous [23].
XRD pattern of GO (Figure 5d) showed the dominant peak at 10.8◦ with interlayer spacing (0.82 nm)
larger than pristine graphite (0.34 nm) owing to the addition of oxygen with functional groups [24].
The oxidation degree of GO could be calculated based on the XRD pattern [23,24].

For the Raman spectrum of CS (Figure 6a), the evaluation of CS predominately indicated peaks
of symmetric stretches of the C–O–C bond in the 850–900 cm−1 region owing to glyosidic bonds
while antisymmetric stretches of the C–O–C bond were identified in the 1060–1150 cm−1 region.
The peak at 1265 cm−1 indicated the stretch of the C−OH bond as the one at 1378 cm−1 resulted from
symmetrical CH3. Furthermore, the peak related to the symmetric bond of CH2 was exhibited at
1459 cm−1. The structural properties of GO and CS:GO nanocomposites were investigated through
Raman spectra as well (Figure 6b). All of the samples displayed the distinctive D band (~1350 cm−1)
and G band (~1590 cm−1), demonstrated in Table 1. The intensity ratio of D band to G band (ID/IG)
was in inverse proportion to the graphitization degree [28,29]. Compared with GO (ID/IG = 0.923),
all the nanocomposites had higher ID/IG values, which suggested that more defects were created in
CS:GO nanocomposites [30]. In the Raman spectra of GO and CS:GO nanocomposites, the 2D and D +

G Raman bands from 2690 cm−1 to 2950 cm−1 were observed for all samples. It implied the presence
of multilayers [31]. The 2D band was very sensitive to the stacking order of GO along the c-axis, and
thus, functioned to evaluate the structural parameters of c-axis orientation [23]. The D + G band was
only observed in samples with significant amounts of defects (trap sites) [32], which arose in all CS:GO
nanocomposite samples. Table 1 represents the graph change in Raman intensity ratio (I2D/IG) against
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samples as well. CS:GO nanocomposites showed a higher graphene stacking as observed in the growth
of the 2D band (I2D/IG was proportional to the number of graphene layers) [30].
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Table 1. Summary results of Raman analysis for GO and CS:GO nanocomposites.

D Band (cm−1) G Band (cm−1) 2D Band (cm−1) D + G Band (cm−1) ID/IG I2D/IG

GO 1347 1591 2703 2916 0.923 0.0567
CS:GO (2:1 w/w) 1351 1602 2697 2944 0.969 0.135
CS:GO (5:1 w/w) 1351 1604 2688 2942 0.954 0.0667

CS:GO (10:1 w/w) 1354 1607 2690 2943 0.953 0.0632

TGA and derivative thermogravimetry (DTG) of GO and CS:GO nanocomposites in N2 atmosphere
were carried out to study their thermal stability (Figure 7). The weight loss of GO started below 100 ◦C
upon heating, and the major weight loss of GO occurred (60%) at ~200 ◦C, since oxygen-containing
functional groups were pyrolyzed and released gases which resulted in rapid thermal expansion of
GO [33]. The TGA plot for GO revealed that there was a small residual weight of 6% after heating to
600 ◦C under N2 atmosphere. TGA and DTG curves for CS:GO nanocomposites were similar to that of
CS with three main decomposition stages. The first stage of thermal decomposition started from 44 ◦C
to 287 ◦C. This stage was originated from physically adsorbed water surface of the polymer. With a
maximum peak at 318 ◦C in the DTG curve, the second stage occurred between 287 ◦C and 400 ◦C,
and bore the final mass loss of 59.5%. It was bound up with the thermal degradation of the ether bond.
Furthermore, the third stage occurred between 400 ◦C and 600 ◦C, which might be correlated with the
degradation of volatile products of the material. It evidenced the good dispersion of GO in the CS
films, which corresponded with the characterization of SEM, FTIR, and Raman spectroscopy.
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3.2. Multi-Bit Biomemory Performance of ITO/CS:GO/N

I–V characteristics of ITO/CS:GO(2:1)/Ni were carried out at room temperature and measured
with limited current compliance up to 0.1 A (Figure 8a). That the current abruptly increased at a SET
voltage of 1 V (VSET1) leaded to the device turning from HRS to an intermediate resistance state (IRS),
whose process was denoted as SET1. It suddenly gave rise to a second current growth for the device
switching from IRS to LRS when the applied bias rose up to 2.75 V (VSET2). That could be regarded
as a SET2 process. Furthermore, the performance of the biomemory devices was preserved in LRS
during the voltage sweeping from 0 V to 6 V again. The current, when the negative bias was swept
from 0 V to −6 V, dramatically decreased at a bias voltage of −3.8 V (VRESET). A transition from LRS to
HRS for the device was displayed as a RESET process. In addition, the current proportion of HRS, IRS,
and LRS (IHRS/IIRS/ILRS) was estimated to be about 1:102:103 during the biomemory process.
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For ITO/CS:GO(5:1)/Ni (Figure 8b), IHRS/IIRS/ILRS was calculated to be nearly 1:10:102 when VSET1,
VSET2, and VRESET were 0.65 V, 2.95 V, and −5.1 V, respectively. As for ITO/CS:GO(10:1)/Ni (Figure 8c),
it also witnessed ternary resistive-switching behavior with the current ratio IHRS/IIRS/ILRS only close to
1:3:9, VSET1 = 0.9 V, VSET2 = 1.65 V, VRESET = −4.2 V. Obviously, the aforementioned devices showed
ternary resistive-switching behaviors for multi-bit biomemory application. A total of 100 consecutive
cycles for ITO/CS:GO(2:1)/Ni, ITO/CS:GO(5:1)/Ni, and ITO/CS:GO(10:1)/Ni were carried out under
ambient condition (Figure 9a–c). In this research, three different CS:GO nanocomposite compositions
(2:1, 5:1, and 10:1, w/w) were taken into account. Among them, the percentage of GO content is 33.3%,
16.7%, 9.1%, respectively. For extension on the discussion about the performance of the material as
biomemory concerning the GO content, more information of cycle-to-cycle statistical distribution for
the device in HRS, IRS, and LRS (Figure 10a–c and Table 2) were provided. It indicates that RHRS

and RIRS increase with incremental GO content in CS:GO nanocomposites. Figure 10d–f presents the
cycle-to-cycle statistical distribution of the switching voltage VSET1, VSET2, and VRESET. As indicated
by the normal fitting results, the biomemory devices based on CS:GO nanocomposites exhibited a
relative concentrated distribution of SET1, SET2, and RESET voltages. The concentrated value for
ITO/CS:GO(2:1)/Ni was separately 1.2 V, 2.2 V, and −4.2 V when that for ITO/CS:GO(5:1)/Ni was
separately 0.8 V, 1.5 V, and −4.6 V. Moreover, the centrality bias for ITO/CS:GO(10:1)/Ni was 0.8 V, 1.5 V,
and −4.4 V, respectively. Control experiments were elaborately conducted when an active CS layer was
sandwiched between ITO and Ni electrodes (ITO/CS/Ni). No hysteresis effects were observed in I–V
characteristics of ITO/CS/Ni. It was evident that the ternary resistive-switching behaviors of CS:GO
nanocomposites were originated from GO. Under ambient condition, retention tests were performed
on ITO/CS:GO/Ni in LRS, IRS, and HRS at a reading voltage of −0.1 V (Figure 11). During the retention
time of 104 s, the resistance of CS:GO nanocomposite films in LRS, IRS, and HRS (RLRS, RIRS, and RHRS)



Micromachines 2020, 11, 580 9 of 13

continuously kept stable without any degradation. These biomemory devices demonstrated the
capacity of multi-bit nonvolatile random access memory.
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with weight ratio of chemical component 2:1, 5:1, and 10:1 w/w, respectively.

In an effort to further the conduction mechanism of the ternary resistive-switching behavior
achieved from ITO/CS:GO/Ni devices, I–V profiles were plotted in a log–log scale (Figure 12). In the
low voltage region of HRS, a linear fitting (slope of ~1) for the double logarithmic scale indicated
an Ohmic conduction behavior. Nevertheless, the log–log curves following a quadratic nature were
deviated to realize a higher slope region (~2) after increasing the applied voltage. Since CS is an
insulator in the native state, the injected charge carriers were believed to be gradually captured in the
trap centers of GO up to saturation. The logI–logV curve for LRS (a slope of 1) transparently showed
an Ohmic conduction behavior. It was consistent with the formation of a conducting path in the device
after the SET2 process. In general, the features in the trap controlled space charge limited conduction
(SCLC) model followed the correlation I ∝ Vn, where V was denoted as an applied bias between the
two electrodes and n was denoted as a positive number. The aforementioned conclusions were further
corroborated upon application of both Poole–Frenkel and Schottky emission mechanisms to fit the
resistive-switching behavior. The plots of lnI ∝ V and lnI ∝ V1/2 before transition to Ohmic conduction
were not linear and showed parabolic behavior. It supported that the ternary resistive-switching
mechanism was based on the SCLC mechanism with GO acting as trap centers in the CS:GO matrix.



Micromachines 2020, 11, 580 10 of 13

Micromachines 2020, 11, x 10 of 14 

 

Ohmic conduction behavior. Nevertheless, the log–log curves following a quadratic nature were 
deviated to realize a higher slope region (~2) after increasing the applied voltage. Since CS is an 
insulator in the native state, the injected charge carriers were believed to be gradually captured in 
the trap centers of GO up to saturation. The logI–logV curve for LRS (a slope of 1) transparently 
showed an Ohmic conduction behavior. It was consistent with the formation of a conducting path 
in the device after the SET2 process. In general, the features in the trap controlled space charge 
limited conduction (SCLC) model followed the correlation I ∝ Vn, where V was denoted as an 
applied bias between the two electrodes and n was denoted as a positive number. The 
aforementioned conclusions were further corroborated upon application of both Poole–Frenkel and 
Schottky emission mechanisms to fit the resistive-switching behavior. The plots of lnI ∝ V and lnI 
∝ V1/2 before transition to Ohmic conduction were not linear and showed parabolic behavior. It 
supported that the ternary resistive-switching mechanism was based on the SCLC mechanism with 
GO acting as trap centers in the CS:GO matrix. 

 

Figure 10. Cycle-to-cycle statistical distribution of (a–c) the resistance in HRS, IRS, and LRS (RHLS,
RILS, and RLRS), and (d–f) the set and reset voltage (VSET1, VSET2, and VRESET) for ITO/CS:GO/Ni with
weight ratio of chemical component 2:1, 5:1, and 10:1 w/w, respectively.

Table 2. Data analyses for ITO/CS:GO/Ni concerning the mean and deviation values of the resistance in
HRS, IRS, and LRS (RHLS, RILS, and RLRS).

Nanocomposites
RHRS (Ω) RIRS (Ω) RLRS (Ω)

mean std mean std mean std

CS:GO (2:1) 1.151 × 105 1.882 × 105 1.170 × 104 1.977 × 104 43.492 7.402
CS:GO (5:1) 5.188 × 103 4.433 × 103 910.115 757.711 47.429 15.935
CS:GO (10:1) 1.0582 × 103 791.0759 296.611 219.764 60.310 22.291
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4. Conclusions 

Unlike state-of-the-art Si-based devices, CS-based nanocomposites blended with GO by means 
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mechanism. This paper shows the feasibility to fabricate multi-bit biomemory devices based on 
CS:GO nanocomposite, which paves the way for next-generation green data-storage devices and 
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4. Conclusions

Unlike state-of-the-art Si-based devices, CS-based nanocomposites blended with GO by means of
the solution-processable method were seen as the biodegradable layer for multi-bit biomemory. It had
a remarkable potential for nonvolatile biomemory, with a large current proportionality IHRS/IIRS/ILRS

(1:102:103), excellent cycling performance (>100 cycles), and long data retention characteristics (>104 s)
at ambient temperature. By combining the nature of CS and the carrier transport information extracted
from double-logarithmic I–V characteristics, GO acting as trapping sites in the CS:GO nanocomposite
layer might be responsible for the ternary biomemory mechanism. This paper shows the feasibility
to fabricate multi-bit biomemory devices based on CS:GO nanocomposite, which paves the way for
next-generation green data-storage devices and biointegrated electronics.
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