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Abstract: Terahertz (THz) imaging is a rapidly emerging field, thanks to many potential 

applications in diagnostics, manufacturing, medicine and material characterisation. However, the 

relatively coarse resolution stemming from the large wavelength limits the deployment of THz 

imaging in micro- and nano-technologies, keeping its potential benefits out-of-reach in many 

practical scenarios and devices. In this context, single-pixel techniques are a promising alternative 

to imaging arrays, in particular when targeting subwavelength resolutions. In this work, we discuss 

the key advantages and practical challenges in the implementation of time-resolved nonlinear ghost 

imaging (TIMING), an imaging technique combining nonlinear THz generation with time-resolved 

time-domain spectroscopy detection. We numerically demonstrate the high-resolution 

reconstruction of semi-transparent samples, and we show how the Walsh–Hadamard 

reconstruction scheme can be optimised to significantly reduce the reconstruction time. We also 

discuss how, in sharp contrast with traditional intensity-based ghost imaging, the field detection at 

the heart of TIMING enables high-fidelity image reconstruction via low numerical-aperture 

detection. Even more striking—and to the best of our knowledge, an issue never tackled before—

the general concept of “resolution” of the imaging system as the “smallest feature discernible” 

appears to be not well suited to describing the fidelity limits of nonlinear ghost-imaging systems. 

Our results suggest that the drop in reconstruction accuracy stemming from non-ideal detection 

conditions is complex and not driven by the attenuation of high-frequency spatial components (i.e., 

blurring) as in standard imaging. On the technological side, we further show how achieving efficient 

optical-to-terahertz conversion in extremely short propagation lengths is crucial regarding imaging 

performance, and we propose low-bandgap semiconductors as a practical framework to obtain THz 

emission from quasi-2D structures, i.e., structure in which the interaction occurs on a deeply 

subwavelength scale. Our results establish a comprehensive theoretical and experimental 

framework for the development of a new generation of terahertz hyperspectral imaging devices.  

Keywords: terahertz; nonlinear optical conversion; complex optical systems; adaptive imaging; 

single-pixel imaging; surface nonlinear photonics 

 

1. Introduction 

In recent years, there has been increasing interest in the development of imaging techniques that 

are capable of reconstructing the full-wave properties (amplitude and phase) of arbitrary 

electromagnetic field distributions [1–3]. While standard optical technologies, such as cameras and 

photodiodes, are usually sensitive to the field intensity, a large part of the sample information is 
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encoded in the optical phase of the scattered field [4]. Interestingly, the direct detection of the field 

evolution is achievable at terahertz (THz) frequencies thanks to the availability of the time-domain 

spectroscopy (TDS) technique. TDS detection provides a time-resolved measurement of the electric 

field (e.g., via electro-optical sampling [5]), allowing researchers to retrieve the complex-valued 

dielectric function of a sample. Such a capability, coupled with the existence of specific and distinctive 

spectral fingerprints in the terahertz frequency range, are critical enabling tools for advanced 

applications, such as explosive detection, biological imaging, artwork conservation and medical 

diagnosis [6–10]. However, despite the vast body of potential applications, the development of TDS 

devices that are capable of high-resolution imaging is still regarded as an open challenge. A typical 

TDS implementation relies on complex and expensive optical components that cannot be easily 

integrated into high-density sensor arrays [11].  

To date, THz imaging mostly relies on thermal cameras, essentially the equivalent of optical 

cameras, which employ arrays of micro-bolometers to measure the time-averaged intensity of the 

THz signal. As such, they cannot be employed for time-resolved THz detection and they are 

insensitive to the optical phase and temporal delay of the transmitted THz field. In an attempt to 

develop arrays of TDS detectors, researchers have proposed two-dimensional full-wave imaging 

devices that are composed of arrays of photoconductive antennas or Shack–Hartmann sensors 

[12,13]. However, these devices require complex and expensive technological platforms and their 

practicality is still a matter of debate. Furthermore, they fundamentally sample the image information 

in an array of single and well-separated small points. Hence, obtaining a high resolution can still 

require mechanical action on the sample. 

A promising alternative to TDS imaging arrays is single-pixel imaging, or ghost imaging (GI). 

In these approaches, the sensor array is replaced by a single bucket detector, which collects the field 

scattered by the sample in response to a specific sequence of incident patterns. By correlating each 

acquired signal with its corresponding incident field distribution, it is possible to reconstruct the 

sample image [14–17]. However, despite its simplicity, the implementation of GI at terahertz 

frequencies is affected by the limited availability of wavefront-shaping devices (e.g., spatial light 

modulators) that are capable of impressing arbitrary patterns on an incident THz pulse. Following 

the initial experimental demonstrations with metallic masks and metamaterial devices [18,19], 

several research groups’ researchers have proposed indirect patterning techniques for the generation 

of high-resolution THz patterns. One of the most successful approaches relies on the generation of 

transient photocarrier masks on semiconductor substrates [20–23]. In these experiments, a standard 

optical Spatial Light Modulator (SLM) impresses a spatial pattern on an ultrafast optical beam. Upon 

impinging on a semiconductor substrate, the latter generates a distribution of carriers matching the 

desired pattern profile, which acts as a transient metallic mask and can be used to pattern an external 

THz beam. While this technique has been successfully employed to achieve THz imaging with a 

deeply subwavelength resolution, it is also affected by a few limitations. In particular, recent works 

have shown that the maximum resolution achievable with these techniques is strongly dependent on 

the semiconductor substrate thickness: in Stantchev and coworkers [20,21], for example, researchers 

have demonstrated that deeply subwavelength resolutions are achievable only when considering 

patterning substrates with a thickness below 10 µm. 

In a series of recent works, we have proposed a new imaging technique, time-resolved nonlinear 

ghost imaging (TIMING), which overcomes several of these limitations [24–26]. TIMING relies on the 

integration of nonlinear THz pattern generation with TDS single-pixel field detection. In this work, 

we discuss the main features of our approach and present our latest results on the theoretical 

framework underlying our image reconstruction process. Via analysis of the compression properties 

of the incident pattern distribution, we show how a TIMING implementation based on an optimised 

Walsh–Hadamard encoding scheme can significantly reduce the number of incident patterns 

required to obtain a high-fidelity image of the sample. Finally, we discuss how the development of 

ultra-thin THz emitters can provide a significant improvement to the imaging performance of 

TIMING. 
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2. Time-Resolved Nonlinear Ghost Imaging: A Conceptual Overview 

A conceptual schematic of our imaging setup is shown in Figure 1a. A spatial pattern is 

impressed on the optical beam through a binary spatial light simulator, e.g., a digital micromirror 

device (DMD), obtaining the optical intensity distribution ��
���(�, �, �). The THz patterns ��

�(�, �, �) 

are generated using a nonlinear conversion of ��
���(�, �, �) in a nonlinear quadratic crystal (ZnTe) of 

thickness ��. The THz pattern propagates across the crystal and interacts with the object, yielding a 

transmitted field, which is collected by a TDS detection setup. Different from the standard 

formulations in optics, which relies on the optical intensity, our object reconstruction scheme relies 

on the time-resolved detection of the electric field scattered by the object. More specifically, the 

electric field distribution is defined immediately before and after the object as ��(�, �, � = �(�, �, �� −

�, �) and ��(�, �, �) = �(�, �, �� + �, �), respectively, where ��  is the object plane and � > 0 is an 

arbitrarily small distance (Figure 1a, inset). Without loss of generality, the transmission properties of 

the object are represented by defining the transmission function �(�, �, �), which is defined on both 

the spatial and temporal components to account for the spectral response of the sample. To simplify 

our analysis, in the following, we considered two-dimensional objects, i.e., we restricted ourselves to 

transmission functions of the form �(�, �, �) . Under this position, the transmitted field is 

straightforwardly defined as:  

��(�, �, �) = ∫ d���(�, �, � − ��)��(�, �, �). (1)

The objective of a single-pixel imaging methodology is to reconstruct the transmitted field 

distribution ��(�, �, �) through a sequence of measurements to retrieve the transmission function of 

the object. In our approach, this corresponds to measuring the TDS trace of the spatially-averaged 

transmitted field from the object in response to a sequence of predefined patterns (a procedure known 

as computational ghost imaging) [27]. The �th pattern is denoted by ��
�(�, �, �) = ��(�, �)�(�), where 

��(�, �) is the deterministic spatial distribution of the pattern and �(�) is the temporal profile of the 

THz pulse. The reconstruction process is defined as follows: 

�(�, �, �) = 〈��(�)��  (�, �)〉� − 〈��(�)〉�〈��(�, �)〉� , (2)

where 〈⋯ 〉�  represents an average over the distribution patterns and the expansion coefficients 

��(�) are defined as follows: 

��(�) = ∫ d�d� ��
�(�, �, �) = ∫ d�d�d���(�, �, � − ��)��

�(�, �, �).  (3)

A numerical implementation of the image reconstruction process is shown in Figure 1b,c, where we 

employed TIMING to reconstruct the transmitted field from a semi-transparent sample (a leaf). In 

Figure 1b, we report the spatial average of the reconstructed field, exhibiting the characteristic 

temporal profile of the incident THz pulse. Since our image reconstruction operates simultaneously 

in time and space, it allows for not only retrieving the spatial distribution of the object but also its 

temporal/spectral features. The specific result of a TIMING scan is a spatiotemporal image of the 

transmitted field, as shown in Figure 1c. 
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Figure 1. Conceptual description of time-resolved nonlinear ghost imaging (TIMING). (a) Schematic 

of the experimental setup. (b,c) Simulation of the TIMING reconstruction of a semi-transparent 

sample, including the average field transmission (panel b) and the full spatiotemporal image of the 

sample (panel c). The simulated object size was 10.24 cm × 10.24 cm, sampled with a spatial resolution 

of 512 × 512 pixels (Δx = 200 µm) and a temporal resolution of Δt = 19.5 fs. The nonlinear crystal 

thickness was �� = 10 µm. n.u.: normalised units, TDS: Time-domain spectroscopy. 

An interesting question is whether the distance between the distribution of THz sources and the 

sample has any effect on the image reconstruction capability of our setup. This point is pivotal when 

time-resolved imaging is desired, as propagation always induces space–time coupling. This condition 

represents a typical challenge in mask-based ghost imaging when time-domain detection is sought. 

The propagation within the patterning crystal is known to lead to significant reconstruction issues 

when considering deeply subwavelength patterns [20–22]. These issues are related to the intrinsic 

space–time coupling that takes place within the crystal [28]. In essence, once the patterns are 

impressed on the THz wave at the surface of the crystal (at � = 0), they undergo diffraction. As a 

result, the electric field distribution ��
�(�, �, �)  probing the sample is not the initial distribution 

��
�(�, �, �), but rather a space-time propagated version of it. The latter is mathematically expressed as:  

 ��
�(�, �, �) =  �� (�, �, �� − �, �) = ∫ d�d�d���(� − ��, � − ��, �� − �, � − ��)��

�(�, �, �),  (4)

where �(�, �, �� − �, �) is the dyadic Green’s function propagating the field from � = 0 to � = �� −

�. Since space–time coupling is essentially a linear process, it can be inverted by applying a Weiner 

filter to the reconstructed image to mitigate the effects of diffraction. In the angular spectrum 

coordinates (��, ��, �, �), the Weiner filter is defined as: 

����, ��, �, �� =
�� ���, ��, �, ��

�����, ��, �, ��� + �������, ��, ��
, (5)

where ���(��, ��, �)  is the spectral noise-to-signal distribution, �  is a noise-filtering fitting 

parameter and † stands for Hermitian conjugation [24]. As expressed by Equation (5), the Weiner 

filter is the equivalent of an inverse Green’s function operator that is modified to take into account 

the presence of noise in the experimental measurements. The effect of the ���  term in the 

denominator, which is controlled by the parameter �, is to suppress the regions of the spectrum that 
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are dominated by noise and could render the inversion operation an intrinsically ill-posed problem 

[29].  

From a physical point of view, Equations (4) and (5) can be read as follows: when performing a 

time-domain reconstruction of the image, the spatial distribution of  ��
�(�, �, �) is acquired at a given 

time. However, this is not the scattered field from the object in response to the incident pattern ��
� at 

that time; there is no time in which the scattered field ��
�(�, �, �) is univocally represented in the 

sampling pattern ��
�. The reason is simply that the method is slicing a fixed-time contribution of a 

piece of information that is warped in the space-time. This warping is introduced by the distance 

between sources and the object plane; therefore, it is different for any plane of the object being 

imaged. 

Said differently, using fixed-time images to reconstruct planar features produces a 

fundamentally incorrect picture of the evolving scattered field, with different degrees of “distortion” 

introduced by the amount of propagation. It is worth noting that, although related, this is not the 

same concept as that of resolution degradation of incoherent near-field systems. In fact, Equation (4) 

shows that any space-time information retained by the field can be accessed only by accounting for 

near-field propagation. TIMING reconstructs the image of a scattered field from an object with 

fidelity by applying the backpropagation kernel from Equation (5). Another interesting aspect is 

whether the thickness of the nonlinear crystal accounts for an overall separation between terahertz 

sources and the object, affecting the achievable resolution. The difference here is that the propagation 

is inherently nonlinear and although the generated terahertz signal diffracts linearly, for any desired 

resolution, there is always a given generating crystal section that is sufficiently close to the object to 

illuminate it within the required near-field condition. We have recently theoretically and 

experimentally demonstrated that the diffraction limit does not directly apply in the nonlinear GI via 

the generation crystal thickness since the nonlinear conversion from optical to THz patterns is a 

process distributed across the crystal [25]. We argue that this general approach is particularly useful 

when considering samples stored in cuvettes or sample holders. 

3. Compressed and Adaptive Sensing Applications 

In this section, we discuss the image reconstruction performance of TIMING as a result of our 

particular choice of input pattern distribution. To reconstruct the sample, TIMING relies on the 

Walsh–Hadamard (WH) image decomposition, which constitutes the binary counterpart of standard 

Fourier-based image analysis [30]. In our approach, the choice of the incident pattern distribution 

was driven by three considerations: (i) the compatibility with the available wavefront-shaping 

technology impressing patterns on the optical beam, (ii) the average signal-to-noise ratio (SNR) of the 

signal associated with each incident pattern and (iii) the energy compaction (compressibility) 

properties of the image expansion base. The WH patterns can be implemented straightforwardly 

through a digital micromirror device (DMD) and they are known to maximise the SNR of the 

acquired signals in experiments [31,32]. The latter is a significant advantage when compared to 

standard TDS imagers, which rely on a raster-scan reconstruction approach, where either the source 

or receiver (or both) are sequentially moved across the sample, leading to a combination of single-

pixel detection and illumination [10]. While this approach is intuitive and straightforward to 

implement, a single-pixel illumination usually implies a degradation of the SNR of the expansion 

coefficients for a fixed intensity per pixel. Furthermore, raster-scan imaging is a local reconstruction 

algorithm that is not suitable for compressed sensing; in mathematical terms, the raster scan 

corresponds to expanding the sample image in the canonical Cartesian base ��,�(�, �) = �(� −

��, � − ��) . Trivially speaking, to reconstruct the entire image with this approach, each pixel 

composing it needs to be scanned.  

In contrast, the WH encoding scheme is a very popular example of energy compacting 

(compressive) decomposition, as in the case of Fourier-based or wavelet-based image analysis [33,34]. 

In these approaches, the image is represented as an orthogonal basis of extended spatial functions. 

For example, in the case of Fourier image analysis, the sampling patterns are the basis of the two-

dimensional Fourier Transform [29,35]. The choice of an expansion basis composed of extended 
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patterns has two main advantages. First, extended patterns are generally characterised by 

transmitted fields with higher SNRs because distributed sources generally carry more power. In fact, 

for a given power limit per pixel, the Walsh–Hadamard decomposition allows for a total energy per 

pattern that is about N/2 higher than single-pixel illumination. Second, and more importantly, there 

is no one-to-one correspondence between individual image pixels and distinct measurements (as in 

the case of the raster scan). In fact, the incident patterns not only probe different parts of the sample 

in parallel but can also provide useful insights into its spatial structure, even before completing the 

entire set of illuminating patterns. 

In practical terms, a WH pattern of size � × � is obtained by considering the tensor product 

between the columns (or, invariantly, rows) of the corresponding � × � Walsh–Hadamard matrix 

(see Figure 2a). The columns (or rows) are mutually orthogonal and form a complete tensor basis for 

any two-dimensional matrix. Interestingly, the columns of the Hadamard matrix can be re-arranged 

in different configurations, leading to matrices with different orderings [36–38]. In Figure 2, we 

compare two configurations: the Walsh (or sequency) order and the Hadamard (or natural) order. 

The Walsh ordering is particularly useful in image reconstruction as it mirrors the standard order of 

the discrete Fourier basis, i.e., the columns are sorted in terms of increasing spatial frequencies. This 

means that by using the Walsh matrix, it is possible to acquire complete lower-resolution images 

before completing the illumination set, which can be useful for applying decisional approaches and 

reducing the set dimension [39,40].  

 

Figure 2. Walsh–Hadamard image reconstruction. (a) Generation of incident patterns from the 

Walsh–Hadamard matrix. Each pattern is defined as the tensor product between two columns of the 

generating matrix. The patterns can be generated from different configurations of a Hadamard matrix: 

we show the Walsh, or “sequency”, order (top, used in TIMING) and the standard Hadamard, or 

“natural”, order (bottom). (b,c) Reconstructed Walsh spectrum of the peak-field object transmission. 

Interestingly, only a fraction of the patterns (8.1%) were associated with a spectral amplitude 

exceeding the −60 dB threshold (with 0 dB being the energy correlation of the fittest pattern—panel 

c). Nevertheless, these patterns were sufficient to provide a high-fidelity reconstruction of the image 

(insets). (d,e) Pearson correlation coefficients between reconstructed and original images as a function 

of the number of patterns employed in the reconstruction. The results refer to the entire scan (panel 

d) and the initial 10% of patterns (panel e). 
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To illustrate how the image information is distributed across the basis of incident patterns, it is 

useful to analyse the peak-field Walsh spectrum of the reconstructed image, which is shown in Figure 

2b. The WH spectrum is obtained by plotting the ��(� = �����) coefficients as a function of their 

generating pattern indexes. As can be evinced from Figure 2b, the WH decomposition re-organises 

the image information into a hierarchical structure, which mirrors the spectral content of the image. 

Interestingly, this property is at the core of the compression properties of the WH encoding scheme, 

as can be exploited to significantly reduce the number of measurements required to reconstruct the 

image. We illustrate this result in Figure 2c, where we identify the coefficients with an amplitude 

exceeding a −60 dB threshold with a red marker. As shown in Figure 2c, these significant coefficients 

were mostly localised in correspondence with the smaller spatial frequencies of the image, and for 

this image, they represented 8.1% of the total number of patterns. Remarkably, this limited number 

of patterns was sufficient to accurately reconstruct the image (as shown in Figure 2c, inset).  

For a given Walsh–Hadamard matrix, it is also critical to consider the specific order employed 

when selecting the sequence of columns forming the distribution of incident patterns. In our 

approach, we implemented an optimised ordering of the WH patterns (denoted as “smart-Walsh”), 

which sorts the incident patterns in terms of increasing spatial frequency (see Supplementary Video 

1). In Figure 2d,e, we illustrate the fidelity of the TIMING reconstruction across the ensemble of 

incident patterns for different sorting schemes. The fidelity between reconstructed and original 

images is estimated through the Pearson correlation coefficient, which measures the spatial 

correlation between the two datasets and is defined as:  

�(�, �) =
∑ (��� − �̅)(��� − ��)��

�∑ (��� − �̅)�
�� ⋅ ∑ (��� − ��)�

��

, (6)

where �̅ and ��  are the spatial averages of � and �, respectively. In our analysis, we considered 

the performance of our “smart-Walsh” sorting (blue line) with the natural Hadamard sorting (yellow 

line) and the recently proposed “Russian-doll” sorting (orange line) [38]. As shown in Figure 2d, both 

the smart-Walsh and the Russian-doll sorting were capable of high-fidelity reconstructions of the 

sample image, even just by using a fraction of patterns, especially when compared to the standard 

Hadamard case. Further insights on the image reconstruction performance can be obtained by 

analysing the image reconstruction across the first 10% of patterns (Figure 2e). Remarkably, both our 

approach and the Russian-doll sorting outperformed the standard Hadamard sorting, yielding a 

high-fidelity image (spatial correlation exceeding 90%) by considering only 0.1% of the total number 

of patterns. Interestingly, while the performance of our “smart-Walsh” approach matched the 

Russian-doll sorting as soon as each Hadamard order was completed (dashed grey lines), we 

observed that it outperformed it across incomplete scans.  

4. Performance of Field-Based Ghost-Imaging Detection in the Fourier Plane 

The possibility of performing field-sensitive detection provides TIMING with a significant 

advantage when compared with traditional GI. However, the typical GI correlation between 

detection parameters and image fidelity is broken by the nonlinear ghost imaging transformation, 

i.e., the need for establishing a correlation between coherent-field detection and the optical intensity 

patterns. More precisely, the implementation of a field average in the image extraction radically 

changes the way the image quality depends on the experimental parameters. Standard GI 

reconstruction relies on detecting the integrated scattered field to estimate the spatial correlation 

between the incident patterns and the sample, where: 

�� = ∫ d�d� ��
�(�, �) = ∫ d�d�d��|�(�, �, � − ��)��

�(�, �, �)|�. (7)

This corresponds to the direct acquisition of the total scattered field with a standard bucket 

detector, which integrates the transmitted intensity distribution. Fundamentally, it is an estimator of 

the total scattered power, and as such, it is directly affected by the numerical aperture of the detector 

and by the distance between the detector and the sample. As discussed in the literature on optical GI, 
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both these factors directly fix the amount of information that is available when reconstructing the 

image and directly affect its fidelity [15]. 

TIMING inherits the direct detection of the scattered THz field distribution from time-domain 

spectroscopy systems. By operating directly on the electric field, it allows for measuring the average 

THz scattered field (in a fully coherent sense) by performing a point-like detection in the Fourier 

plane. As defined by Equation (3), the coefficients �� can be obtained by measuring the (��, ��) = 0 

spectral components of the THz transmitted field: 

��(�) = ∫ d�d� ��
�(�, �, �) = ℱ[��

�(�, �, �)] |����, ����.  (8)

This implementation implies that the experimental measurement of the correlations �� is not 

limited at all by the numerical aperture of the bucket detector. This type of measurement can be 

obtained by placing the object in the focal point of an arbitrary lens and by acquiring the signal in the 

central point of the opposite focal plane (Figure 1a). The electric field in the focal plane reads as 

follows: 

������(�,� ��) ∝  ℱ[��
�(�, �, �)] ��� =

��

��
, �� =

��

��
�, (9)

where �� and �� are the physical coordinates in the Fourier plane [41]. 

However, in terms of implementation, the detector samples a finite small area of the Fourier 

plane with an area-sampling function ��(��, ��), obtaining the estimation ��′(�): 

��
�(�)

= � �����, ��� ∗ ℱ[��
�(�, �, �)] ������, (10)

where ��(��, ��) is physically represented by the profile of the probe beam in the electro-optical 

sampling (e.g., a Gaussian function), or by the shape of any aperture implemented in front of the 

nonlinear detection to fix its interaction area with the THz field.  

The accuracy of the measurements is then directly related to how “point-like” our detection can 

be made. Although one could be tempted to foresee a general benefit of the high signal-to-noise ratio 

(SNR) resulting from large detection apertures as in the standard GI, this is also a source of artefacts, 

fundamentally establishing a trade-off between SNR and fidelity. 

Figure 3 illustrates the effects of the size d of the sampling function ��(�� = ����, �′ = ����) 

on the image reconstruction fidelity (Figure 3e). Interestingly, the reduction of fidelity observed for 

increasing the sampling diameter is different from the typical limitations in standard imaging. In our 

case, a too-large area sampling function in the Fourier plane did not lead to a reduction in the 

discernible details but rather in the disappearance of entire parts of the image (see Figure 3e, insets).  
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Figure 3. Influence of the pinhole size on the Fourier detection of TIMING reconstruction coefficients. 

(a–d) The spatial average of the transmitted field (b) associated with each incident pattern (a) could 

be measured by performing a point-like detection in the centre of the Fourier plane (c,d). In realistic 

implementations, the centre of the Fourier plane is sampled using a sampling function PH of finite 

diameter �. (e) Spatial correlation between the reconstructed and original image as a function of the 

sampling function diameter. A departure from the point-like approximation led to a significant 

corruption of the reconstructed image (insets). Interestingly, the typical image degradation did not 

necessarily involve the total disappearance of highly resolved details. 

Similarly, in Figure 4, we illustrate the effect of a misalignment of the sampling function PH 

centre with respect to the centre of the Fourier plane. Trivially, the spatial correlation between the 

reconstructed and original images peaks at the centre of the Fourier plane and swiftly decayed in the 

case of off-axis detection (Figure 4a). In these conditions, the reconstructed image showed the 

appearance of spurious spatial frequencies, corresponding to the ���, ��� sampling position (Figure 

4b,d). Interestingly, however, the overall morphology and details of the image were still present in 

the images, and no noticeable blurring occurred. 
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Figure 4. Influence of the pinhole displacement on the Fourier detection of TIMING reconstruction 

coefficients. (a) Spatial correlation between the reconstructed and original image as a function of the 

sampling function position in the focal plane. The displacement (Δx, Δy) was measured with respect 

to the lens axis and the sampling function diameter was set to � = 0.36 mm, corresponding to a 

spatial correlation of 100% at the centre of the Fourier plane (cf. Figure 3e). (b–d) Examples of image 

reconstruction with off-axis detection, illustrating the appearance of spurious spatial frequencies. 

Interestingly, the object morphology was still noticeable, even at a relatively large distance from the 

optical axis. 

5. A Route towards Thinner THz Emitters: Surface Emission from Quasi-2D Semiconductor 

Structures 

Deep near-field regimes are in general a requirement to obtain deep-subwavelength image 

resolutions. Here, we review this current technological solution that is under development in 

TIMING towards this goal. 

In terms of nonlinear ghost imaging, the high resolution fundamentally results from the ability 

to achieve significant optical-to-terahertz conversions, keeping the sample in the proximity of the 

distribution of terahertz sources. This translates into the need for generating terahertz from quite thin 

devices (although we argued how TIMING exhibits significantly more relaxed constraints compared 

to previous literature [25]). 

Although the technology is continuously evolving, the best-performing and most practical off-

the-shelf sources are within the class of electro-optical switches. The terahertz emission is generated 

by a transient current that is sustained by an external electric source and is triggered by a change of 

conductivity induced by an ultrafast optical absorption [5]. This specific approach benefits from a 

virtually high optical-to-terahertz conversion efficiency since the actual source of radiation is a 

current sustained by the electric source. However, this technology is difficult to translate to TIMING 

since the integration into a single device of a dense distribution of independent electrical switches 

emitting terahertz signals is extremely challenging.  

In terms of direct optical-to-terahertz conversion, improving the efficiency of nonlinear 

converters is undoubtedly a central research area with a vast spectrum of proposed solutions ranging 

from novel materials to the design of sophisticated propagation geometries, which allows for very 

long interaction lengths. However, very few alternatives are currently available for emitters with a 

thickness below the micrometre scale. One general issue is that the efficiency of bulk nonlinear 

interactions tend to be vanishingly low at this scale, whereas the ruling mechanisms of the nonlinear 

interactions are dominated by peculiar physical mechanisms that exist only in quasi-2D frameworks. 

Some very promising, recently explored solutions comprise exploiting spin-mediated current 

transients (spintronic emitters) in nano-hetero-metallic structures [42]. On the other hand, a 

significant fraction of the work in this research area focuses on achieving a very large interfacial 

nonlinear response or inducing carrier-mediated nonlinear dynamics at a surface.  

In general, these effects are fundamentally driven by breaking the lattice symmetry, which is 

produced by the material discontinuity at the interface. The requirement of tightly reduced 

interaction lengths makes low-bandgap semiconductors, such as Indium Arsenide (InAs) and Indium 

Antimonide (InSb), very popular experimental frameworks. What motivated the interest in these 

systems is the surprisingly high conversion efficiency per interaction length [43–45]. In a traditional 

NIR ultrafast excitation setting, the mean absorption length for photons is very small, typically within 

the scale of �� = 140 nm at a wavelength � = 800 nm. At low fluences (below 100 nJ/cm2), InAs is 

probably considered the benchmark surface emitter. In this case, the generation is driven by the very 

large difference in mobility between holes and electrons via the photo-Dember effect (Figure 5c,d): 

when a high density of photogenerated pairs is induced in the proximity of the surface, electrons 

quickly diffuse away from the surface, leaving uncompensated carriers of the opposite sign. Such a 

charge unbalance creates a fast stretching dipole, or equivalently, a local current transient that is the 

source of the terahertz emission [46].  
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Figure 5. Surface emission driving mechanisms. (a) Surface optical rectification—a surface field at the 

air–semiconductor barrier combines with the optical field in a four-wave mixing process (cubic), 

generating a terahertz mixing product (see Equation (7)). (b) Measurement of the terahertz emission 

using surface optical rectification with an optical pulsed excitation fluence of 7 mJ/cm2 (1 kHz 

repetition rate) and a pulse with a wavelength of 800 nm and a duration of 90 fs. (c) Simplified sketch 

of the photo-Dember process in InAs. The absorption of an ultrashort pulse generates a high density 

of photogenerated hole–electron pairs within the optical penetration depth (140 nm). The fast 

diffusion of the electrons induces a transient current JTHz, which is the source of the terahertz emission. 

(d) Measurement of the terahertz emission by photo-Dember mechanism with an optical pulsed 

excitation fluence of 0.28 µJ/cm2 (80 MHz repetition rate) and pulse with a wavelength of 800 nm and 

a duration of 140 fs. 

At very high pumping energies (above 10 µJ/cm2), this phenomenon becomes critically saturated 

due to the electromagnetic screening role of dense carrier densities. Conversely, the optical surface 

rectification (SOR) dominates the emission [43]. The optical surface rectification is a quadratic 

phenomenon induced by the contribution of a local static field at the surface, which is induced by 

surface states within the bulk cubic nonlinear response (Figure 5a,b). The DC field effectively plays 

the role of a field contribution in a four-wave mixing process in a mechanism commonly referred to 

as a field-induced quadratic response [45,47] and is described using: 

���� ∝ �(�)�������
∗ ��, (11)

where �(�) is the third-order susceptibility of InAs, �����  is the intrinsic surface potential field, �� 

is the incident optical field and ∗ stands for the complex conjugate. Quite interestingly, because the 

phenomenon is driven by a surface potential, it is also a measurable way to probe the dynamics of 

the carrier at the surface, and it has been proposed as the optical analogy of a Kelvin probe [48]. 

6. Discussions and Conclusions 

In this work, we have provided an overview of the advantages and implementation challenges 

of a time-resolved nonlinear ghost-imaging approach to THz single-pixel imaging. By combining 



Micromachines 2020, 11, 521 12 of 15 

 

nonlinear THz generation and single-pixel TDS detection, we demonstrated the high-resolution 

reconstruction of a semi-transparent sample with a subwavelength resolution (512 × 512 pixels). By 

providing a detailed analysis of the Walsh–Hadamard reconstruction scheme, we have shown how 

a specific choice of patterns and the order of acquisition can play a beneficial role in speeding-up the 

reconstruction of the peak-field transmission from the sample. Remarkably, we have shown that less 

than 10% of the incident samples were required to achieve a high-fidelity reconstruction of the sample 

image in a general sequential reconstruction. Our approach, which is based on a lexicographical 

sorting of the incident patterns in terms of their spatial frequency (an approach we denoted as a 

“smart-Walsh” reconstruction), is general and image-independent and can be applied to reduce the 

overall reconstruction time for unknown samples. Interestingly, such a result could be further 

improved by considering that even a smaller percentage of incident patterns are required to 

reconstruct the sample: in our case, only 8% of the patterns were associated with an expansion 

coefficient exceeding 60dB. In practical terms, this would correspond to a 92% shorter acquisition 

time, corresponding to a 12.5× speed up of the image reconstruction process when compared to a full 

scan based on the Hadamard encoding scheme. These numbers suggest that the reconstruction 

process could be significantly sped up through the application of adaptive-basis-scan algorithms and 

deep-learning-enhanced imaging, which identify and predict the best set of scanning patterns in real 

time [40,49–51].  

Interestingly, our results suggest that the nonlinear GI methodology is not limited by the 

numerical aperture of the optical system in a “conventional” sense. Said differently, it operates under 

the assumption of a very low numerical aperture to obtain a faithful spectral representation of the 

image. However, our results highlight that the image reconstruction is quite sensitive to the size and 

alignment of the pinhole function selecting the ���, ��� = 0 components of the scattered field. Most 

importantly, in sharp contrast with previous literature on the topic, the reconstruction accuracy 

cannot simply be represented as a matter of effective “resolution”. The drop in reconstruction fidelity, 

in fact, is not driven by the attenuation of high-frequency spatial components (i.e., blurring) as in 

standard imaging, but it can lead to the appearance of artefacts and spurious spatial frequencies. To 

the best of our knowledge, the reconstruction limits of single-pixel time-domain imaging have never 

been formalised elsewhere.  

Finally, although thin emitters are a general requirement for this approach, TIMING exhibits 

relaxed constraints between the nonlinear interaction length and the image resolution. Yet, solutions 

for sub-micron-thick large-area terahertz generation are practically possible, enabling resolutions 

within the same scale or better. A promising platform to achieve this goal is narrow-bandgap 

semiconductor devices based on InAs or InSb platforms. These materials not only provide extremely 

high optical-to-terahertz conversion efficiency per unit length but they are also suitable for large-

scale fabrication and deployment in real-world devices thanks to their established deployment in the 

electronic domain. 

We believe that TIMING is a significant step forward in the development of terahertz micro-

diagnostics based on hyperspectral imaging devices. Our approach also addresses fundamental 

criticalities in the imaging reconstruction process, which generally affect any high-resolution imaging 

domain where high temporal resolution is sought. As such, TIMING establishes a comprehensive 

theoretical and technological platform that paves the way for new generations of terahertz imaging 

devices satisfying the requirements for high-resolution and spectral sensitivity in real-world 

applications.  
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