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Abstract: A variety of force fields have thus far been demonstrated to investigate electromechanical
properties of cells in a microfluidic platform which, however, are mostly based on fluid shear
stress and may potentially cause irreversible cell damage. This work presents dielectric movement
and deformation measurements of U937 monocytes and U937-differentiated macrophages in a low
conductive medium inside a 3D carbon electrode array. Here, monocytes exhibited a crossover
frequency around 150 kHz and presented maximum deformation index at 400 kHz and minimum
deformation index at 1 MHz frequencies at 20 Vpeak-peak. Although macrophages were differentiated
from monocytes, their crossover frequency was lower than 50 kHz at 10 Vpeak-peak. The change of
the deformation index for macrophages was more constant and lower than the monocyte cells. Both
dielectric mobility and deformation spectra revealed significant differences between the dielectric
responses of U937 monocytes and U937-differentiated macrophages, which share the same origin.
This method can be used for label-free, specific, and sensitive single-cell characterization. Besides,
damage of the cells by aggressive shear forces can, hence, be eliminated and cells can be used for
downstream analysis. Our results showed that dielectric mobility and deformation have a great
potential as an electromechanical biomarker to reliably characterize and distinguish differentiated
cell populations from their progenitors.
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1. Introduction

Dielectric parameters are among the essential biophysical properties of cells and can be associated
with various immune and blood diseases [1–5]. Permeability and conductivity of the membrane and
cytoplasm define dielectric properties of a cell in a specific microenvironment, which may change due
to surface area of the cell as given by its size and shape; expression levels of surface proteins; form of
cytoplasm; composition of cytos7ol; the surface charge density of the membrane; the morphologic
complexity of membrane surfaces such as ruffles, microvilli, and blebs; as well as due to interfacial
polarization of ions at the cell surfaces. Discovery of electrophysiological properties of cells, such as
dielectrophoretic mobility, membrane relaxation period, crossover frequency difference, etc., relies
on the phenomenon of dielectrophoresis (DEP), described by Herbert Pohl in 1951 [6]. Yet, intensive
research has been conducted to utilize dielectrophoretic properties of cells to be label-free biomarkers
for immune and blood diseases [7,8]. In this study, we interrogated whether dielectric movement and
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deformation measurements provide a specific, label-free, sensitive electromechanical biomarker for
U937 monocytes and U937-differentiated macrophages.

Monocytes and macrophages can be considered as active machines that can immediately adapt to
their microenvironment for pathogenesis and homeostasis through altering their electromechanical
properties [9,10]. They are highly heterogenetic cells with their morphology, location, tissue-specific
relations, and functional capabilities [11,12]. When examined by electron microscopy, the monocytes
are spherical cells and they have microvilli and microcytotic vesicles, hence, their membrane surfaces
have several ruffles and blebs, whereas macrophages have an irregular shape with electron-dense
membrane-bound lysosomes. Besides, the microenvironment in which macrophages differentiate
defines their shape, biochemistry and function [13]. Although we have been still investigating and
discovering their new functions, such as the roles of macrophages in the electrical conduction of
heart [14], in general, we know that monocytes enroll in tumor formation and invasion via metastasis
and angiogenesis [15,16], macrophages are employed in pathogen recognition, phagocytosis [17],
removal of dead cells and cellular debris [18] and tissue homeostasis [19,20]. Their diverse functions
are continuously controlled by their dynamic microenvironment [21–24].

A pioneering work, sharing the purpose of determining electrical properties of mammalian cells
according to their life cycle, was presented by Eisenberg and Doljanski in 1962. They measured
the electrokinetic properties of liver cells in growth processes [25]. Next, Dr Petty’s research
group reported heterogeneous distribution of electrophoretic mobilities of human monocyte
subpopulations [26], while Dr Bauer and Dr Hannig determined the changes of the electrophoretic
mobility (EM) of human monocytes during in vitro maturation into macrophages [27]. The current
research direction, which investigates the change of cellular dielectrophoretic properties during the cell
cycle, maturation or differentiation, mostly relies on determining the first crossover frequencies
and measuring migration differences of cells [7,8,28,29]. Along the same lines, our previous
investigations have presented the dielectrophoretic characterization and separation of U937 monocytes
and U937-differentiated macrophages using their crossover frequencies and dielectrophoretic mobility
differences according to their membrane permittivity and conductivity in a low conductive DEP
buffer [30–32]. However, none of our previous studies have revealed dielectrophoresis-induced
mechanical deformation of cells. Similarly, Tonin et al. interrogated electrophoretic mobility (EPM)
during yeast growth and observed a nonmonotonic behavior during the cell cycle. They concluded that
the maximal EPM occurred at the initial stage of the growth, and it strongly reduced at its final stage [33].
Song et al. employed DEP to sort human mesenchymal stem cells and their differentiation progeny,
osteoblasts. Their results showed that osteoblasts experienced stronger DEP forces that laterally
migrated them, whereas human mesenchymal stem cells remained on their original trajectories [34].
Dr. Salmanzadeh and his group used contactless DEP and observed that the trapping voltage of
mouse ovarian surface epithelial cells increased as the cells progressed from a non-tumorigenic to
a tumorigenic phenotype [35].

On the other hand, DEP has been utilized as a tool to stretch cells for characterization of
their mechanical properties. It has provided great potential to implement single-cell biomechanical
tests with high-throughput, automation, low complexity and cost, high scalability and portability in
comparison to conventional biomechanical techniques, such as atomic force microscopy [36], optical
tweezers [4,37], magnetic twisting cytometry [38], micropipette aspiration [39], diffraction phase
microscopy [40] and microfluidic ektacytometry [41–43]. In this concept, Guido et al. demonstrated
the capability of this new technique by characterizing deformability of cancerous MCF7 and
noncancerous MCF10A cells [44]. Du and coworkers used this technique to reveal the biophysical
properties of healthy, uninfected and infected red blood cells by Plasmodium falciparum malaria
parasites [45].

In this study, we utilized dielectrophoresis to study the electromechanical properties of monocytes
and macrophages that might quantify their population heterogeneity [11,45,46]. We measured
the movement and calculated the deformation indexes of cells [47] under the influences of
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dielectrophoretic forces when 10–20 Vpeak-to-peak (Vpp) voltage with frequencies ranging from 50 kHz
to 1 MHz have been applied.

2. Materials and Methods

2.1. DEP Buffer Preparation and Conductivity Measurement

DEP buffer with low electrical conductivity was prepared to keep cells viable during the processes
of dielectrophoresis. As it has been previously reported [31], the low conductive DEP buffer [48] was
composed of 8.6% sucrose (product no: LC-4469.1, NeoFroxx, Hesse, Germany), 0.3% glucose (CAS
number 59-99-7, Sigma-Aldrich, Darmstadt, Germany) and 0.1% bovine serum albumin in distilled
water (BSA, product code: P06-1391050, PAN-Biotech, Aidenbach, Germany).

The conductivity of the DEP buffer was 0.002 S/m, as measured by a Corning Model 311 Portable
conductivity meter at room temperature (Cambridge Scientific Products, Watertown, MA, USA).

2.2. Cell Culture

In this study, U937 human monocyte cells (ATCC number: CRL1593.2) provided from ATCC
(American Type Culture Collection, Manassas Virginia) and U937-differentiated macrophages were
obtained by phorbol 12-myristate 13-acetate (PMA, Sigma Aldrich) treatment of U937 monocytes.

U937 cells were maintained in RPMI 1640 medium (Product Number: P04-18047, PAN-Biotech,
Aidenbach, Germany) with 10% fetal bovine serum (FBS) (PAN Biotech, catalogue number: P40-37500,
Aidenbach, Germany) using a T75 tissue culture flask (TPP® Sigma, catalogue number: Z707554) at
37 ◦C with 5% CO2 in humidified air. U937 cells were grown until 80–90% confluency. Cells were
centrifuged at 3000 rpm (Z601039, Hettich® EBA 20 centrifuge, Merck, Darmstadt, Germany) for 5 min.
The number of cells was determined using a hemocytometer (Marienfeld, Germany). The final cell
concentration was adjusted to 3 × 106 cells/mL.

The macrophage differentiation was performed using the 10 ng/mL concentration of the PMA
treatment of 3 × 106 U937 cells in 22.1 cm2 plates (TPP® Product No:93060, Trasadingen, Switzerland)
for 72 h. Next, the cells were maintained in medium without PMA for 48 h. Then, the cells were
collected by treating with the 0.25% (v/v) Trypsin-EDTA (PAN Biotech, catalogue number: P10-019100,
Aidenbach, Germany) solution. The cells were centrifuged at 1800 rpm (Z601039, Hettich® EBA
20 centrifuge, Merck, Darmstadt, Germany) for 10 minutes to remove the remaining culture medium
and washed twice using the DEP buffer.

2.3. 3D Carbon DEP Device

The fabrication process and features of the 3D carbon DEP devices were previously reported [48,49].
The carbon electrode array, a 1.8 mm wide, 3.2 cm long channel, was featured 218 intercalated rows
with 14 or 15 electrodes each [50,51]. Individual electrodes had a height of 100 µm and a diameter
of 50 µm (Figure 1). The numerical analysis to estimate the induced fluidic, electromagnetic and
dielectrophoretic forces in the 3D carbon electrode array was earlier studied using both finite element
analysis and numerical models [48–51].



Micromachines 2020, 11, 576 4 of 15

Micromachines 2020, 11, 576 4 of 15 

 

(Manufacturer ID: AAQ02103-CP S-54-HL, Cole-Parmer, Vernon Hills, IL, USA) into the inlet and 

outlet ports of the 3D carbon-DEP chip (Figure 1). 

 

Figure 1. Schematic illustration of the experimental setup comprising the cell preparation step, 3D 

carbon electrode array, imaging and single-cell analysis. 

The experiment started with the sterilization of the electrode array using 70% ethanol and 

rinsing with deionized (DI) water using a syringe pump with a 20 μL/min flow rate. Next, the 

microfluidic chip was filled with the DEP buffer and the bubbles were removed. Then, 40 μL of the 

cell suspension was injected into the chip using a syringe pump with 10 μL/min flow rate. When the 

cells reached the electrode area, the flow was stopped, and the cells were released for 30 seconds. The 

experiments were started when the electric field was applied using the signal with 10–20 Vpp 

frequencies ranging from 50 kHz–1 MHz [30,31]. 

2.5. Image Acquisition and Data Analysis 

The image sequences of cells were recorded using the Nikon ME600 Eclipse upright microscope 

(Nikon Instruments Inc., Melville, NY, USA) with 10× magnification in tiff sequence format. The 

VideoLAN Client (VLC, VideoLAN version 1.8, Paris, France) program was used to convert image 

sequences into the movies.  

The acquired images were manually analyzed using open-access ImageJ software (Version 2.0 

National Institutes of Health, Rockville, MD, USA). The crossover frequencies of single cells were 

determined by computing the movement of the cells according to their initial positions, as described 

in references [30,31]. In total, 50 monocyte cells and 30 macrophage cells were followed, and their 

positions were recorded. Using GraphPad Prism (Version 5.0) software, Student’s t-test was 

performed to compare dielectric mobilities of monocyte and macrophage populations. * implies that 

data are significantly different with p < 0.5.  

The deformation index was calculated by manually measuring the height and width of 45 single 

monocyte and macrophage cells, and these single cells were continuously monitored, in each 

frequency. One-way analysis of variance and Tukey’s multiple comparison test were carried out 

using GraphPad Prism (Version 5.0) software to determine the significance. * and ** indicate that data 

are significantly different with p < 0.5 and p < 0.05, respectively. All measurements were provided in 

detail in the figure legends.   

Figure 1. Schematic illustration of the experimental setup comprising the cell preparation step,
3D carbon electrode array, imaging and single-cell analysis.

2.4. Experimental Setup

The experimental setup consisted of a signal generator (Model: GFG-8216A, GW Instek,
New Taipei City, Taiwan) with an oscilloscope (Part Number: 54622D, Agilent Technologies, Santa
Clara, CA, USA) to create and observe the electric field, a desktop-acquired upright microscope (Model:
Nikon ME600 Eclipse, Nikon Instruments Inc., Melville, NY, USA) to monitor cells and acquire images
and a programmable syringe pump (Model: NE-1000, New Era Pump Systems Inc., Farmingdale, NY,
USA) to flow the cells into the 3D carbon DEP device. We used 20–200 µL pipette tips (Manufacturer ID:
3120000917, Eppendorf, Hamburg, Germany) to connect microperforated Tygon tubing (Manufacturer
ID: AAQ02103-CP S-54-HL, Cole-Parmer, Vernon Hills, IL, USA) into the inlet and outlet ports of
the 3D carbon-DEP chip (Figure 1).

The experiment started with the sterilization of the electrode array using 70% ethanol and rinsing
with deionized (DI) water using a syringe pump with a 20 µL/min flow rate. Next, the microfluidic
chip was filled with the DEP buffer and the bubbles were removed. Then, 40 µL of the cell suspension
was injected into the chip using a syringe pump with 10 µL/min flow rate. When the cells reached
the electrode area, the flow was stopped, and the cells were released for 30 s. The experiments were
started when the electric field was applied using the signal with 10–20 Vpp frequencies ranging from
50 kHz–1 MHz [30,31].

2.5. Image Acquisition and Data Analysis

The image sequences of cells were recorded using the Nikon ME600 Eclipse upright microscope
(Nikon Instruments Inc., Melville, NY, USA) with 10× magnification in tiff sequence format.
The VideoLAN Client (VLC, VideoLAN version 1.8, Paris, France) program was used to convert image
sequences into the movies.

The acquired images were manually analyzed using open-access ImageJ software (Version 2.0
National Institutes of Health, Rockville, MD, USA). The crossover frequencies of single cells were
determined by computing the movement of the cells according to their initial positions, as described in
references [30,31]. In total, 50 monocyte cells and 30 macrophage cells were followed, and their positions
were recorded. Using GraphPad Prism (Version 5.0) software, Student’s t-test was performed to
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compare dielectric mobilities of monocyte and macrophage populations. * implies that data are
significantly different with p < 0.5.

The deformation index was calculated by manually measuring the height and width of 45 single
monocyte and macrophage cells, and these single cells were continuously monitored, in each frequency.
One-way analysis of variance and Tukey’s multiple comparison test were carried out using GraphPad
Prism (Version 5.0) software to determine the significance. * and ** indicate that data are significantly
different with p < 0.5 and p < 0.05, respectively. All measurements were provided in detail in
the figure legends.

3. Results

3.1. Dielectrophoretic Movement

DEP offers the possibility to affect the movement of polarized particles in the non-uniform electric
field. We can define the DEP force according to the difference between the dielectric properties of
the particle and its suspension medium [52,53].

FDEP = 2πr3εmRe(K(ω))∇E2 (1)

The DEP force (FDEP) is related to the radius of the particle, the permittivity of the surrounding
medium (εm), the real part of the Clausius–Mossotti factor (Re(K(ω)) and the applied electric field (E).
The Clausius–Mossotti factor is defined as given by

K(ω) =
(ε∗c − ε

∗
m )

(ε∗c + 2ε∗m )
(2)

Here, ε∗c is known as the complex permittivity of a cell and ε∗m is the complex permittivity of
the surrounding medium. The subscripts “m” and “c” mean suspending medium and cells, respectively.
The complex permittivity can be expressed as

ε∗ = ε+
jσ
ω

(3)

where ε is the permittivity, σ is the conductivity and ω (ω = 2π f ) includes the electric field frequency.
When the value of the Re(K(ω) is positive, the particle is attracted by the strong electric field region
referred to as positive DEP (pDEP). When the value of the Re(K(ω) is negative, the particle is repelled
by the high electric field region referred to as negative DEP (nDEP). The crossover frequency can be
defined as the cessation of the particle motion, which is specific for the particles.

To quantify heterogeneity of monocytes and macrophages according to their dielectrophoretic
behaviors, we applied the non-uniform AC electric field and determined the location of the cells in each
frequency ranging from 50 kHz to 1 MHz (Figure 1). Our previous work presents the determination of
the crossover frequencies in detail for the immune cells [30].

The translational movement of the cells was generated by dielectrophoretic forces and no fluid flow
can introduce any drag force on the cells. Figure 2 demonstrates the number of cells that experienced
strong pDEP (3), pDEP (2), weak pDEP (1), CF (0), weak nDEP (−1), nDEP (−2), strong nDEP (−3) at 50,
100, 200, 300, 400 and 1000 kHz frequencies when 20 and 10 Vpp voltages were applied for monocytes
and macrophages, respectively.
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magnitude of movement is categorized as very strong (3), strong (2), and weak forces (1). The “-” sign 

refers to nDEP. Measurements are the mean and error. n = 50 for monocytes, n = 30 for macrophages. 

Figure 2. Dielectrophoretic responses of monocytes and macrophages: (a) Positions of the cells in
the electrode array when they are influenced by nDEP, crossover frequency (CF) and pDEP, respectively;
(b) Translational movement of U937 monocytes under 20 Vpp, 50 kHz–1 MHz nonuniform AC field;
(c) Translational movement of U937-differentiated macrophages under 10 Vpp, 50 kHz–1 MHz
nonuniform AC field. The cool colors show the number of nDEP- behaved cells due to repelling
DEP forces while the warm colors demonstrate pDEP-responded cells owing to attractive DEP forces.
Zero means the crossover frequency with zero movements, which is coded in green color. n = 80 for
monocytes, n = 30 for macrophages.

Figure 2 demonstrates the dielectrophoretic behavior of the U937 monocytes and
U937-differentiated macrophages under the influence of nonuniform electric field within the 3D
carbon electrode array. Figure 2b shows that monocyte cells experienced nDEP to pDEP forces with
increasing frequencies (n = 80 monocyte cells). The crossover frequencies of monocytes were between
100 to 200 kHz. The uniformity of pDEP responses of the monocytes was improved with increasing
frequencies ranging from 200 kHz to 1 MHz, the strongest nDEP (−3, dark blue), the strongest pDEP
(3, red) see Supplementary Video 1.

On the other hand, when the same experiment was performed using the U937-differentiated
macrophage cells, they mostly exhibited pDEP behavior (warm colors yellow-red colors) and their weak
crossover frequency was around 50 kHz (green), as shown in Figure 2b. The fraction of macrophage cells
which immediately presented pDEP response was greater than the nDEP subpopulation. The number
of nDEP experienced cells were not broadly changed in comparison to monocyte cells. Since most
of the macrophage cells immediately experienced pDEP behavior and were attracted by the strong
dielectrophoretic forces generated by 3D carbon electrodes, the number of analyzed cells in Figure 2b is
limited to 30 cells; however, the initial number of cells was always 3 × 106 cells/mL for the experiments
(see Materials and Methods Section 2.2. Cell culture, Supplementary Video 2).

The monocyte population showed smooth nDEP (blue) to crossover (green) and crossover
to pDEP (red) transition as a whole monocyte population, as shown in Figure 2a. On the other
hand, the macrophage population exhibited more likely a bimodal distribution that is either
the macrophage cells in nDEP (blue) or pDEP (red) in comparison to the monocyte population
(Figure 2b). Therefore, the dielectric movement of the U937-differentiated macrophages showed more
heterogeneous population responses than the U937 monocyte population which is the originals of
U937-differentiated macrophages.
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Figure 3 compares the dielectrophoretic movement of the U937 monocytes and U937-differentiated
macrophages. The macrophages moved from the nDEP region to pDEP region when 50 kHz at 10 Vpp

was applied. The monocytes experienced nDEP to pDEP transition when 100–150 kHz at 20 Vpp was
provided. When both the monocyte and macrophage populations exhibited strong pDEP forces at 1
MHz, there was not any significant difference between the trapping regions of the cells according to
Student’s t-test (p value was 0.892, where * p < 0.5 was significant), as shown in Figure 3. This result
may show that the interfacial polarization difference between the cytoplasm and plasma membrane
can be stronger for macrophages than monocytes [54]. Therefore, the observed macrophage dielectric
properties at 1 MHz can be related to both membrane and cytoplasm properties of macrophages,
whereas the membrane features might dominate for the monocyte dielectric properties at 1 MHz.
These varying biophysical properties between monocytes and macrophages might explain their distinct
trapping regions inside the 3D carbon DEP device.
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Figure 3. Comparison between the DEP movement of monocyte and macrophage cells. The magnitude
of movement is categorized as very strong (3), strong (2), and weak forces (1). The “-” sign refers to
nDEP. Measurements are the mean and error. n = 50 for monocytes, n = 30 for macrophages.

3.2. Dielectrophoretic Deformation Index

While dielectrophoretic forces distributed the cells in the electrode array according to
their polarizability difference, DEP forces were also capable of creating deformation on the cells.
As mentioned above, monocytes and macrophages are well-known cells for their plasticity
properties [9,10]. When mammalian cells were exposed to large external flow forces in variable
microenvironments using microfluidics, they became elongated, varied in size, and tended to return to
their original shape once the external forces were removed [42,55].

We determined the dielectrophoretic deformation indexes (DDI) of the single U937 monocyte
and the U937-differentiated macrophage cells using the non-uniform AC electric field varying from
50 kHz to 1 MHz frequency. The DDI values of each monocyte and macrophage cells were calculated
for 47 cells as defined in Equation (4) [50], where H (µm) was the major and W (µm) was the minor
axes of the cells, as shown in Figure 4a.

DI =
H
W

(4)

Figure 4 illustrated the DDI distribution for the monocytes (Figure 4b,d) and macrophages
(Figure 4c,e), including the outliers. Monocyte population demonstrated significant DDI difference
between 0–400 kHz, and 50–400 kHz at 20 Vpp (p < 0.5, Section 2 Materials and Methods, Section 2.5
Image acquisition and data analysis). The increased pDEP forces made the monocytes taller while
attracting to the strong pDEP regions. When the pDEP forces reaches their maximum, the monocyte
cells became wider and their deformation index significantly decreased at 300 kHz–1 MHz, and 400
kHz–1 MHz, 20 Vpp (p < 0.05), as shown in Figure 4b. Monocyte cells tended to generate pearl chain
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like organization under the influences of strong pDEP forces. Figure 4d displays the underlying
dynamics of monocyte population when the change of deformation index was followed for each
single cell. Single-cell analysis was performed when the DEP forces were applied for 50–500 kHz.
The deformation index for the U937 monocytes were dynamically changed and created a zig-zag
pattern within the 0.433–2.147 boundaries. Contrary to the deformation of monocytes, macrophages
did not considerably alter their deformation (Figure 4c). Figure 4e demonstrates the deformation
index of single macrophages that was exposed to DEP forces for the frequency range of 50–500 kHz.
The change of deformation index for the U937-differentiated macrophage cells was more stable than
U937 monocytes. The deformation indexes of macrophages exhibited smooth trajectories within the
boundaries of 0.457–1.588.
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Figure 4. Dielectrophoretic deformation indexes (DDI) of U937 monocytes and U937-differentiated
macrophages: (a) Representative image for the measurement of DDI. DDI values were presented with
mean and standard error for population (n = 45). (b) single (n = 47) (d) monocyte cells; 45 population
(c), single (n = 47) (e) macrophage cells. Tukey’s multiple comparison test is applied for (b). * and **
indicate that data are significantly different with p < 0.5 and p < 0.05, respectively. Each color displays
the change of deformation indexes of single cells during the frequencies applied for the range of
50–500 kHz in (d) and (e).

Figure 5 demonstrates that there was a significant DDI difference between U937 monocytes
and U937-differentiated macrophages at 300 kHz (p < 0.5) and 400 kHz (p < 0.05) according to
Tukey’s multiple comparison test as explained in the Materials and Methods Section 2.5. (Image
acquisition and data analysis). Monocyte population has higher DDI in comparison to macrophage
population at 300 and 400 kHz, where both cell types were under the influences of pDEP forces. Next,
increasing the frequencies decreased the DDI for monocyte cells, whereas it did not affect the DDI for
macrophage cells.
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Figure 5. Comparison of the dielectrophoretic deformation indexes for the monocytes and macrophages
without outliers. Measurements are the dielectrophoretic deformation index with mean and standard
error for 45 monocyte and 45 macrophages cells. Tukey’s multiple comparison test is applied. * and **
indicate that data are significantly different with p < 0.5 and p < 0.05, respectively.

3.3. Dielectric Mobility and Membrane Relaxation Time

The principle of examining the polarized particles with DEP has been implemented to reveal
the biophysical properties of cells since 1962 [25,33,56–62]. The strongest motivation beyond these
studies has been the development of label-free dielectric biomarkers to distinguish healthy and
pathological cells, since surface charge density of cells plays key roles in exocytosis, endocytosis,
cell adhesion [63,64], binding of proteins [65–67] etc. The electrophoretic behavior of single cells has
been predicted using the mathematical models that define the relationship between the mobility and
the surface charges acting upon a cell suspending in a low conductive medium [67].

Here, we investigated whether dielectric mobility (µDEP) [68] and membrane relaxation time
(τ) [69] values are intrinsic, specific, dielectric markers that reliably distinguish U937 monocytes and
U937-differentiated macrophages cell populations that have the same cell origin.

The dielectric mobility has been defined by Crowther and coworkers as in Equation (5),
where η denotes the viscosity of the DEP buffer [68].

→
vDEP = −µDEP∇

∣∣∣∣∣→E ∣∣∣∣∣2 = −

(
εmr2K(w)

3η

)
∇

∣∣∣∣∣→E ∣∣∣∣∣2 (5)

The membrane relaxation time (τ) was expressed in Equation (6), where Ccell membrane means
the membrane capacitance of the cells [69].

τ = rCcell membrane

(
1

σcell membrane
+

1
2σm

)
(6)

Using the equations above, the dielectrophoretic mobility and membrane relaxation time values
were calculated with the physical and electrical properties of the monocyte and macrophage cells, and
the low conductive DEP buffer, as presented in Table 1.

The dielectric mobilities were calculated as 6.99 × 10−18 m4/V2s and 12.40 × 10−18 m4/V2s for
monocytes (µDEPMonocyte) and macrophages (µDEPMacrophage), respectively. The membrane relaxation
time values for the monocytes (τMonocyte) were 2.63 × 105 s, while (τMacrophage) was 2.73 × 105 s for
the macrophages. Here, the membrane capacitance values used for the calculations were not belonged
to specifically for the U937 monocytes and U937-differentiated macrophages, as noted in Table 1 [70–72].
To the best of our knowledge, the exact membrane capacitance value for the U937 macrophages has
not been yet measured. Therefore, the values in Table 1 should be carefully interpreted.
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Table 1. Dielectric markers specific to U937 monocytes and U937-differentiated macrophages.

Parameters (Units) Values Resources

rMonocyte (m) 1.15 × 10−5 Measured
rMacrophage (m) 1.5 × 10−5 Measured
K(ω) Monocyte 0.976 Calculated [67]
K(ω) Macrophage 0.979 Calculated [67]
εm (C/V.m) 6.90 × 10−10 -
ηwater (kg/s.m) 8.90 × 10−4 -
σm (S/m) 2 × 10−3 Measured
σMonocyte membrane (S/m) 7 × 10−13 [70]
σMonocyte membrane (S/m) 7 × 10−13 [70]
σMacrophage membrane (S/m) 7 × 10−13 Assumed
CMonocyte (F/m2) 0.016 ± 0.002 [70,71]
CMacrophage (F/m2) 0.013 ± 0.001 [70,71]
τMonocyte (s) 2.63 × 105 Calculated
τMacrophage (s) 2.73 × 105 Calculated
µDEPMonocyte (m4/V2s) 6.99 × 10−18 Calculated
µDEPMacrophage (m4/V2s) 12.40 × 10−18 Calculated

4. Discussion

Monocytes and macrophage cells, sharing the same cell origin, have been compared according
to their dielectrophoretic mobility and deformation. Both monocyte and macrophage populations
exhibited inter-individual difference due to their intrinsic properties such as size, shape, and changes
in membrane surface organization that may result in heterogeneity in their DEP responses.

Here, the crossover frequency of U937 monocytes was around 150 kHz. The U937-differentiated
macrophage cells exhibited weak crossover frequency around 50 kHz (Figure 2). We used
the computational tool for dielectric modeling published by Cottet, J. et al. and obtained the CM factor
K(ω) values for the monocytes (K(ω) Monocyte) and macrophages

(
K(ω) Macrophage

)
as 0.976 and 0.979,

respectively [67] (Table 1). Since the K(ω) Macrophage) was slightly higher than the (K(ω) Monocyte),
macrophages were exhibited pDEP behavior earlier than monocytes (see Figure 2b,c and Figure 3).
The uniformity of pDEP responses of the monocytes was improved with increasing frequencies
(see Supplementary Video 1), the macrophages displayed both nDEP and pDEP fractions for the whole
frequencies ranging from 50 kHz–1 MHz (see Supplementary Video 2). Although there was no
significant difference between the trapping regions of the cells (Student’s t-test: p value was 0.892,
where * p < 0.5 was significant), the DEP movement of macrophages were more heterogeneous than
monocytes (Figure 3). We previously reported dielectrophoretic characterization and separation
of U937 monocytes and U937-differentiated macrophages according to their crossover frequencies
in [30–32].

This study, contrary to our previous work, reported that the translational DEP forces were not only
moved cells according to their polarizability differences inside the electrode array, they also created
irreversible deformation on the cells. Monocyte and macrophage cells display high plasticity among
immune cells [9,10,42,55]. When DEP forces were introduced, the deformation index of monocytes
first increased (0–400 kHz), then decreased with increasing pDEP forces (400 kHz–1 MHz), as shown in
Figure 4. On the other hand, the deformation index of the macrophage cells did not exhibit significant
difference for the frequencies ranging from 50 kHz to 1 MHz (Figure 4). When the dielectrophoretic
deformation indexes of the monocyte and macrophage cell populations were compared, according to
Tukey’s multiple comparison test, the increase in the deformation index of monocytes was significantly
higher than the deformation index of macrophages at 300 kHz (p < 0.5) and 400 kHz (p < 0.05),
as shown in Figure 5. Here, we calculated the DEP deformation indexes of the cells (Figure 4a: location
of the cells according to electrodes) as we measured their translational mobility due to applied FDEP

(Figure 2a: position of the cells according to electrodes). Therefore, it relied on the spatial distribution of



Micromachines 2020, 11, 576 11 of 15

the cells within the electrode array since the DEP forces depend on polarizability of the cells according
to their intrinsic properties. The applied DEP forces synchronized the cells spatiotemporally within
the electrode array and we measured the deformation of single cells at their specific locations when
the specific frequencies and voltages were applied, therefore, we achieved to obtain consistent results
for the dielectric deformation indexes of the cells (Figure 4d,e).

In addition to experimental results, the dielectrophoretic mobility and membrane relaxation time
values were predicted using the physical and electrical properties of the monocyte and macrophage
cells, and the low conductive DEP buffer (Table 1) [68–72]. The calculated values were quite
similar both for monocytes and macrophage cells. However, the values in Table 1 should be
carefully interpreted since there are still unknown dielectric parameters for the U937 monocytes and
U937-differentiated macrophages.

Our results marshalled considerable evidence for the feasibility of using dielectric mobility and
dielectric deformation index as a dielectric biomarker that presents biophysical differences between
the cell lines which shares the same origin. To the best of our knowledge, this is the first study that
presents dielectric deformation indexes of cells and may become a practical method for achieving
a specific, high-throughput, continuous, label-free, sensitive electromechanical characterization and
classification technique for U937 monocytes and U937-differentiated macrophages.

Our further studies will focus on separation and recovery of cells with different deformation
indexes from the 3D carbon DEP platform for downstream analysis using immunostaining and
quantitative reverse transcription-polymerase chain reaction (RT-qPCR) techniques. Hence, we can
promptly explain the dielectrophoretic mobility and deformation differences in terms of transcription
and protein expression levels in the membrane surface and cytoskeletal components. Moreover, we can
employ this method for further characterization of macrophage subpopulations, and it may provide
value in increasing our understanding of the nature of tumor associated macrophages (TAMs).

5. Conclusions

This study presents heterogeneity of monocytes and macrophages according to their intrinsic
dielectrophoretic properties in terms of dielectrophoretic deformation indexes. We performed dielectric
deformation measurements of the U937 monocytes and U937-differentiated macrophages with similar
radius and dielectric characteristics using 3D carbon electrode microfluidic platform both at population-
and single-cell level. We calculated deformation indexes of the cells when 10–20 Vpp voltage with
frequencies ranging from 50 kHz to 1 MHz have been applied.

Our results showed that the crossover frequency for the monocytes was around 150 kHz [30–32].
Monocytes presented maximum deformation at 400 kHz and minimum deformation around
1 MHz frequencies at 20 Vpp. On the other hand, the crossover frequency for the macrophages,
which differentiated from monocytes, was lower than 50 kHz, 10 Vpp [30–32]. Moreover,
the dielectrophoretic deformation index for the macrophages was not significantly varied from 50 kHz
to 1 MHz frequency range. We conclude that the change of the deformation index for macrophages was
less in comparison to monocytes. Both dielectric mobility and deformation spectra revealed significant
differences between the dielectric responses of U937 monocytes and U937-differentiated macrophages,
which share the same origin.

Our method can be advanced for the development of label-free, specific, and sensitive single-cell
characterization tools. This technique eliminates the possibility of damaging the cells by aggressive
shear forces while allowing these cells to be used for further downstream analysis. To advance
this work, we focus on development of automated image analysis tools to obtain directly deformation
indexes and mobility data of cells from the acquired DEP videos.

Here, we particularly underlined FDEP-generated deformation index of monocytes and
macrophages, since these cells are among the white blood cells which are capable of infiltrating
different types of tissues. Further DEP studies might interrogate to quantify other immune cells or
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their subsets (TAMs), and whether their intrinsic cellular heterogeneity can be quantified according to
their dielectrophoretic deformation indexes.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-666X/11/6/576/s1,
Video S1: Monocyte, Video S2: Macrophage.
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