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Abstract: This study experimentally analyses the binding characteristics of analytes mixed in liquid
samples flowing along a micro-channel to the receptor fixed on the wall of the micro-channel to provide
design tools and data for a microfluidic-based biosensor. The binding or detection characteristics are
analyzed experimentally by counting the number of analytes bound to the receptor, with sample
analyte concentration, sample flow rate, and the position of the receptor along the micro-channel
length as the main variables. A mathematical model is also proposed to predict the number of
analytes transported and bound to the receptor based on a probability density function for Brownian
motion. The coefficient in the mathematical model is obtained by using a dimensionless mathematical
model and the experimental results. The coefficient remains valid for all different conditions of the
sample analyte concentration, flow rate, and the position of the receptor, which implies the possibility
of deriving a generalized model. Based on the mathematical model derived from mathematical and
experimental analysis on the detection characteristics of the microfluidic-based biosensor depending
on previously mentioned variables and the height of the micro-channel, this study suggests a design
for a microfluidic-based biosensor by predicting the binding efficiency according to the channel
height. The results show the binding efficiency increases as the flow rate decreases and as the receptor
is placed closer to the sample-injecting inlet, but is unaffected by sample concentration.

Keywords: biosensor; specific binding of analyte-receptor; transport model for micro-fluidic channel
based on Brownian motion

1. Introduction

Biosensors are devices used to detect specific analytes based on antigen-antibody reactions [1].
Detection using biosensors is achieved through a process in which measurable optical or electrical
signals are derived from the binding of an analyte and a receptor specific to this analyte (Figure 1a) [2–5].
Biosensors are used in various fields, including medical diagnostics, which require highly sensitive
detecting of low-concentration analytes below ng/mL for early diagnosis or precise analysis [1,6–8].
To achieve this, a wide variety of studies are being conducted on improving the binding efficiency
between analytes and receptors, or the signal efficiency and intensity from the analyte-receptor
binding [9–13]. In terms of binding efficiency, it is important to bring the analyte within a distance
where binding is possible in addition to improving the binding affinity between receptors and analytes.
Adapting micro/nano-channels or beads for higher surface-to-volume ratio is an effective method to
increase the binding probability between low concentration of analytes in liquid samples and receptors
fixed on the surface of the channels or beads such as micro-fluidic biosensor [1,14–17].
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Figure 1. (a) Schematic of sensing mechanism for bio sensor. (b) Schematic of binding process between 
analyte and receptor in micro-channel. 

In the case of microfluidic-based biosensors, despite adapting micro-channel for higher chance 
of analyte-receptor binding, it may be hard to place the analytes close enough, for example within 20 
nm [18], to the receptors while flowing through the micro-channel, considering the channel size, 
analyte size, and the strong laminar flow in the micro-channel. The probability decreases for lower 
concentration of analytes mixed in the sample, which results in poor detection ability of biosensors. 
Therefore, in addition to research on improving analyte-receptor binding kinetics or the 
characteristics of optical or electrical signals derived from bound analyte-receptor, quantitative 
analysis on the behavior of analytes flowing along a micro-channel is required to improve the 
detection characteristics of microfluidic-based biosensors.  

As mentioned above, in the case of microfluidic-based biosensors with receptors fixed to the 
wall of the micro-channel, the binding between the analyte and receptor occurs on the wall of the 
channel as shown in Figure 1b. Therefore, the analytes should move toward the micro-channel wall 
during the flow for sensing. However, it is usually difficult to generate a lateral flow to the wall. 
Various studies have been performed to enhance transportation of analytes towards the wall by 
external fields [19–21] or vortices caused by mixing structures on the surface [22–24], but using 
external energy or fabricating additional surface structures may not always be practical due to cost, 
user environments or manufacturing issues. When no external field or mixing surface structure is 
present for lateral flow, the movement of analytes such as enzymes, proteins, viruses, or bacteria is 
mainly driven by Brownian motion [25–27]. Therefore, analyzing the binding properties between the 
analyte and receptor by considering the Brownian motion of the analyte is critical for developing 
highly sensitive microfluidic biosensors. 

Transport of analytes inside microfluidic channel is usually described by the reaction-diffusion 
model and it is widely accepted. Numerical simulation for a rectangular channel with micro-pillar 
was performed [28] and diffusion-convection model for flat plates was described considering the 
standard entrance effect [29]. Moreover, the transport of analytes and surface reaction was 
numerically modeled for the electro-osmotic flow [30]. However, it is difficult to reflect the individual 

Figure 1. (a) Schematic of sensing mechanism for bio sensor. (b) Schematic of binding process between
analyte and receptor in micro-channel.

In the case of microfluidic-based biosensors, despite adapting micro-channel for higher chance
of analyte-receptor binding, it may be hard to place the analytes close enough, for example within
20 nm [18], to the receptors while flowing through the micro-channel, considering the channel size,
analyte size, and the strong laminar flow in the micro-channel. The probability decreases for lower
concentration of analytes mixed in the sample, which results in poor detection ability of biosensors.
Therefore, in addition to research on improving analyte-receptor binding kinetics or the characteristics
of optical or electrical signals derived from bound analyte-receptor, quantitative analysis on the
behavior of analytes flowing along a micro-channel is required to improve the detection characteristics
of microfluidic-based biosensors.

As mentioned above, in the case of microfluidic-based biosensors with receptors fixed to the wall
of the micro-channel, the binding between the analyte and receptor occurs on the wall of the channel
as shown in Figure 1b. Therefore, the analytes should move toward the micro-channel wall during
the flow for sensing. However, it is usually difficult to generate a lateral flow to the wall. Various
studies have been performed to enhance transportation of analytes towards the wall by external
fields [19–21] or vortices caused by mixing structures on the surface [22–24], but using external energy
or fabricating additional surface structures may not always be practical due to cost, user environments
or manufacturing issues. When no external field or mixing surface structure is present for lateral
flow, the movement of analytes such as enzymes, proteins, viruses, or bacteria is mainly driven
by Brownian motion [25–27]. Therefore, analyzing the binding properties between the analyte and
receptor by considering the Brownian motion of the analyte is critical for developing highly sensitive
microfluidic biosensors.

Transport of analytes inside microfluidic channel is usually described by the reaction-diffusion
model and it is widely accepted. Numerical simulation for a rectangular channel with micro-pillar was
performed [28] and diffusion-convection model for flat plates was described considering the standard
entrance effect [29]. Moreover, the transport of analytes and surface reaction was numerically modeled
for the electro-osmotic flow [30]. However, it is difficult to reflect the individual motion of analyte such
as shear induced lift force movement because it is described in the perspective of concentration, which
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is regarded as important effect in a micro-sized channel. Thus, a transport model needs to be presented
in the individual analyte perspective, especially for the low-concentration case in which continuum
hypothesis may not be valid. This study suggests a model for the transport of analytes to receptors
fixed on the micro-channel in a microfluidic-based biosensor using a mathematical model by calculating
the number of analytes capable of colliding on the wall based on Brownian motion. This study also
experimentally examines the number of bound particles according to the design parameters of the
device, such as the size of the channel or the position of the receptor, and the parameters for the
diagnostic process, such as the concentration and flow rate of the sample. The findings are compared
with the results calculated by the model, and a design for the main structure of the microfluidic-based
biosensor is presented using the mathematical model.

2. Experiments

To examine the analyte-receptor binding efficiency depending on the detection conditions such as
the concentration of the sample, flow rate, and the receptor-analyte binding measurement position,
this study counted the number of bound particles while the sample including analytes flowed through
a microchannel (height: 100 µm) as shown in Figure 2. In terms of the model receptor, streptavidin was
immobilized on the micro-channel surface. As for the analyte, this study used fluorescent biotinylated
Polystyrene beads (FluoSpheres™ Biotin-Labeled Microspheres, diameter: 200 nm) with excellent
binding properties with streptavidin [31,32]. The binding between streptavidin-biotin was confirmed
by measuring the fluorescence of fluorescent polystyrene beads. Also, by using engineering particles
uniform in size and density as a model analyte, the number of analytes used in the experiment was
able to be estimated for each condition, which enabled more accurate measurement and analysis of
receptor-analyte binding properties according to the concentration. The next section describes the
experimental method and conditions including surface treatment for streptavidin immobilization.
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Figure 2. Configuration of the micro-fluidic biosensor for analyte-receptor binding experiments.

2.1. Microfluidic Channel and Surface Modification

A micro-fluidic channel was designed to be 100 µm in depth (H = 100 µm) and 5 mm in width
(W = 5 mm) to reduce the effect of the side wall of the channel on the flow. The length of the channel
was set to 70 mm. A transparent micro-fluidic channel substrate was injection molded using PMMA
(Poly methyl methacrylate) to observe the behavior of the particles and fluorescent image of the
Polystyrene (PS) particles bound to the streptavidin.

For biotinylated beads-streptavidin binding, streptavidin is required to be coated previously on
the PMMA micro-channel wall, which consists of several processes as follows. After sonication in
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iso-propanol (IPA) for 15 min, PMMA substrates were washed with IPA and DI water in turn [33].
The surface of the micro-channel was carboxylated by exposing to UV light for 30 min for effective
streptavidin coating. Streptavidin was immobilized onto the PMMA surface by dipping in coating
solution, a mixture of 50 µL of streptavidin, 25 mg of EDC (1-ethyl-3-(3-dimethylaminopropyl)
carbodiimide) reagent, and 5 mL of MES buffer. EDC was used for facilitating binding of the amino
part of streptavidin with carboxyl groups on the PMMA surface. After incubation for 2 h 30 min,
the PMMA substrates were washed and dried with nitrogen gas [34].

2.2. Investigation for Bound Particles

The experiment was performed by flowing the samples during each detection time. After injecting
the solution containing beads, the microchannel was washed three times by 10 mL of deionized
water for each washing. DI water was injected at flow rate 10 mL/h in order to exclude non-intended
adsorption of beads. Non-specific binding of biotinylated PS beads was investigated through bare
PMMA surface. Because the experiments were performed under flow and the bead solution used for
the experiments contained Tween20, none of the particles were bound to bare PMMA after washing.

Images of the particles bound to a specific area (W1 = 1362 µm, W2 = 1021 µm) of the channel
wall were obtained with a fluorescence microscope. As shown in Figure 3, after setting a binary
threshold to remove the noise and image processing for the uniform size of the fluorescence image of
the particle, the number of particles bound in the microscopic area shown in Figure 2 were counted
discretely using distributed fluorescent signals. Every experiment used different channel plate with
same micro-channel in dimension, material and surface conditions.
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Figure 3. Image for fluorescent biotinylated Polystyrene (PS) bead bound to streptavidin on the surface
of the micro-channel (a) from fluorescent microscopy (b) after image processing for counting the
bound beads.
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2.3. Experimental Conditions

The experiments were repeated five times each per the conditions shown in Table 1 below. The flow
rate conditions were 0.3 mL·h−1, 1.2 mL·h−1, and 2.4 mL·h−1. In the case of 1.2 mL·h−1, the average
velocity of the flow (vx) is equivalent to about 0.67 mm·s−1. In addition, the bound particles were
observed at different observation positions from the inlet to 10 mm, 35 mm, and 60 mm, respectively,
to investigate the effect according to the sample flow distance in the micro-channel.

Table 1. Experimental conditions.

Number Density (n) Flow Rate Observation Position (L)

1.93× 1015 m−3 1.2 mL·h−1 35 mm
1.93× 1014 m−3 1.2 mL·h−1 35 mm
1.93× 1013 m−3 1.2 mL·h−1 35 mm
1.93× 1012 m−3 1.2 mL·h−1 35 mm
1.93× 1014 m−3 0.3 mL·h−1 35 mm
1.93× 1014 m−3 2.4 mL·h−1 35 mm
1.93× 1014 m−3 1.2 mL·h−1 10 mm
1.93× 1014 m−3 1.2 mL·h−1 60 mm

3. Mathematical Model and Analysis

As shown in Figure 4a, the probability density function that a particle may exist at a distance
(r) from the initial position after a certain time (t) is shown in Equation (1) by Einstein’s Brownian
motion [26]. Therefore, as shown in Figure 4b, the probability P(z) of a particle at a distance (z) from
the channel wall to collide with the wall by Brownian motion during a certain time (t) can be expressed
as an integral form of Equation (1) for positions farther than z, as shown in Equation (3). A correction
factor C1 is introduced considering a microscopic area limited only to a specific direction towards wall
(Figure 5).

p(r) =
1

√
4πDt

e
−r2
4Dt (1)

where D is the diffusion coefficient (m2
·s−1), t is the elapsed time (s), r is the distance from the initial

position of the particle (m).
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Brownian motion is affected by the temperature, the viscosity, and the radius of analyte. In this
study, these properties are fixed so that the diffusion coefficient is constant. The diffusion coefficient D
is calculated (D = 2.4× 10−12 m2

·s−1) from the Stokes-Einstein relation as shown in Equation (2):

D =
kBT
6πηr

(2)

where kB is the Boltzmann constant, T is the absolute temperature, η is the viscosity, r is the radius
of analyte.

P(z) = C1

∫
∞

z
dr

1
√

4πDt
e
−r2
4Dt (3)

If the density function for the spatial distribution of particles is f (x,y,z), the total number of
particles colliding with the wall during t is as below.
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NH,total = C1

∫ ∫ ∫
f (x, y, z)P(z) dV (4)

The density function may be considered as a constant assuming that the particles are distributed
uniformly in the channel, and expressed as f (x,y,z) = n by using number density n.

Since not all the particles that collide with the wall are bound to the receptor, the number of
particles bound to the microscopic area can be expressed as follows by introducing coefficient C2 to
reflect the collide-to-bound ratio and integrating it with C1 above into coefficient C = C1C2.

Nbound = C2NH,total (5)

If there is a flow, the total amount of particles involved during the detection time (τ) is calculated
by using the number of particles that passed through the channel cross-section. When the x-direction
velocity of the particle is vx, as shown in Figure 5, the volume of the space where the injected particles

are distributed is W2
∫ H

0 vx(z)τdz. Therefore, the total number of injected particles can be expressed
using number density n as follows.

nW2

∫ H

0
vx(z)τdz (6)

In addition, t varies depending on the distance (L) from the inlet. As shown in Figure 5, t during
the transport of particles from the inlet to points L −W1/2 and L + W2/2 by the flow are L−W1/2

vx
and

L+W2/2
vx

, respectively. Therefore, the number of particles bound to the microscopic area (dA) with a

distance of L from the inlet can be expressed as the difference between when t is L+W1/2
vx

and L−W1/2
vx

as
shown below.

Nbound = CnW2

[∫ H

0
P(z)

∣∣∣
t=

L+W1/2
vx

vx(z)τ dz−
∫ H

0
P(z)

∣∣∣
t=

L−W1/2
vx

vx(z)τ dz
]

(7)

where n is number density (m−3), L is the distance from inlet of microscopic area (m), H is the height of
channel (m), τ is detection time (s), vx is the x-directional speed of flow (m·s−1), W1 and W2 are the
length and width of microscopic area dA, respectively (m).

Equation (7) predicts the number of bound particles by using the displacement of individual
particles being diffused independently by Brownian motion and the total number of injected particles,
in which the Brownian motion is not affected by the flow.

4. Results and Discussion

4.1. The Number of Bound Particles

Figure 6 shows the results of measuring the number of bound particles according to the detection
time under the conditions of number density n = 1.93× 1015 m−3, flow rate = 1.2 mL·h−1, and observation
position = 35 mm. The number of bound particles increased linearly over time, which is consistent
with Nbound being linear to the detection time (τ) in Equation (7).
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Figure 6. Result of measuring the number of bound particles according to the detection time
(n = 1.93× 1015 m−3, flow rate = 1.2 mL·h−1, observation position = 35 mm).

Under the conditions of flow rate = 1.2 mL·h−1 and observation position = 35 mm, Figure 7 shows
the results of the number of bound particles normalized by number density n according to the detection
time for each concentration. As shown in the graph, the normalized values approximate to a single
linear curve.
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Figure 7. Normalized Nbound according to the time for each concentration (Normalized by number
density n), flow rate = 1.2 mL·h−1, observation position = 35 mm. Master curve was fitted using the
least square method (R2 = 0.90).

Figure 8a shows the result of plotting the number of bound particles for each flow rate over time
under the conditions of n = 1.93× 1014 m−3 and observation position = 35 mm. Figure 8b shows the
number of bound particles compared to the quantity of the sample injected to directly compare the
binding efficiency. Since the number density of the sample used in the experiment was 1.93× 1014 m−3,
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0.1 mL of the sample contains approximately 1.93× 107 analytes. As shown in Figure 8b, the binding
efficiency increases as the flow rate decreases. This is because the traveling time for particles to
be bound to the microscopic area by Brownian motion increases for lower flow rate. Considering
these results, lower flow rate is better to improve detection efficiency when using the same quantity
of samples.
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Figure 8. Number of bound particles depending on flow rate for (a) n = 1.93× 1014 m−3, observation
position = 35 mm (b) n = 1.93× 1014 m−3, observation position = 35 mm.

Figure 9 shows the result of counting the number of bound particles at the different observation
positions under the conditions of n = 1.93× 1014 m−3, τ = 1200 s and flow rate = 1.2 mL·h−1. The number
of bound particles tended to decrease exponentially as the distance from the inlet increased. Therefore,
it is favorable to place the receptor in microfluidic-based biosensors as close as possible to the inlet
where samples are injected.
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Figure 9. Number of bound particles depending on the distance of the observation position from inlet
(n = 1.93× 1014 m−3, τ = 1200 s, Flow late = 1.2 mL·h−1).

4.2. Numerical Estimation for the Number of Bound Particles based on Mathematical Model

The particles mixed with the liquid sample are injected into the inlet flow along the micro-channel
and pass through the microscopic area if they do not be bound to the receptor after hitting the channel
wall by Brownian motion during time (tL) to reach observation position (L). Therefore, t = tL in the
probability density function Equation (1), which is the basic equation for calculating the number of
particles bound to the channel surface from the inlet to the microscopic area. When limiting the area to
count the bound particles to a microscopic area with a distance of L from the inlet, the number of bound
particles can be calculated as follows. The value is calculated by the difference between the number of
particles bound to the surface of the channel during time t

L+
W1

2
required to transport to the position

where the microscopic area ends and the number of particles bound to the surface of the channel
during time t

L−
W1

2
required to transport to the position where the microscopic area starts. In this

calculation, the time required for the particles to pass through the microscopic area is ( W1
vx
), which is

the time it takes for the particles to pass through W1, regardless of the position of the microscopic area
(L). As the traveling time increases as the observation position (L) moves further away from the inlet,
the probability density function (Equation (1)) for the position of the particles becomes broad as shown
in the graph in Figure 10. Thus, the integral value of the probability density function, which is the
probability a particle exists over a certain distance from the initial position of the particle increases and
the number of particles bound to the channel surface from the inlet is thereby increased. However,
although the integral value of the probability density function over a certain distance increases as t
increases, the increase rate decreases. Therefore, as t increases, the integral value for the increment ∆t
of the same time, that is, the number of bound particles decreases. Therefore, as the microscopic area
moves further away from the inlet, the transport time (t) of the particles to the corresponding position
increases, while the time required to pass through the microscopic area of the same size (∆t) is the
same, resulting in a decrease in the number of particles bound to the microscopic area.
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4.3. Empirical Coefficient of Mathematical Model for Bound Particles

The experimental results for the number of bound particles normalized by number density under
various particle concentration conditions (Figure 7) was used to obtain the empirical coefficient C of
the mathematical model to calculate the number of bound particles of Equation (5) or Equation (7).
Therefore, Equation (7) can be rewritten as below.

Nbound/n
τ

= CW2

[∫ H

0
P(z)

∣∣∣
t=

L+W1/2
vx

vx(z) dz−
∫ H

0
P(z)

∣∣∣
t=

L−W1/2
vx

vx(z) dz
]

(8)

In Figure 7, the number of normalized bound particles shows results that change linearly with
respect to τ, so the slope of the linear curve corresponds to Nbound/n

τ of Equation (8), and the value of
the empirical coefficient C can be obtained by using the slope of this curve. The slope of the curve was
3.09× 10−15 using the least square method, and therefore C = 0.0395. This empirical coefficient C for
mathematical model for behavior of the analytes is estimated based on experimental results as explained
above. Comparing works in this paper, it can be seen that some previous researchers, however, studied
the binding kinetics near the receptors [28–30]. As shown in Equation (9), the binding rate of the
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analyte can be estimated based on the association-dissociation coefficient, analyte concentration near
the wall or receptor, density of the receptors on the surface.

∂Cs

∂t
= konCwall(Cs0 −Cs) − koffCs (9)

where Cs is the density of the analytes bound to receptor on the surface of the micro-channel, Cwall is
the analyte concentration near wall, Cs0 is the density of the receptors on the micro-channel surface,
kon and koff are the association and dissociation rate constants, respectively.

Equation (9) can be expressed as below with the assumptions that the streptavidin has high affinity
for biotin and is immobilized with high surface density onto PMMA surface (kon � koff, Cs0 � Cs).

∂Cs

∂t
= konCwallCs0 (10)

Here, Cwall corresponds to the number of analytes transported to the wall, NH,total in Equation (5).
Thus, C2 corresponds to the konCs0, semantically, but direct comparison is difficult because the model
in this study describes transport of analytes in individual analytes perspective and focuses on the
low-concentration case in which the density of the receptors outweighs the analyte concentration.

Figure 11 shows the mean relative errors (MRE) for each concentration to compare the results
calculated by the empirical coefficient C with the experimental results. According to the graph,
the values calculated by the mathematical model with the empirical coefficient C obtained from the
normalized data in Figure 7 show a valid correlation with experimental values. However, there is
a relatively large deviation in terms of number density n = 1.93 × 1012 m−3. This is because of the
difficulty in assuming the density function for the spatial distribution of particles as a constant in
extremely low-concentration samples as in Section 3. In the case of number density n = 1.93× 1012 m−3,
considering that the interparticle distance is about 80 µm and the height of the channel used in the
experiment is 100 µm, as shown in Figure 12, only one particle is distributed in the height direction on
average. Consequently, it is difficult to apply a continuum mathematical model and a large deviation
is shown.
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Figure 11. Mean relative errors (MRE) of experimental values according to the concentration and the
values calculated by using the empirical coefficient C.
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The results also show that the interaction between particles and wall has almost no effect on the
distribution of particles in the channel. This is because if the repulsion of the wall and particles affects
the distribution in the channel, the particles will be concentrated near the center of the channel as
shown in Figure 13b, which will reduce the binding efficiency significantly. That is, the wall-particle
repulsion may act strongly near the wall, but not enough to affect the distribution of particles.
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between particle and wall.

Meanwhile, the shear induced lift force can affect transport of analytes and it is described as
below [35].

FL = KµVr2
( .
γ

ν

)1/2

(11)

where K is the numerical constant, V is the relative velocity, r is the radius of particle,
.
γ is the shear

rate, µ and ν are the dynamic and kinetic viscosity, respectively.
The maximum lift force exerted to the analyte is 6.31× 10−18 N from Equation (11) and Goldman

results for the slip velocity [36]. For this maximum lift force, the maximum terminal velocity and time
to reach terminal velocity are calculated as below.

vt,max =
Flift

6πµr
∼ 3.35 nm/s (12)

T =
m

6πµr
∼ 2× 10−12 s (13)
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Considering that it is the maximum value and it is dissipated as the analyte moves to the channel
center, the effect by the shear can be neglected.

The results of comparing the test results with different flow rates using coefficient C = 0.0395 with
the predicted values by the model are as follows (Figure 14). Even when the flow rate conditions were
different, the results predicted by the model were close to the experimental values.
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Figure 14. Comparison for number of bound particles from experiment and mathematical model
(Equation (7)) depending on time for different flow rate condition (a) flow rate = 0.3 mL·h−1, (b) flow
rate = 1.2 mL·h−1, (c) flow rate = 2.4 mL·h−1 (n = 1.93× 1014 m−3, observation position = 35 mm). Solid
lines depict data fitting with Equation (7). Coefficients of determination are (a) R2 = 0.98, (b) R2 = 0.98,
(c) R2 = 0.93.

For capillary flow, which is widely used in medical diagnostic device, the flow rate is determined
by the surface tension and the viscosity of sample solution. Except for the flow front, velocity profile
for the capillary flow is coincident to the pressure driven flow. Thus, the mathematical model can be
applied for capillary flow in the same manner with adequate velocity profile.

4.4. Effect of Observation Position from Inlet and Channel Height

Figure 15 shows the results of comparing the estimated values by the model with the experimental
results depending on the observation position for number density n = 1.93 × 1014 m−3 and flow
rate = 1.2 mL/h. The comparison was performed to examine the difference in binding efficiency
according to the observation position of the channel. The observation position was set to 10 mm,
35 mm, and 60 mm from the inlet to exclude the entrance effect. Figure 15b shows the result of plotting
the number of bound particles according to the observation position when fixing the detection time to
20 min. As in the experimental results, the number of bound particles exponentially decreased as the
detection position moved further away from the inlet.
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Figure 15. Comparison for number of bound particles from experiment and mathematical model
(Equation (7)) for n = 1.93× 1014 m−3, flow rate = 1.2 mL·h−1. (a) depending on observation position
(Coefficients of determination are R2 = 0.95 for 10 mm, R2 = 0.98 for 35 mm and R2 = 0.94 for
60 mm), (b) when detection time is set to 20 min. (C = 0.0395, D = 2.4× 10−12 m2

·s−1, W1 = 1362 µm,
W2 = 1021 µm are used for Equation (7)).

On the other hand, Figure 16 shows the results of calculating the binding efficiency according
to the channel height when fixing the detection time to 20 min and setting the average x-direction
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velocity (vx) to 0.67 mm·s−1, which corresponds to the value at flow rate 1.2 mL·h−1 for 100 µm height
channel. In this calculation, the binding efficiency is calculated by normalizing the number of bound
particles by the total number of injected particles. As shown in Figure 16a, when observing at the
inlet, the binding efficiency increases as the channel height decreases. This is because the analytes
need to move less laterally to contact receptors on the wall as the height of channel decreases while
the mobility by Brownian motion remains the same, regardless of the channel height. On the other
hand, when observing at the position 35 mm away from the inlet, the peak for binding efficiency
is shifted as shown in Figure 16b. As the channel height decreases, the particles flow away further
from the wall may be bound to the receptor on wall, resulting in less particles passing to downstream.
For higher channel, only particles closer to the wall can be bound to the wall near the inlet and more
particles passes through the area near inlet to touch the wall away from the inlet since the particles
need more time to travel before touching the wall by lateral movement. The optimal channel height
for maximum binding efficiency tends to increase as the observation position moves further away
from the inlet. Therefore, when setting the observation position to a certain distance from the inlet,
the channel should be designed by considering the optimal value of the binding probability according
to the observation position.

Micromachines 2020, 11, x FOR PEER REVIEW 17 of 20 

 

mm), (b) when detection time is set to 20 min. (C = 0.0395, D = 2.4 × 10ିଵଶ	mଶ ∙ sିଵ, W1 = 1362 µm, W2 
= 1021 µm are used for Equation (7)). 

On the other hand, Figure 16 shows the results of calculating the binding efficiency according to 
the channel height when fixing the detection time to 20 min and setting the average x-direction 
velocity (ݒ௫) to 0.67 mm·s−1, which corresponds to the value at flow rate 1.2 mL·h−1 for 100 µm height 
channel. In this calculation, the binding efficiency is calculated by normalizing the number of bound 
particles by the total number of injected particles. As shown in Figure 16a, when observing at the 
inlet, the binding efficiency increases as the channel height decreases. This is because the analytes 
need to move less laterally to contact receptors on the wall as the height of channel decreases while 
the mobility by Brownian motion remains the same, regardless of the channel height. On the other 
hand, when observing at the position 35 mm away from the inlet, the peak for binding efficiency is 
shifted as shown in Figure 16b. As the channel height decreases, the particles flow away further from 
the wall may be bound to the receptor on wall, resulting in less particles passing to downstream. For 
higher channel, only particles closer to the wall can be bound to the wall near the inlet and more 
particles passes through the area near inlet to touch the wall away from the inlet since the particles 
need more time to travel before touching the wall by lateral movement. The optimal channel height 
for maximum binding efficiency tends to increase as the observation position moves further away 
from the inlet. Therefore, when setting the observation position to a certain distance from the inlet, 
the channel should be designed by considering the optimal value of the binding probability according 
to the observation position. 

 
(a) 

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0 20 40 60 80 100

N
b
o
u
n
d
/N

to
ta

l

Channel height (µm)Micromachines 2020, 11, x FOR PEER REVIEW 18 of 20 

 

 
(b) 

 

Figure 16. Nbound/Ntotal according to the channel height for (a) observation position = 0 mm (b) 
observation position = 35 mm. 

5. Conclusions 

This article investigates experimentally and mathematically the process of analyte-receptor 
binding within the channel for a microfluidic biosensor. A mathematical model is proposed based on 
the probability density function for Brownian motion. Results from analyte-receptor binding 
experiments are also analyzed and a key coefficient is estimated empirically for the proposed 
mathematical model. The flow rate, observation position and analyte concentration are used as 
parameters for the binding efficiency of the microfluidic biosensor. The validity of the model is 
established by comparing the experimental results. Using the proposed mathematical model, an 
example of micro-fluidic channel for biosensor is designed and investigated the effect of the channel 
dimension on the binding efficiency. This study also presented an index for device design to optimize 
the binding efficiency, which may be used to enhance the limit of detection or to reduce the detection 
time or the amount of the samples.  

The viscosity, temperature, interaction between analyte, or electrostatic properties such as 
Debye length can affect the motion of analytes. In addition, the binding phenomenon can be 
influenced by the chemical properties such as acidity of the sample solution. In this study, these 
properties were fixed in order to examine the basic motion of analyte through microfluidic channel. 
Hence, further research about these properties is needed.  

Author Contributions:  Conceptualization, W.I.L. and Y.-E.Y.; Data curation, S.C.; Formal analysis, S.C.; 
Funding acquisition, Y.-E.Y.; Investigation, S.C.; Methodology, S.C.; Project administration, Y.-E.Y.; Software, 
G.H.L.; Supervision, Y.-E.Y.; Writing—original draft, S.C.; Writing—review & editing, S.C. and Y.-E.Y. 

Funding: This research was funded by the National Research Foundation of Korea (NRF) Grant funded by the 
Ministry of Science and ICT for First-Mover Program for Accelerating Disruptive Technology Development 
(2018M 3C 1B9069841), and the Institute Project of Korea Institute of Machinery and Materials (NK226E) 

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the 
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to 
publish the results. 

References 

Figure 16. Nbound/Ntotal according to the channel height for (a) observation position = 0 mm
(b) observation position = 35 mm.



Micromachines 2020, 11, 570 18 of 20

5. Conclusions

This article investigates experimentally and mathematically the process of analyte-receptor binding
within the channel for a microfluidic biosensor. A mathematical model is proposed based on the
probability density function for Brownian motion. Results from analyte-receptor binding experiments
are also analyzed and a key coefficient is estimated empirically for the proposed mathematical model.
The flow rate, observation position and analyte concentration are used as parameters for the binding
efficiency of the microfluidic biosensor. The validity of the model is established by comparing the
experimental results. Using the proposed mathematical model, an example of micro-fluidic channel
for biosensor is designed and investigated the effect of the channel dimension on the binding efficiency.
This study also presented an index for device design to optimize the binding efficiency, which may be
used to enhance the limit of detection or to reduce the detection time or the amount of the samples.

The viscosity, temperature, interaction between analyte, or electrostatic properties such as Debye
length can affect the motion of analytes. In addition, the binding phenomenon can be influenced by
the chemical properties such as acidity of the sample solution. In this study, these properties were
fixed in order to examine the basic motion of analyte through microfluidic channel. Hence, further
research about these properties is needed.
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