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Abstract: Since copper azide (Cu(N3)2) has high electrostatic sensitivity and is difficult to be practically
applied, silicon-based Cu(N3)2@carbon nanotubes (CNTs) composite energetic films with higher
electrostatic safety were fabricated, which can be compatible with micro-electro mechanical systems
(MEMS). First, a silicon-based porous alumina film was prepared by a modified two-step anodic
oxidation method. Next, CNTs were grown in pores of the silicon-based porous alumina film by
chemical vapor deposition. Then, copper nanoparticles were deposited in CNTs by electrochemical
deposition and oxidized to Cu(N3)2 by gaseous hydrogen azide. The morphology and composition
of the prepared silicon-based Cu(N3)2@CNTs energetic films were characterized by field emission
scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and X-ray diffraction
(XRD), respectively. The electrostatic sensitivity of the composite energetic film was tested by
the Bruceton method. The thermal decomposition kinetics of the composite energetic films were
studied by differential scanning calorimetry (DSC). The results show that the exothermic peak
of the silicon-based Cu(N3)2@CNTs composite energetic film is at the temperature of 210.95 ◦C,
its electrostatic sensitivity is significantly less than that of Cu(N3)2 and its 50% ignition energy is
about 4.0 mJ. The energetic film shows good electric explosion characteristics and is successfully
ignited by laser.

Keywords: energetic films; composite energetic materials; Cu(N3)2@carbon nanotubes (CNTs);
electrostatic sensitivity; electrochemical deposition

1. Introduction

In recent years, micro-electro mechanical systems (MEMS)-related technologies have been widely
used to fabricate miniature safe systems and micro-initiators [1–4]. The currently used lead-based
primary explosives can hardly meet the requirements of the micro-initiator for energy due to the
miniaturization of the ignition device. There is an urgent need to find an environmentally friendly
substitute with higher safety and energy density [5–10]. Energetic films can be integrated directly on the
ignitor without manipulating dangerous reactants [11,12], which makes the process safe and attractive
for commercial products. Copper azide (Cu(N3)2) is a promising alternative to lead-containing
primary explosives. Compared with lead azide and lead styphnate, the reaction product of copper
azide has little harm to the environment. Hence, it is a green and environmentally friendly primary
explosive [13–15]. In addition, copper azide has excellent initiation performance, and its limit charge
of initiating pentaerythritol tetranitrate (PETN) is just 1/6 of that of lead azide [16,17]. In MEMS
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pyrotechnics, using copper azide as the initial charge can reduce the volume occupied by energetic
charges while ensuring detonation performance, and is in line with the trend of miniaturization of
modern pyrotechnics. However, the high electrostatic sensitivity of copper azide restricts its practical
application [18,19].

Carbon nanotubes (CNTs) as a new type of one-dimensional nanomaterial with excellent electrical
conductivity, heat transfer properties and mechanical properties have shown important application
values in the field of energetic materials [20,21]. Rubtsov et al. [22] added a small amount of
carbon nanotubes to high-energy explosives such as trinitrotoluene, pentaerythritol tetranitrate and
benzotrifuran nitrogen oxides (TNT, PETN, BTF) through recrystallization, reducing the electrostatic
sensitivity of explosives. Compared with pure octogen (HMX), the impact and friction sensitivities of
the carbon nanotubes/HMX nanocomposites synthesized by Li et al. [23] have been reduced by 73%
and 29%, respectively. Doping of carbon materials can effectively reduce the electrostatic sensitivity of
copper azide. Pelletier et al. [24] filled copper oxide particles into oriented carbon nanotubes with open
ends prepared using a self-supporting alumina film as a template to reduce copper oxide to copper
in a hydrogen atmosphere. Then, copper was azidated by hydrogen azide gas. In order to simplify
the preparation of Cu(N3)2@CNTs/Al2O3 composites, Wang [25] and Zhang [26] deposited copper in
oriented carbon nanotubes by electrochemical deposition directly. At present, the research of carbon
nanotube composite energetic materials mainly focuses on mixing carbon nanotubes with energetic
materials mechanically. The composite energetic material obtained in this way cannot give full play to
the advantage of the unique structure of carbon nanotubes. The work of filling energetic materials into
carbon nanotubes is still rare, and the templates for preparing carbon nanotubes are all self-supporting
alumina films. The nano-energetic materials prepared in this way and the micro energetic devices
prepared on the basis cannot be compatible with MEMS-related technologies.

In recent years, materials such as silicon and silicon carbide which have excellent properties of
corrosion resistance, high-temperature and high-pressure resistance have been widely and maturely
applied in MEMS-related technology [27]. In order to apply Cu(N3)2 to the energetic charge of MEMS
pyrotechnic products, a method for preparing silicon-based Cu(N3)2@CNTs composite energetic films
with higher electrostatic safety and compatibility with MEMS technology was developed in this work.
The micromorphology, crystal structure, composition and thermochemical properties of the material
were studied. In the process of preparing silicon-based Cu(N3)2@CNTs composite energetic films,
it is very important to prepare porous alumina films with a large pore size, straight and orderly
channels and no barrier layer on the silicon substrate. It is related to the success of the subsequent
deposition of aligned carbon nanotube arrays in the template. In addition, the processes for depositing
Cu nanoparticles in aligned carbon nanotubes by electrochemical deposition are also key factors that
determine the density of copper azide in carbon nanotubes.

2. Materials and Methods

Materials: phosphoric acid, oxalic acid, copper sulfate pentahydrate, boric acid, sodium hydroxide,
sodium azide, nitric acid, absolute ethanol and thiourea. The reagents above are all analytical reagents.
Sinopharm Group Chemical Reagent Co., Ltd. (Shanghai, China); pure water: homemade. Nanjing
Yipuyida Technology Development Co., Ltd. (Nanjing, China); hydrogen, argon and acetylene. The purity
is 99.97%, 99.99% and 99.9%, respectively, Shanghai Pujiang Special Gas Co., Ltd. (Shanghai, China).

Warning of the hazards: Sodium azide is highly toxic and explosive. When it reacts with acid,
it will produce hydrogen azide gas, which is also explosive. In this work, copper nanoparticles were
reacted with hydrogen azide gas to produce copper azide with high energy density as the primary
explosive. These azides are very dangerous, so they must be dealt with carefully during the experiment.

The silicon wafer was placed in acetone, isopropano and ultrapure water sequentially for ultrasonic
cleaning and dried with nitrogen. The electron beam evaporation method was used to deposit Ti and
Al layers on the silicon wafer. First, we adjusted the current to stabilize the filament current to 4.5 A
and the voltage to 9 kV. During this process, the pressure raised slightly, indicating that the electron
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beam hit the evaporation material and the film began to deposit. The Ti layer served as a transition
layer to increase the strength of the adhesion between the Al layer and the silicon substrate.

An improved two-step anodic oxidation method [28] was used to prepare the silicon-based porous
alumina film, the device is shown in Figure 1. The preparation process can mainly be divided into
three steps:
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Figure 1. Schematic diagram of an anodizing device.

First, 0.3 mol/L oxalic acid was used as the electrolyte, and ethanol/water (v/v = 1:1) as the
electrolyte solvent; we kept the temperature of the electrolyte at 1–3 ◦C, and increased the voltage from
0 to 100 V; the speed of magnetic stirring was 430 r·min−1, and the time of the first step of anodizing
the silicon-based aluminum layer was 40 min;

Next, the sample was immersed in a mixed solution of 1.8% CrO3 and 6% phosphoric acid at
65 ◦C for 3 h to remove the alumina film formed, and then the second step of anodizing was performed,
the electrolyte was 0.5% phosphoric acid solution;

Finally, the sample was immersed in a 5% phosphoric acid solution for 40 min at 30 ◦C. The purpose
of this step was to enlarge the diameter of the pores.

An aligned carbon nanotube array was prepared in a silicon-based porous alumina film channel
using a chemical vapor deposition method. The silicon-based porous alumina film was placed in
a tube furnace, and the temperature was raised to 700 ◦C under vacuum conditions, while a mixed gas
of acetylene, hydrogen and argon was passed in. The vacuum degree was kept at 0.05 MPa, and the
deposition time was 90 min. Then, the copper nanoparticles were deposited in the aligned carbon
nanotubes by an electrochemical deposition method. The composite film was the working electrode
and the platinum electrode was the counter electrode. The electrolytic solution was 0.08 mol/L copper
sulfate pentahydrate and 0.4 mol/L boric acid, then thiourea or polyvinylpyrrolidone (PVP) were
added as an additive and the current density was 0.1 mA·cm−2. The effects of different additives on
the deposition of copper nanoparticles in the carbon nanotubes were explored. Finally, the sample
was immersed in a 0.5 mol/L sodium hydroxide solution for 1 h to remove the aluminum oxide film.
We left it in the air for 24 h, and then the oxidation of the sample was characterized.

At normal temperature, nitric acid reacts with sodium azide to produce hydrogen azide gas.
The gas–solid reaction of copper with hydrogen azide can produce copper azide. The reaction equation
involved in the above process is as follows:

HNO3 + NaN3→HN3 + NaNO3 (1)

Cu + 3HN3→Cu(N3)2 + NH3 + N2 (2)

The silicon-based Cu2O@CNTs composite film and Cu@CNTs composite film were placed in
a closed container. We passed N2 into it to remove the air and added 4 g·mL−1 of nitric acid and 2
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g·mL−1 of sodium azide solution. After 72 h of reaction, a silicon-based Cu(N3)2@CNTs composite
energetic film was obtained.

Field emission scanning electron microscopy (FESEM) and transmission electron microscopy
(TEM) were used to characterize the micro-morphology of the samples and X-ray diffraction (XRD),
high-resolution transmission electron microscopy (HRTEM), selective electron diffraction (SAED)
and energy dispersive X-ray spectroscopy (EDS) were used to characterize the crystal structure and
composition. The thermal decomposition kinetics of the Cu(N3)2@CNTs composite energetic film were
studied by differential scanning calorimetry (DSC).

The performance of the energetic films was tested by laser ignition experiments, and high-speed
photography was used to record the ignition process. By changing the output voltage of the laser,
the output energy and the optimal detonation energy can be obtained (84.1 mJ). The model of the
high-speed camera used in this experiment was APHJ-100, the frequency of high-speed camera was
30,000 fps and the laser is a Nd:YAG Dawa-200 single pulse laser with a wavelength of 1064 nm and
pulse width of 6 ns.

An electrical explosion performance test was performed on the energetic film. The schematic
diagram of the electrical explosion experiment device is shown in Figure 2. A high-voltage ceramic
capacitor was used as the energy storage capacitor. The capacitance was 0.22 µF and the initial
explosion voltage was 1500 V. The high-voltage probe and the Rogowski current loop were used to test
the voltage and current changes in the energetic film during the ignition process and recorded with
an oscilloscope. The electric explosion curve was analyzed.
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Figure 2. Schematic diagram of the electric explosion experiment device.

The circuit was connected first, then the sample was soldered to the positive and negative terminals
of the high-voltage output terminal of the printed circuit board (PCB), and the resistance was measured
to be 0.4 Ω. The high voltage (1500 V) of the pulse power source acted on both ends of the high-pressure
gas switch, and the trigger signal (3000 V) was output by the pulse power source, thereby turning on
the gas switch, completing the high-voltage output and acting on both ends of the sample.

The electrostatic sensitivity test of the silicon-based Cu(N3)2@ CNTs composite energetic film was
carried out by the Bruceton method. We tested the sample at a static ignition energy and ignition
voltage to evaluate the electrostatic sensitivity of the sample prepared. The 50% ignition energy (E50%)
of the sample was calculated by the critical ignition voltage (U50%).
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3. Results

3.1. The Silicon-Based Al/Ti Film

Figure 3a shows the XRD pattern of the silicon-based Al/Ti film. Compared with the standard
pattern (PDF#01-1176), it is obvious that when 2θ is 38.53◦, the corresponding characteristic peak is the
Al (111) plane. The aluminum film grows preferentially on the (111) crystal plane, which indicates
that it has the lowest surface free energy in the direction of the (111) crystal plane. As in the atomic
force microscope (AFM) diagram shown in Figure 3b, the aluminum film grows in an island-like
structure, and the average surface roughness is about 30 nm. Figure 3c shows the EDS spectrum of the
sample. The Si peaks, Al peaks and Ti peaks present in the spectrum are from the silicon substrate
and the Al layer as well as the Ti layer. The O peak is from the oxidized alumina of the Al layer.
The Au peak comes from the gold-spraying operation performed during the sample preparation to
increase conductivity.
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Figure 3. X-ray diffraction (XRD), atomic force microscope (AFM) and energy dispersive X-ray
spectroscopy (EDS) patterns of the silicon-based Al/Ti film: (a) XRD; (b) AFM; (c) EDS.

3.2. The Silicon-Based Porous Alumina Film

Figure 4 shows a schematic diagram of the anodizing process. The surface of the Al film prepared
by electron beam evaporation deposition is an island-like structure. The first step of anodizing caused
some uniformly distributed dents on the surface of the aluminum film. During this process, an alumina
film will also be produced. After the alumina film is removed, these dents become the initial sites for
the growth of the pores during the second step of anodizing, allowing highly ordered pores to grow.
After undergoing the pore enlarging process, the diameter of these channels becomes larger, so it is
more suitable as a template for depositing carbon nanotubes.
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Figure 4. Schematic diagram of the anodizing process.

As depicted in Figure 5, the cross-section and surface FESEM images of the porous alumina film
indicate the formation of a porous structure. Figure 5a,b shows the FESEM of the film before pore
enlarging. As shown in Figure 5a, the thickness of the well-organized porous alumina membranes
(PAM) is about 1.2 µm. Due to the increase in the oxidation time in the first step, the surface of the PAM
is relatively flat (Figure 5b). Both the pore diameter and the pore spacing are 100 nm approximately.
Figure 5c,d shows a cross-section and surface FESEM image of the PAM in a 5 wt% phosphoric acid
solution at 30 ◦C for 40 min. After the pore treatment, the barrier layer of the alumina film was basically
removed, indicating that the barrier layer was effectively removed during the pore enlarging process.
The pore diameter of the PAM becomes larger and the diameter is 150 nm approximately and relatively
regular and uniform (Figure 5d).
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Figure 5. Field emission scanning electron microscopy (FESEM) images of the silicon-based porous
alumina film: (a) section, before pore enlarging; (b) surface, before pore enlarging; (c) section, after pore
enlarging; (d) surface, after pore enlarging.

3.3. The Silicon-Based Cu@CNTs Composite Film

Carbon nanotube arrays can be prepared by chemical vapor deposition through the template
method. In this process, acetylene served as a source of carbon. The carbon produced by the cracking
of acetylene was deposited on the inner surface of the channel. Acetylene was continuously introduced
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into the tube furnace to ensure the integrity of the deposition process. Moreover, the alumina template
as a catalyst improved the efficiency of the carbon nanotube growth process.

Figure 6 shows TEM images of the carbon nanotubes prepared at different deposition times.
Figure 6a,c shows the TEM of the carbon nanotubes with a deposition time of 1.5 h, and Figure 6b,d
shows the carbon nanotubes with a deposition time of 2 h. Carbon nanotubes replicate the pores of the
PAM well and their outer diameter is basically the same as that of the alumina film, about 150 nm
(Figure 6a,b). Its length is basically the same as the thickness of the alumina film, which is about 1.2 µm.
The wall thickness of the carbon nanotubes in Figure 6c is 9–10 nm, and in Figure 6d is 13–14 nm. As the
reaction time increases, the wall thickness increases accordingly. Since the crystallinity of the wall of
the carbon nanotubes is poor, it is difficult to identify the number of layers of the carbon nanotubes.
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Figure 6. Transmission electron microscopy (TEM) and high-resolution transmission electron
microscopy (HRTEM) images of carbon nanotubes prepared at different deposition times: (a) TEM,
1.5 h; (b) TEM, 2 h; (c) HRTEM, 1.5 h; (d) HRTEM, 2 h.

Figure 7a,b shows the Raman spectra of the carbon nanotubes when the deposition time is 1.5 h and
2 h, respectively. The ID/IG were 0.79 and 0.74, indicating that the crystallinity of the carbon nanotubes
was poor. It shows that the crystallinity of the carbon nanotubes does not change significantly with the
increase in deposition time.
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The addition of organic additives has a great impact on the size, morphology and crystal orientation
of the electrodeposited particles and they can be used alone or in combination. In this work, 0.08 mol/L
copper sulfate pentahydrate and 0.4 mol/L boric acid were used as the basic electrolytes. The following
cases were compared: (a) no additives, (b) thiourea (TU) with a concentration of 0.01 g/L and (c) 0.01 g/L
of TU and 0.1 g/L of polyvinylpyrrolidone (PVP). The electrochemical deposition time was 2 h. After
the experiment, the products were characterized by TEM.

Figure 8 shows the TEM images of these products. Figure 8a is the morphology of the sample
without the additives. Obviously, the copper nanoparticles have a larger particle size and are distributed
at the mouth of the carbon nanotubes, blocking the mouth. Figure 8b is the morphology of copper
after adding TU at a concentration of 0.01 g/L. It can be found that the density of the copper particles in
the CNTs is low. Figure 8c shows the morphology of copper deposited in the CNTs after adding both
TU and PVP. Compared with Figure 8b, the deposition density of the copper nanoparticles in the CNTs
has increased.
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Figure 8. TEM images of copper-filled carbon nanotubes (CNTs) with different additives: (a) None;
(b) thiourea (TU); (c) TU and polyvinylpyrrolidone (PVP).

The sample was placed in the air for 24 h, and its morphology is shown in Figure 9. Due to
the rapid oxidation rate of the deposited copper nanoparticles in the air, which turns the copper
into cuprous oxide, the morphology of the copper nanoparticles deposited in the CNTs has changed.
In order to demonstrate the composition of the products, the products before and after the change
were characterized.
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Figure 9. TEM image of the sample after 24 h in air.

Figure 10a,b shows the XRD patterns of the samples stored in absolute ethanol and left in the air for
24 h, respectively. Comparing Figure 10a with the standard spectrum (PDF#01-1241), there are obvious
characteristic diffraction peaks of copper between 20◦ and 80◦. When 2θ is located at 43.317◦ and 50.52◦,
it corresponds to the (111) and (200) crystal planes of copper. The peak of the (111) crystal plane of
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copper is stronger than that of the (200) crystal plane, which indicates that copper preferentially grows
on the (111) crystal plane. Compared with the standard spectrum (PDF#65-3561), it can be confirmed
that the diffraction peak at 32.931◦ is the (006) crystal plane of CuS. Comparing Figure 10b with the
standard spectrum (PDF#65-3288), it can be seen that there are obvious characteristic diffraction peaks
of cuprous oxide. The diffraction peaks at 29.562◦, 36.419◦, 61.454◦ and 73.678◦ correspond to the
(111), (110), (220) and (311) crystal planes of cuprous oxide, respectively. Compared with the standard
spectrum (PDF#01-1241), the diffraction peaks at 43.528◦ and 50.425◦ correspond to the (111) and (200)
crystal planes of copper, respectively, and the diffraction peaks of copper become weaker. It shows that
copper is oxidized to cuprous oxide.
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and Cu@CNTs composite film, respectively. The characteristic diffraction peaks of cuprous azide 

appear in Figure 12a. Compared with the standard spectrum (PDF#04‐0622), the diffraction peaks at 
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Figure 10. XRD patterns of samples under different storage conditions: (a) stored in absolute ethanol;
(b) exposed to air for 24 h.

Figure 11 is an EDS spectrum of a sample stored in absolute ethanol. There are Si, Al, O, Cu, C,
Ti and S peaks in the figure. The Si and Ti peaks come from the silicon substrate and titanium layers.
The Al and O peaks are very weak, they come from the PAM which has not been completely removed.
The C peak comes from carbon nanotubes, while the Cu peak is nano-copper particles. The existence
of the S peak indicates that the TU and copper ions have formed sulfides. Compared with the XRD
pattern, it can be concluded that the S element is derived from CuS, and it is confirmed that the sulfur
ions in thiourea and copper ions in the electrolyte form copper sulfide.
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3.4. The Silicon-Based Cu(N3)2@CNTs Composite Energetic Film

Figure 12a,b shows the XRD spectra of the azide products of the Cu2O@CNTs composite film
and Cu@CNTs composite film, respectively. The characteristic diffraction peaks of cuprous azide
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appear in Figure 12a. Compared with the standard spectrum (PDF#04-0622), the diffraction peaks
at 18.927◦, 28.002◦, 29.162◦, 38.237◦, 41.060◦, 46.304◦ and 54.774◦ correspond to the (101), (211), (220),
(202), (321), (411) and (213) crystal planes of cuprous azide, respectively. Compared with the standard
spectra (PDF#65-3288) and (PDF#21-0281), it can be found that the diffraction peaks at 36.523◦ and
11.767◦ correspond to the (111) crystal plane of cuprous oxide and (110) crystal plane of copper azide.
The copper azide diffraction peak is very weak, which shows that cuprous oxide mainly formed
cuprous azide after the azide reaction. The diffraction peak of copper azide is obvious in Figure 12b.
Compared with the standard spectrum (PDF#21-0281), the diffraction peaks at 11.805◦, 16.366◦, 27.942◦,
31.916◦, 32.462◦ and 33.436◦correspond to the (110), (120), (230), (021), (320), (240), (211), (131), (301)
and (251) crystal planes of copper azide, respectively. It shows that copper was mainly converted into
copper azide after the azide reaction, and no cuprous azide was formed.
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Furthermore, the azide products were analyzed by HRTEM and SAED. Figure 13a,b show the
HRTEM and SAED images of the azide product of the Cu2O@CNTs film. There are clear lattice
fringes in Figure 13a. Calculated by the software, the interplanar spacings of the material are 0.3215,
0.3026, 0.2060 and 0.1652 nm, which correspond to the (211), (220), (411) and (213) crystal planes of
cuprous azide, respectively (the theoretical values of the interplanar spacing are 0.3180, 0.3060, 0.1960
and 0.1675 nm, respectively). It can be determined from SAED that the product is mainly cuprous
azide. Figure 13c,d shows the HRTEM and SAED images of the azide product of the Cu@CNTs film.
The crystal plane spacings in the figure are 0.3172, 0.2831 and 0.2752 nm, respectively, corresponding
to the (230), (021) and (320) crystal planes of copper azide (the theoretical values of the crystal plane
spacing are 0.3190, 0.2800 and 0.2762 nm), and the electron diffraction ring in SAED also confirmed
that the product is mainly copper azide.
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Table 1. Electrostatic sensitivity of the silicon‐based Cu(N3)2@carbon nanotubes (CNTs) composite film. 

Electrode Gap/mm Capacity/pF U50%/kV E50%/mJ 

0.12 500 4.0 4.0 

The energetic film was ignited by laser and the ignition process was recorded by high‐speed 

photography (Figure 15). The area of the flame reached its maximum at 33.3 μs, and the flame lasted 

about 166.7 μs. 

Figure 13. (a) HRTEM and (b) selective electron diffraction (SAED) images of the azide product of the
Cu2O@CNTs film; (c) HRTEM and (d) SAED images of the azide product of the Cu@CNTs film.

3.5. Properties of Composite Energetic Films

DSC was used to analyze the thermal behavior of the Cu(N3)2@CNTs composite film. As depicted
in Figure 14, the exothermic temperature of the composite energetic material is 168.79 to 223.75 ◦C
and a sharp exothermic peak was observed at 210.95 ◦C, indicating a rapid explosion reaction of the
energetic film.
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Figure 14. Differential scanning calorimetry (DSC) result of the copper azide filled CNTs energetic film.

The electrostatic sensitivity of the Cu(N3)2@CNTs energetic film was tested by the Bruceton
method. The results are shown in Table 1. The U50% is 4.0 kV and E50% is 4.0 mJ.

Table 1. Electrostatic sensitivity of the silicon-based Cu(N3)2@carbon nanotubes (CNTs) composite film.

Electrode Gap/mm Capacity/pF U50%/kV E50%/mJ

0.12 500 4.0 4.0

The energetic film was ignited by laser and the ignition process was recorded by high-speed
photography (Figure 15). The area of the flame reached its maximum at 33.3 µs, and the flame lasted
about 166.7 µs.
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Figure 15. High-speed photography of energetic films during laser ignition.

Figure 16 shows the appearance of the film after laser ignition. The diameter of the firing area is
about 4.274 mm. The firing position is concave. Spattering can be observed around it and black spots
appear, which indicates that the film was melted during laser ignition.
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Figure 16. The appearance of the film after laser ignition: (a) physical photo; (b) optical microscope
photo (32 times).

Figure 17 shows the electric explosion characteristic curve of the energetic film. The energy
utilization ratio η is obtained through Equation (3). The parameters such as current and voltage in
the curve are listed in Table 2. One of the envisaged applications of the composite energetic film
designed in this article is as an initial energy-converting component in micro-detonation devices.
The high-energy pulse capacitor gave a certain amount of energy to the composite energetic film,
and the composite energetic film exploded to generate energy. The electric explosion characteristic
mainly refers to the energy conversion efficiency of the energetic film in this process. The energy
utilization ratio η is the ratio of

∫ t
0 U·Idt and 1/2CU2

0.
∫ t

0 U·Idt is the integral of U·I, and the integral
interval is from 0 to t (the time when the current reaches the peak value). It is the energy obtained
by the energetic film from the capacitor during the explosion. 1/2CU2

0 is the energy stored in the
high-voltage capacitor. The value of η shows that the energetic film has a good energy conversion
ability during the electrical explosion process. Moreover, the time for the current to rise to the peak
value is short, and the peak value of the current is large. These show that the energetic film has good
electrical explosion properties. Therefore, it is expected to be used as a kind of energy conversion
component in the micro-detonation device.

η =

∫ t
0 U·Idt

1/2CU2
0

(3)
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Table 2. Performance parameters of the electric explosion experiment.

Peak
Current/kA

Peak
Voltage/kV

Peak Current
Time/ns

Peak Voltage
Time/ns

Explosion
Time/ns

Explosion
Power/MW

Explosion
Energy/mJ η/%

1.35 0.80 102.0 130 114.0 1.04 68.61 27.72

4. Discussion

In this work, carbon nanotube arrays were prepared by chemical vapor deposition and template
methods. Levin et al. [29] analyzed the existence form of an anodic aluminum oxide (AAO) template
at different temperature stages during heating. When the temperature is above 1200 ◦C, the existence
form of AAO is stable α-Al2O3. When the temperature reaches 230–500 ◦C, it changes to η-Al2O3,
and the existence form is mainly γ-Al2O3 when the temperature is 450–750 ◦C. The η-Al2O3 and
γ-Al2O3 have higher porosity and a large specific surface area, so they have better catalytic activity. The
commonly used carbon source gas can only be thermally decomposed at high temperatures (800 ◦C).
When acetylene was used as the carbon source, the aligned carbon nanotube array can be prepared in
the AAO template channel at about 600 ◦C. It shows that the AAO template plays a catalytic role in the
thermal decomposition of acetylene, so that it can be decomposed at lower temperatures. Liu et al. [30]
studied that the catalytic process of the AAO template has two main steps. The first is the catalytic
effect when the carbon source is decomposed, and the second is the catalytic effect during the growth
of carbon nanotubes.

Yang et al. [31] studied the growth mechanism of carbon nanotubes prepared by the AAO
templates and found that carbon atoms were deposited on the walls of the alumina template and
the channels of the AAO template were copied to obtain the carbon nanotube structure. The carbon
nanotubes are named a-CNTs (amorphous carbon nanotubes). By analyzing the Raman spectrum and
TEM, it can be known that the carbon nanotubes obtained in this work are also a-CNTs. With reference
to Yang’s conclusion, we consider the mechanism of preparing carbon nanotube arrays through PAM,
as shown in Figure 18.
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Figure 18. Schematic diagram of the mechanism for preparing carbon nanotube arrays through porous
alumina membranes (PAM).

First, the carbon source is cracked to generate carbon atoms under the catalysis of the PAM.
Carbon atoms are deposited in the pores of the PAM. Under the autocatalysis of the PAM, the carbon
atoms replicate the pore structure of the PAM and grow into carbon nanotubes at a relatively lower
temperature. The carbon atoms generated by the continuous decomposition of the carbon source
continue to enter the hollow lumen of the carbon nanotubes, deposit on the inner wall of the formed
carbon nanotubes and repeat the growth of the carbon nanotubes. With the increase in the reaction
time, the thickness of the carbon nanotube wall also increases and even solid carbon nanorods may
be obtained. Therefore, carbon nanotubes of different thicknesses can be obtained by controlling the
reaction time.

During the stage of electrochemical deposition, the type of additive has a great influence on the
filling effect of the copper nanoparticles. Additives can be generally classified into three categories:
halide ions, supporting electrolytes and organic additives. Xu [32] found that the addition of Cl− in
the electrolyte would form a “chlorine bridge” under enhanced polarization conditions, changing the
charge transfer mechanism of the charged particles in the solution. The role of the supporting electrolyte
is generally considered to increase the charge transfer rate and the conductivity of the electrolyte.

By comparing the different morphologies of copper deposited in CNTs, it is obvious that when
no additives were added, the crystal size of copper grew too large, resulting in the inability of
copper nanoparticles to be deposited in CNTs. When TU was added, the particle size of the copper
nanoparticles decreased significantly. These results confirm that TU as an additive has the effect of
inhibiting the growth of copper particles. First, TU adsorbs on the surface of the copper particles and
reacts with Cu2+ to form compounds. These compounds become adsorption layers and cover the active
sites of copper, preventing further reduction of Cu2+. Then TU and CuS generated by Cu2+ are also
adsorbed on the surface of the copper particles, making the copper atoms unable to reach the active
site and inhibiting the growth of grains. When TU and PVP were added together, the particle size
of the copper nanoparticles became smaller, indicating that the inhibitory effect is more pronounced
when PVP and TU work together.

Figure 19 shows the SEM images of the cross-section of CNTs grown on silicon-based porous
alumina films, silicon-based Cu@CNTs film and silicon-based Cu(N3)2@CNTs film. It can be seen from
Figure 19a that the carbon nanotubes were tightly attached to the inner walls of the pores of the porous
alumina template, and the shape of the pores was well reproduced. Its upper end was open, providing
an entrance for the deposition of the copper nanoparticles. Figure 19b shows the cross-section of
the film after the copper nanoparticles were filled. The copper nanoparticles were relatively evenly
distributed in the carbon nanotubes, without obvious agglomeration. After the azide reaction, the
copper nanoparticles were converted to energetic copper azide (Figure 19c). It can be seen that its
particles’ size become slightly larger, and the ordered directional carbon nanotube arrays have not
been destroyed during the azide process.
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Figure 19. SEM images of the cross-section of (a) CNTs grown on silicon-based porous alumina films;
(b) the silicon-based Cu@CNTs film and (c) the silicon-based Cu(N3)2@CNTs film.

Carbon nanotubes have excellent electrical conductivity. When the copper azide is filled into
the hollow cavity of the oriented carbon nanotube, the electrostatic charge will be dispersed on the
surface of the carbon nanotube instead of accumulating on the surface of the copper azide. Therefore,
the explosion of copper azide caused by the electrostatic charge can be avoided, and the electrostatic
sensitivity of the composite energetic film can be effectively reduced. Compared with the E50% of pure
nano-copper azide (0.05 mJ) reported before [33], the electrostatic sensitivity of the composite film is
significantly reduced.

In future research, it will be an interesting direction to combine carbon materials with different
structures and copper azide to obtain energetic materials with good performance. Copper azide
can take advantage of its high energy density in composite materials, and carbon materials with
different structures can isolate copper azide particles in various ways, thereby reducing the mechanical
sensitivity of composite energetic materials. Meanwhile, the excellent conductivity of carbon materials
can also reduce the electrostatic sensitivity of composite energetic materials. On the one hand,
the advantages of copper azide are used, and on the other hand, carbon materials are used to make up
for the shortcomings of copper azide as a primary explosive. The composite energetic films designed
and prepared in this paper will also be further optimized to be applied to MEMS pyrotechnic devices.
Furthermore, an in-depth study of the mechanism of azide reaction will also be a valuable work.

5. Conclusions

Energetic films realized by encapsulating copper azide in silicon-based carbon nanotube arrays
were presented in this study, which opens a route to integrate primary explosives realized on Ti-coated
silicon wafers. A silicon-based alumina template was prepared using a modified anodization process.
We prepared CNTs by chemical vapor deposition using the prepared template. Copper nanoparticles
were embedded into the carbon nanotubes by means of electrochemical deposition. The prepared
Cu@CNTs composite film reacted with hydrogen azide gas to synthesize the copper azide@CNTs
composite energetic film with low electrostatic sensitivity. Moreover, this composite film stores a great
quantity of energy and can be released rapidly. Therefore, it has great potential to replace the commonly
used lead-containing detonator and achieve the miniaturization of the ignition device.
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