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Abstract: In this paper, we present a comparative study of a cost-effective method for the mass 
fabrication of electrodes to be used in thin-film flexible supercapacitors. This technique is based on 
the laser-synthesis of graphene-based nanomaterials, specifically, laser-induced graphene and 
reduced graphene oxide. The synthesis of these materials was performed using two different lasers: 
a CO2 laser with an infrared wavelength of λ = 10.6 µm and a UV laser (λ = 405 nm). After the 
optimization of the parameters of both lasers for this purpose, the performance of these materials 
as bare electrodes for flexible supercapacitors was studied in a comparative way. The experiments 
showed that the electrodes synthetized with the low-cost UV laser compete well in terms of specific 
capacitance with those obtained with the CO2 laser, while the best performance is provided by the 
rGO electrodes fabricated with the CO2 laser. It has also been demonstrated that the degree of 
reduction achieved with the UV laser for the rGO patterns was not enough to provide a good 
interaction electrode-electrolyte. Finally, we proved that the specific capacitance achieved with the 
presented supercapacitors can be improved by modifying the in-planar structure, without 
compromising their performance, which, together with their compatibility with doping-techniques 
and surface treatments processes, shows the potential of this technology for the fabrication of future 
high-performance and inexpensive flexible supercapacitors. 

Keywords: flexible electronics; graphene oxide; laser-induced graphene; laser-scribing; 
supercapacitors 

 

1. Introduction 

Flexible electronics are expected to bring out a revolution in diverse fields of technology, such 
as electronic skin [1,2], robotics [3,4] or health-monitoring devices [5–7], among others. Most of the 
recent advances in this context have been possible due to the emergence of new conductive and 
flexible materials, many of which have reported outstanding results in terms of electrical conduction 
and integration, such as the polycrystalline silicon (poly-Si) [8,9] or several semiconducting metal 
oxides (e.g., SnO2, TiO2, ZnO or ITO) [10–12]. However, due to the complexity of their synthesis or 
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the expensive fabrication processes required to obtained large-area samples, research groups are still 
exploring different alternatives that enable an inexpensive and massive fabrication of flexible 
electronics devices. 

Therefore, the efforts in this direction have led to extensive investigations on the use of several 
classes of nanomaterials with different conductivity and sensing capabilities, including carbon 
nanotubes (CNTs), graphene-derived materials, metal nanowires or conductive polymers [13]. All 
these materials have in common being compatible with printing techniques, which enable their 
economical and efficient processing on diverse flexible substrates, thereby providing a commercially 
attractive possibility to obtain multifunctional electronics over large areas [14]. Thus, techniques such 
as screen-printing or inkjet printing have enabled large achievements in all areas involved in the 
development of flexible electronics devices, extending from transducers to the antennas for the 
wireless data transmission [15–19]. 

However, apart from the latter, novel flexible electronics applications are also demanding 
flexible energy storage devices that, together with energy harvesting technologies, contribute to the 
development of self-powered devices and, thus, to the paradigm of the ubiquitous sensing [20]. In 
this respect, supercapacitors are expected to play an important role, thanks to the higher power 
density induced by their fast charging/discharging rates when compared to conventional batteries. 
Supercapacitors can be classified mainly into two different groups, electrochemical double-layer 
capacitors (EDLCs) and pseudocapacitors, depending on the storage mechanism, i.e., the interaction 
between electrode-electrolyte [21]. EDLCs are those whose electrode material is not electrochemically 
active, and therefore the capacitance is associated with the pure physical charge accumulation at the 
electrode/electrolyte interface. On the contrary, the energy storage in pseudocapacitors relies on fast 
and reversible faradaic redox reactions occurring on the electrode surface [21–23]. For these reasons, 
in both cases, the electrode is a key element in the development of supercapacitors and then, many 
materials have been investigated for this purpose. In the case of pseudocapacitors, the most studied 
materials are transition metal oxides and conducting polymers, which promote the reversible 
faradaic-type charge transfers of these redox supercapacitors [24], whereas EDLCs electrodes are 
fabricated from nanoscale materials with high porosity and high surface area. In this latter case, 
carbon-based materials are preferred to play this role, due to their exceptionally high surface area, 
relatively high electrical conductivity and acceptable cost. These properties make porous carbon-
based materials, such as Laser-Induced Graphene (LIG) or reduced Graphene Oxide (rGO) [25–27], 
ideal candidates for the fabrication of the electrodes. Many researchers agree that these kind of 
electrodes will play an important role in the supercapacitor technology, and that is why a big effort 
is being made to further optimizing its properties through doping [28] or surface treatments [29]. 

In this context, this work is focused on the study of a cost-effective technique for the synthesis 
of raw graphene-based EDLCs electrodes and its optimization. Following a laser-photothermal 
process, we synthesized electrodes based on both LIG and Laser-rGO (LrGO) using two different 
kind of laser beams: CO2 and UV. These electrodes were tested under the same conditions of layout 
and electrolyte to compare their performance as EDLCs electrodes. The work is structured as follows: 
after this introduction, Section 2 summarizes the different materials used in our experiments, as well 
as the methodologies followed for the fabrication and characterization of the samples. Section 3 
presents the results obtained for the different electrodes together with a comparison of their 
performance. Finally, the main conclusions are drawn in Section 4. 

2. Materials and Methods  

2.1. Materials 

Two different flexibles substrates were used for the fabrication of the electrochemical capacitors, 
Kapton® HN films with a thickness of 75 µm from DuPont Corporation (Wilmington, DE, USA) and 
Polyethylene Terephthalate (PET) foils with a thickness of 160 µm from ColorGATE Digital Output 
Solutions GmbH (Hannover, Germany). Graphene Oxide at a concentration of 0.4 wt% was acquired 
from Graphenea (San Sebastián, Spain). The electrolyte was prepared using poly(vinyl alcohol) (PVA, 
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Mw 31,000–50,000, 98%–99% hydrolyzed) and phosphoric acid (H3PO4, product name: 1005731000), 
both acquired from Sigma-Aldrich (St. Louis, MO, USA). Electrical access to the capacitive devices 
was printed using a silver-based conductive paint from RS PRO (RS Components, Corby, UK). 

2.2. Fabrication Processes 

The gel electrolyte was prepared by dissolving 1 g of PVA (Mw 31,000–50,000, 98%–99% 
hydrolyzed, from Sigma-Aldrich, St. Louis, MO, USA) in 10 mL of de-ionized water (10 wt%), stirring 
at 80 °C for 2 h using a hot plate stirrer (Scilogex SCI280-Pro, from Scilogex, LLC, Rocky Hill, CT, 
USA). Once the PVA was completely dissolved, 1.5 mL of H3PO4 was added to the solution and it 
was stirred for another hour [30–32].  

The devices were fabricated following the schemas shown in Figure 1. In the case of the LIG-
based supercapacitors (Figure 1a), the laser photothermal ablation was carried out directly on the 
polyimide film (Figure 1a-1), inducing the graphene-derived structures on its surface (Figure 1a-2) 
[33,34]. On the other hand, for the fabrication of LrGO-based electrodes, a PET foil (Figure 1b-1) was 
covered with GO at a concentration of 75 µL/cm2 (Figure 1b-2). After that, the sample was dried at 
ambient conditions during 48 h. Once the drying process was completed, the GO was turned into 
rGO through the laser photothermal process, as shown in Figure 1b-3.  

Two different types of laser were used in this work for this purpose. On one side, we used a CO2 
laser with an infrared wavelength of 10.6 µm (Rayjet 50, from Trotec Ltd., Marchtrenk, Austria). On 
the other side, we also used a UV laser with a wavelength of 450 nm (from KKmoon SA, Automatic 
K5). The use of this type of technology requires two main safety measures. Thus, the laser machines 
count on with an eye protection shielding, which filters the high intensity wavelength of their 
corresponding laser beams. In addition to that, a fume extractor was used during the laser 
photothermal treatment to avoid the inhalation of the gases released during this process. 

Both laser power and speed were set, in order to optimize the sheet resistance of the graphene-
derived patterns, thus improving the effective electrons transport and the electrochemical property 
[35]. Therefore, we obtained a total of four different combinations laser-electrode (hereinafter referred 
to as LIG UV, LIG CO2, rGO UV, rGO CO2 for each material and laser, respectively).  

The layout studied in this work consisted of planar InterDigital Electrodes (IDE) structure 
(Figure 1), given that this configuration allows to achieve lower thicknesses and a more accurate 
control of the distances between electrodes than its stack counterpart [36]. In addition, we considered 
two different patterns, firstly we characterized the different devices using the following layout: 
number of fingers N = 20, width of the fingers W = 1 mm, spacing between electrodes S = 1 mm, 
interspacing between fingers i = 1 mm and length of the fingers L = 1 cm, which resulted in an effective 
area of ~4 cm2. Secondly, we also used a layout with the same effective area, but with different spacing 
between electrodes (S = 500 µm), interspacing between fingers (i = 500 µm), as well as the width of 
the fingers (W = 500 µm), to demonstrate the possibility of increasing the specific capacitance by 
changing the geometry of the IDE structure. 

After the laser scribing process, electrical contacts were printed on both sides using silver ink 
(Figure 1a-3 and Figure 1b-4) with the objective of reducing the resistivity between the electrode and 
the current collector, and with that the Equivalent Series Resistance (ESR) of the capacitor [37,38]. 
Finally, ~1.5 mL of the gel electrolyte was drop-casted on top of the capacitive IDE structure covering 
all the effective area, as depicted in Figure 1a-4,b-5, and the samples were left standing overnight to 
remove the excess of water before the characterization.  
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Figure 1. Schematic representation of the fabrication process of the flexible electrochemical capacitors 
(ECs). (a) Laser-Induced Graphene (LIG)-based ECs: (1) Kapton® polyimide film (thickness: 75 µm), 
(2) laser-scribing process to induce graphene-derived pattern on the surface of the polyimide (this 
case shows the CO2 laser beam), (3) silver electrical contacts printed on each electrode, (4) 
poly(vinylalcohol) (PVA)/H3PO4 electrolyte drop-casted on top of the InterDigital Electrodes (IDE) 
structure. (b) Laser-reduced Graphene Oxide (rGO) (LrGO)-based ECs: (1) PET film (thickness: 160 
µm), (2) GO deposited onto the PET substrate (concentration: 75 µL/cm2), (3) laser-scribing process to 
reduce the GO, (4) silver electrical contacts printed on each electrode, (5) PVA/H3PO4 electrolyte drop-
casted on top of the IDE structure. 

2.3. Characterization 

The sheet resistance of the graphene-derived patterns was extracted through the Transmission 
Line Method (TLM) [34]. X-ray Photoelectron Spectroscopy (XPS) analysis was performed using the 
Katros Axis Ultra-DLD X-ray photoelectron spectrometer (from Kratos Analytical Ltd, Manchester, 
UK). The samples were characterized in a vacuum chamber at a pressure of 10−10 Torr at an X-ray 
power of 450 W. Raman spectra were obtained with a NRS-5100 dispersive micro-Raman 
spectrometer (from JASCO International Co. Ltd., Tokyo, Japan) using an excitation source with a 
wavelength of λ = 532nm (Elforlight G4-30; Nd:YAG). The profilometry of the samples was acquired 
using a DekTak XT contact profilometer (from Bruker Corporation, Billerica, MA, USA) at a stylus 
force of 1 mg. Cyclic Voltammetry (CV) experiments were performed using the B2912A precision 
source-measurement unit (SMU) from Keysight Technologies, Inc. (St. Rose, CA, USA). 

3. Results and Discussion  

The feasibility of both CO2 and UV lasers to induce porous nanographene aggregates from 
commercial polyimides, and to reduce the GO, has been already proved in several works [6,28,33,34]. 
However, due to the different nature of the laser beams, not only is the power required to optimize 
the sheet resistance different, but so are the properties of the material synthetized [39]. Furthermore, 
the power required for the synthesis of these materials depends on the laser used, thus, we set the 
laser speed and studied the sheet resistance of the laser-synthetized patterns as a function of the laser 
power, in order to minimize the sheet resistance while maintaining the integrity of the substrates. 
Following the TLM procedure, whose results are summarized in Supplementary Figure S1, the 
configuration of the laser to minimize the sheet resistance is presented in Table 1. 
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Table 1. Values of the sheet resistance obtained after optimization for the different laser beams and 
materials. 

Laser Material Laser Power 
(W) 

Laser Speed 
(cm/s) 

Sheet Resistance 
(Ω/sq.) 

CO2 
rGO 1.5 15 196.8 
LIG 6 15 43.3 

UV 
rGO 0.39 1 305.7 
LIG 1.5 1 240.1 

As has been reported in previous works, one of the distinctive features of LIG, which is common 
for both UV and CO2 laser exposition sources, is its highly porous structure, which is a consequence 
of the rapid liberation of gaseous products during the laser-scribing process, also associated with the 
drastic increase in the atomic percentage of carbon [34,40–42]. In the case of the LrGO, the laser 
treatment on the surface of the GO leads to a partial restoration of the crystallographic network of its 
graphitic structure, which was disrupted during the oxidation process [43]. However, this partial 
recovery makes the surface of the resulting material to present structural defects manifested thorough 
a large roughness and a 3D plate-shape structure with multiple craters, a phenomenon that has been 
reported for both UV [44] and CO2 lasers [45], and that could be helpful to increase their double layer 
capacitance effect. 

Raman and XPS spectroscopies confirmed the graphene-derived nature of these materials. On 
one hand, as seen in Figure 2, all Raman spectra are composed mainly by three different peaks located 
at ~1345 cm−1 (D peak), ~1580 cm−1 (G peak) and ~2700 cm−1 (2D peak), respectively. In particular, the 
G peak is associated with the sp2-hybrized carbon networks of the graphitic materials, whereas the D 
peak reveals the presence of defects in this structure (it would be inexistent in single-layer pristine 
graphene). Moreover, the 2D peak and its full width at half maximum (FWHM2D) are of particular 
interest for the study of the multi-layer nature of these materials [46].  

 
Figure 2. Raman spectra of the different electrodes, (a) rGO UV, (b) rGO CO2, (c) LIG UV (d) LIG CO2. 

Acquisition parameters: wavelength: 532 nm, data interval: 1 cm−1, exposure time: 15 s, accumulations: 
5, center number: 1469.99 cm−1. GO spectrum can be found in supplementary Figure S2. 

In single-layer pristine graphene, the ratio I2D/IG is ~2–3, and it decreases as the number of layers 
increase [47]. On this basis, the results of the rGO sheets showed that the rGO produced with the CO2 

laser presents a lower number of layers (higher I2D/IG ratio) than the one induced with the UV laser, 
which might be related to its lower thickness (~12 µm, in comparison with ~18 µm, according to 
profilometry results) due to the higher irradiation power, as demonstrated in other works [48]. In 
addition, the lower FWHM2D also indicates that these layers have a better crystallographic structure 
[49]. The better recovery of the crystallographic structure of the rGO obtained with the CO2 laser is 
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an indication of a more effective reduction process, which explains its smaller sheet resistance, in 
spite of having lower thickness. Moreover, the high ID/IG ratio indicates that the CO2 laser rGO also 
presents a high defect density. In the case of the LIG electrodes, the higher ID/IG ratio and FWHM2D 
indicate a higher defective and disordered structure (i.e., lower crystallographic quality) with respect 
to the rGO with no significant difference between lasers sources.  

On the other hand, the XPS analysis demonstrates that the ablated surfaces are mainly composed 
of carbon and oxygen (present as carbon–oxygen functional groups), and that the laser-treatment led 
to a drastic increase in the original C/O ratio of the raw materials, as summarized in Table 2.  

Table 2. Carbon and oxygen atomic concentrations their ratio obtained extracted from the X-ray 
Photoelectron Spectroscopy (XPS) spectra for the different samples. 

Material Carbon Content 
(%) 

Oxygen Content 
(%) C/O ratio 

Kapton®  78 18 4.33 
LIG-CO2 95.72 4.85 19.74 
LIG-UV 87.72 9.28 9.45 

GO 68.73 29.85 2.30 
rGO-CO2 87.42 9.83 8.89 
rGO-UV 84.45 10.70 7.89 

The highest C/O ratios are those obtained from the LIG synthetized with the CO2 (C/O = 19.74) 
and UV (C/O = 9.45) lasers, respectively, being the CO2–produced samples the ones reporting a higher 
level of reduction. A more detailed study of the nature of these changes can be obtained by means of 
the analysis of the high-resolution C1s XPS spectra, the results of which are shown in Figure 3.  

As expected, the lasers are able to remove efficiently the oxygen-containing functional groups 
of the raw GO material (see Figure S3), as well as most of the C–N, C–O–C and C=O bonds, which 
compose the Kapton® HN structure. For the rGO, the remaining non-desirable bonds after the laser 
treatment are mainly associated with carbon–oxygen compounds in the case of the UV laser (Figure 
3a), and with sp3 hybridized carbon bonds for the rGO reduced with the CO2 laser (which could 
explain its high ID/IG ratio). Finally, regarding the LIG, the intensity of the C=C peak, when compared 
with the intensity of rest of the compounds, indicates that the CO2 laser allowed a higher isolation of 
the sp2 hybridized atoms with respect to the LIG induced with the UV laser (Figure 3b,d, 
respectively), which is in accordance with its high carbon percentage. 

 
Figure 3. XPS C1s peaks of the different electrodes, (a) rGO UV, (b) LIG UV, (c) rGO CO2 (d) LIG CO2. 

Once all four different materials were analyzed from a structural point of view, we studied their 
electrochemical performance as electrodes for flexible supercapacitors. For that, we firstly performed 
the Cyclic Voltammetry (CV) experiments, considering a potential window of ΔV = 1 V (from −0.5 V 
to +0.5 V) at different scanning rates. The CV curves obtained for the different electrodes are shown 
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in Figure 4. In addition, the CV curves at a scan rate of 100 mV/s are plotted together in Figure 5a, 
whereas Figure 5b presents the specific capacitance as a function of the scan rate extracted according 
to Equation (1). 𝐶  1𝐴 ∆𝑉 𝑠 𝐼 𝑉 𝑑𝑉  (1) 

where A is the area, ∆V the potential window, s the scan rate and I(V) the current response as a 
function of the voltage [27]. 

As seen, apart from the rGO synthetized with the UV laser, the curves maintain a highly 
symmetric quasi-rectangular shape over the increasing scan rates, indicating a good reversible EDLC 
behavior and a fast charge propagation within the electrode [50]. However, it can be noted that all 
these curves differ from each other, indicating that the interaction electrode-electrolyte is different in 
each case. Thus, regarding the LIG electrodes, we can appreciate that the material synthetized with 
the different lasers presents an identical electrochemical behavior, but with the difference of a lower 
capacitance, in the case of the LIG UV electrode. This difference in capacitance is practically constant 
along the different scan rates (e.g., 0.23 mF/cm2 against 0.16 mF/cm2 at 10 mV/s and 0.18 mF/cm2 
against 0.12 mF/cm2 at 100 mV/s), indicating that this constant difference in capacitance might be 
associated with the difference in the effective area of the LIG electrodes, as a result of the lower 
mechanical resolution of the UV laser when compared to the CO2 laser, which yields a lower effective 
area of the electrodes [40]. In the case of the rGO CO2 electrodes, their electrochemical behavior agrees 
with the reported for equivalent devices presented in the literature, such as the ones presented by 
Ghoniem et al. [45] and Yoo et al. [51]. It can be also noted that, even though the sheet resistance of 
the rGO CO2 electrodes is higher than the obtained for the LIG patterns, they report the best 
performance in terms of specific capacitance (0.44 mF/cm2 at 10 mV/s) as a consequence of their higher 
specific surface area, when compared to the LIG, which could be up to 4.5 times higher, in the case 
of the laser-synthetized rGO according to references [42] and [52]. 

 
Figure 4. Cyclic voltammetry curves at different scan rates for the different electrodes (a) LIG CO2, 
(b) rGO UV, (c) LIG UV, (d) rGO CO2. 
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Lastly, the tilted CV curves obtained with the rGO UV electrodes represent a high ESR, as a 
consequence of the sheet resistance of these patterns, as well as a larger internal resistance to 
penetrate into the pores of the electrode, as a result of their less reduced state with a high 
concentration of sp3 carbon bonds [53]. This is also reflected in the behavior of the capacitance as the 
scan rate increases. As seen, for low scan rates, the specific capacitance achieved with these electrodes 
is quite similar to that obtained with the rGO-CO2, since, at these rates, the ions have enough time to 
penetrate deeply into pores; however, it decreases gradually as the frequency increases (2 µF·s/mV), 
due to the reduction of the penetration depth, hence, worsening their performance [54]. 

 
Figure 5. (a) Cyclic voltammetry curves at 100 mV/s. (b) Specific capacitance as a function of the scan 
rate. 

Furthermore, we tested the cyclability of the different electrodes over an increasing number of 
CV cycles (at 100 mV/s), extracting the specific capacitance for every single cycle (Figure 6). As 
observed, the capacitors are able to retain their capacitance with a variation less than 0.03 µF/cycle in 
all cases (being the LIG UV those with less retention capacity ~83% after 1000 cycles). As expected, 
the capacitance decreases as the cycles increase, with exception of the rGO UV electrodes, whose 
capacitance increases (up to ~700 cycles), and afterwards retains almost the same value, as a 
consequence of the electrochemical reduction of some of the remaining oxygen groups of these still 
highly-oxidized electrodes, as has been demonstrated in other works [27,55]. 

 
Figure 6. Specific capacitance as a function of increasing cyclic voltammetry cycles at a scan rate of 
100 mV/s obtained with the different electrodes. 

According to the previous results, the LIG electrodes synthetized with both lasers, as well as the 
rGO synthetized with the CO2 laser, show promising results for potentially being used as bare 
electrodes in supercapacitors. In particular, the LIG electrodes synthetized with the UV laser are of 
particular interest for the development of really inexpensive electrodes, since, using a low-cost and 
low-power laser, they achieve comparable results to that obtained with a CO2 laser, which could be 
further improved by increasing the mechanical resolution of CNC system driving the laser. In 
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addition, both fabrication approaches are also compatible with the techniques of functional 
nanomaterials growth, as well as doping procedures in the case of the GO, which would help to 
improve their electrochemical activity [56–58]. 

However, it is also possible to obtain higher specific capacitances without resorting to any 
doping or additional treatment of the bare electrodes, simply by modifying the layout of these 
structures. Thus, as an example, we considered an alternative microstructure for the LIG UV and rGO 
CO2 capacitors. This structure covers the same area than the previous one but with a distance between 
electrodes, spacing and width of the fingers of 500 µm, instead of 1 mm. 

As a result, this structure led to an increase of the capacitance in both cases, without 
compromising the electrochemical performance of the devices, as can be observed in Figure 7a. This 
increment arises from the increase of the capacitance between two consecutive fingers by reducing 
their interspacing, as well as from the increment of the density of fingers, according to the IDE 
analytical models [59–61]. In our case, the increment, depicted in Figure 7b, represents a factor of 1.42 
± 0.05 for the LIG UV electrodes and of 1.73 ± 0.03 for the rGO CO2, resulting in a specific capacitance 
at 10 mV/s of ~0.23 mF/cm2 and ~0.7 mF/cm2, respectively. These values compare well to the ones 
reported for similar devices fabricated with other materials, such as activated carbon [62] or 
graphene-CNTs [63], and it is similar or even higher than the reported results for other laser-
synthetized materials [64,65].  

In addition, it is shown in Figure 8 how these devices are capable of maintaining their 
electrochemical performance under different bend conditions, without significant changes to their 
specific capacitance (being the maximum deviation with respect to the flat state ∆C/C0 (%) = 1.87 in 
the case of LIG electrodes and ∆C/C0 (%) = 5.45 in the case of the rGO electrodes). This maximum 
deviation was reported for the outer bend state in both cases.   

 
Figure 7. (a) Comparison of the cyclic voltammetry curves at 100 mV/s for two different configuration 
of electrodes. (b) Specific capacitance as a function of the scan rate for these configurations. 

 
Figure 8. Cyclic voltammetry curves at a scan rate of 100 mV/s at different bend conditions (bend 
radius of 1.25 cm) obtained for the (a) LIG UV and (b) the rGO CO2 supercapacitors. Inset of (a) shows 
an inner bent LIG-based supercapacitor, while inset of (b) shows an outer bent rGO-based 
supercapacitor. 
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Furthermore, in applications where the size is not a constraint, it is always possible to combine 
different supercapacitors to increase either the current delivered or the operation voltage, as 
represented in Figure 9. For instance, here we present the CV curves of a single LIG UV 
supercapacitor, together with different combinations of two devices at a scan rate of 100 mV/s. As 
seen, when two supercapacitors are combined in series, they operate at double of the voltage, without 
compromising their performance at the cost of an equivalent capacitance, which is a half of the 
presented by a single device. Alternatively, when they are connected in parallel, the equivalent is 
twice the capacitance of a single device, hence, duplicating the nominal current. Finally, to show a 
practical application, we used a parallel configuration of two devices to power up a red LED bulb (as 
shown in the inset of Figure 9). For that, the cell was previously charged at 1 mA up to reach 2.5 V. 

 
Figure 9. Cyclic voltammetry curves at a scan rate of 100 mV/s for the LIG UV-based supercapacitors 
obtained under different series-parallel configurations. Inset shows the power up of a red LED using 
two devices in parallel connection. 

4. Conclusions 

In this work, we reported a comparative study of the laser synthesis of graphene-based 
electrodes to be used in flexible electric double-layer capacitors (EDLCs). We considered two different 
kind of lasers, a CO2 laser with an infrared wavelength of λ = 10.6 µm and a low-power UV laser (λ 
= 405 nm) to synthetize laser-induced graphene from Kapton® HN polyimide films, as well as to 
reduce a graphene oxide layer deposited onto a PET foil. After the optimization of the parameters of 
the lasers to minimize the sheet resistance of the laser-synthetized patterns, we studied the resulting 
materials and their performance as electrodes for electric double-layer capacitors. The experiments 
showed that the LIG electrodes synthetized with the low-cost UV laser are able to provide a specific 
capacitance that compares well to that obtained with the CO2 laser. Furthermore, it has been 
demonstrated that, under similar conditions, the rGO electrodes fabricated with the CO2 laser make 
it possible to obtain the highest specific capacitance, whereas the reduction achieved with the UV 
laser was not enough to provide a good electrochemical performance, given the high degree of 
oxidation of the resulting material, which increases the equivalent series resistance of the capacitive 
structure, as well as the motion resistance of electrolyte ions within the pores of the electrode. Finally, 
we proved how, by reducing the width of the fingers and the distance between them, hence, 
increasing the density of fingers, it is possible to enhance the specific capacitance of the these EDLCs.  

The authors believe that the technology presented in this work contributes to the study of bare 
electrodes for the fabrication of inexpensive flexible supercapacitors, while further studies aim to 
extend the comparison in combination with doping techniques.  

Supplementary Materials: The following are available online at www.mdpi.com/2072-666X/11/6/555/s1, Figure 
S1: Resistance as a function of the distance between consecutive contacts extracted from the TLM measurements, 
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Figure S2: Raman spectra of the graphene oxide. Acquisition parameters: wavelength: 532 nm, data interval: 1 
cm−1, exposure time: 15 s, accumulations: 5, center number: 1469.99 cm−1, Figure S3. XPS C1s peaks of the 
graphene oxide.  
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