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Abstract: With the advent of small-scale robotics, several exciting new applications like Targeted Drug
Delivery, single cell manipulation and so forth, are being discussed. However, some challenges remain
to be overcome before any such technology becomes medically usable; among which propulsion and
biocompatibility are the main challenges. Propulsion at micro-scale where the Reynolds number is
very low is difficult. To overcome this, nature has developed flagella which have evolved over millions
of years to work as a micromotor. Among the microscopic cells that exhibit this mode of propulsion,
sperm cells are considered to be fast paced. Here, we give a brief review of the state-of-the-art
of Spermbots—a new class of microrobots created by coupling sperm cells to mechanical loads.
Spermbots utilize the flagellar movement of the sperm cells for propulsion and as such do not require
any toxic fuel in their environment. They are also naturally biocompatible and show considerable
speed of motion thereby giving us an option to overcome the two challenges of propulsion and
biocompatibility. The coupling mechanisms of physical load to the sperm cells are discussed along
with the advantages and challenges associated with the spermbot. A few most promising applications
of spermbots are also discussed in detail. A brief discussion of the future outlook of this extremely
promising category of microrobots is given at the end.
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1. Introduction

Nature becomes an excellent teacher when we seek solutions to complex problems that cannot
be solved using contemporary engineering principles [1]. At times, instead of mimicking nature,
it can be directly used to our advantage [2]. When bioengineers translate fundamental biological
principles into intricate designs of micro/nanorobots for Targeted Drug Delivery (TDD), they adopt the
functionality of living systems. Soft-robotic systems have been introduced for reducing the difficulties
associated with complex surgical procedures and for extending the capabilities of human clinico-surgical
interventions [3–7]. Such soft robot-assisted surgery is a rapidly evolving field that allows doctors
to perform a variety of minimally invasive procedures with high precision, flexibility and control [8].
Scaling down these devices to micron scale, tiny robots, unlike their large robotic counterparts, can
potentially navigate throughout the complex human body, operate in many hard-to-reach tissue
locations and hence target many specific health problems [9–11]. Therefore, micro/nanorobotics design
and materials choice is also seeing a shift from rigid/hard to flexible/soft robots, the latter being
more compliant to pass/squeeze through biological systems [12]. Miniaturized soft components with
viscoelasticity that match with biological cells are developed as joints, hinges, sensors, actuators and
reservoirs to create soft and pliable micro/nanorobots. Often, biological cell machinery is used as
micro-engines to drive such pliable synthetic carriers developed via organic structures such as soft
polymers and supramolecular ensembles. Any system developed for TDD must work at small scales,
where its propulsion occurs at low Reynold’s number. For comparison, it would be like moving
in a highly viscous liquid at macro scale like honey. Interestingly, nature has developed motile
cells over millions of years for efficient actuation and motion in low Reynolds number regime [13].
In nature, for propulsion at the microscale in low Reynolds number regime, a very versatile micro
motor operated flagellum is found in microswimmers like in bacteria, microalgae, spermatozoa and so
forth [14–16]. Learning from nature, we can directly couple biological microswimmers like bacteria,
sperm and algae to propel tiny synthetic robots, leading to this special class of micro/nanorobots
called as biohybrid microrobots (schematic Figure 1 and Table 1). When the cargo is drug loaded
nanoparticles, such a system is designated as nanorobot [17]. Various approaches which use different
motile microorganisms [14,18–22] or contractile cells [13,23,24] as actuators of biohybrid micromotors
have been suggested in the literature. The advantage of using certain biological cells is the on-board
power source to propel the robots, harnessing the energy from surrounding non-toxic medium.

Table 1. Timeline for biohybrid sperm development detailing the motor type used and the load carried,
if any (Further details can be found in schematic time line in Figure 1).

Year Authors Motor Type Load Type Reference

2005 Dreyfus et al. Artificial flagella Red blood cells [25]
2005 Weibel et al. Algae Polystyrene beads [26]
2013 Magdanz, Sanchez & Schmidt Spermatozoa Magnetic microtubes [27]

2014 Khalil et al. Sperm shaped synthetic
magnetic microbot - [28,29]

2016 Medina-Sanchez et al. Magnetic microhelices Low motility
spermatozoa [30]

2018 Xu et al. Spermatozoa
Doxorubicin

hydrochloride
(Anti-cancer drug)

[31]

2019 Magdanz et al.
Khalil et al. Spermatozoa - [32–35]

2020 Ridzewski et al. Spermatozoa Gelatin microtubes [36]

2020 Xu et al. Spermatozoa with a
streamlined-horned cap

Heparin-loaded
liposomes

(Anticoagulant)
[37]

2020 Khalil et al. Spermatozoa Magnetic nanoparticles [38]
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The avid development of biohybrid microrobots harnessing biological power sources for
physiologically compatible nano/microdevices has recently caught the attention of the international
research community that is looking for a solution for the actuation and locomotion on the microscale.
Any drug-delivery microrobots need to be powered and operated in a physiologically compatible
manner. Biological cells such as bacteria have inbuilt stimuli responsive systems against low oxygen
(hypoxia), temperature (thermotaxis), magnetic field (magnetotaxis), pH (chemotaxis), glucose
(glucotaxis), whereas microalgae show phototaxis and so forth [39]. In fact, the strain MC-1 of
the magnetotactic bacterium Magnetococcus marinus has been successfully shown to sense the oxygen
depleted hypoxic regions within the center of a tumor. It offers the advantage to deliver the drug
loaded nanoliposomes directly into the hard-to-reach necrotic tumor core in presence of an external
magnetic field [40]. The MC-1 cells contain a chain of magnetic iron-oxide nanocrystals, which were
used for directionality in presence of external magnetic resonance imaging (MRI) coils to guide the
MC-1 cells towards the hypoxic region via unique magneto-aerotaxis of TDD using micro/nanorobots.
Our lab also introduced a bacteria-driven microswimmer lately that combines the sensing capabilities
of bacteria for active locomotion with the desirable encapsulation. This biohybrid microsystem shows
mammalian cell like viscoelastic properties of a soft double-micelle microemulsion for active transport
and delivery of cargo (e.g., imaging agents, genes and drugs) to live macrophages and cancer cells [9,41].
It is beneficial to couple biological propulsion methods with magnetic loads because of the advantages
in tracking and the controllability. It has been demonstrated that magnetic resonance imaging (MRI)
can be used to perform the dual function of tracking and controlling magnetic micro-/nanoparticles
inside living tissue [42–45]. Further, magnetic load by itself can be therapeutic [46]. However, it is still
best to remove any magnetic particles from the bloodstream/body after their intended use to avoid
any unnecessary complications [47,48]. On the other hand, effects of long-term biotransformation of
magnetic nanoparticles in the living tissue is also being studied [49,50].

2. Concept of Spermbots with Undulatory Locomotion

Among microswimmers, sperm cells are known to perform snake like undulatory locomotion for
the swimming cells [51]. Such a biohybrid microrobot that uses spermatozoa for propulsion is called as
spermbots (Figure 1). There are certain conditions that any drug delivery system, especially the biohybrid
systems like the spermbots based micro-/nanorobots, should meet to be effective—(i) Biocompatibility–Such
systems should not trigger the immune system and not produce any unwanted complications. (ii) Control
mechanisms–The ability to guide/direct the spermbot to a highly targeted location. (iii) Efficient locomotion
in the low Reynolds number regime–Considering that locomotion under low Reynolds number is difficult;
the spermbot should show time- and energy-efficiency in locomotion when propelled by the cell itself.
(iv) Drug carrying capability–Ultimately, the spermbot should be able to do what it is intended for–carry
and deliver the drug to the targeted site. Various applications of sperm driven micro-bio-robots in the
field of biomedical research areas are emerging that aim at achieving locomotion on the microscale such
as drug delivery and single cell manipulation [31,52–55] (Figure 2). Taking cue from this impressive
structure, there has been considerable interest in developing artificial structures mimicking the motion
of these flagella using external magnetic fields [20,25,56].
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Taking advantage of external guidance and actuation, several spermbots can be actuated towards a 
specific target, either for drug delivery or for assisted fertilization. 

2. Creating Biohybrid and Synthetic Spermbots—Technical Challenges and Solutions 

Creating spermbots requires coupling sperm cells with a load. Researchers [55,57,58] have used 
magnetic nanoparticles coupled with sperm cells for drug delivery and tracking cells in-vivo. 
However, nanoparticle toxicity is still a contested topic [59,60]. Therefore, the pioneer group for 
spermbots [27] decided to instead use microtubes to encapsulate the sperm cells. In fact, they were 
the first group to use real sperm cells to propel a microrobot. The microtubes used are fabricated 
utilizing microfabrication techniques by rolled-up nanotechnology on photoresist [61,62]. The 
method followed by the Dresden group, as described in References [22,27,63], is as follows (Figure 
3)—A photoresist structure (sacrificial layer) is patterned on a glass slide as squares with 50 µm each 
dimensions. On these patterns, nanometer thick layers of two different metals are deposited via 
electron-beam evaporation at an angle. It is stated that the difference in deposition rates and the tilt 
angle creates a strained bilayer. When the sacrificial layer is dissolved, this strained bilayer naturally 
rolls into microtubes of 50 µm length and nanometer-scale thin walls. When these microtubes, with 
the diameter just slightly bigger than the head of the sperm, are immersed in a spermatozoa 
solution, the sperm cells enter the microtubes, get trapped and start propelling the microtubes along 
with them. However, this coupling is purely physical and random too. As such, the coupling 
efficiency is not too high. To increase, the efficiency of coupling, specific molecular binders can be 
used. There are several biomolecules that can be used to bind the sperm cells to the inner tube 
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Figure 2. Futurist development of spermbots for target drug delivery and assisted fertilizations. Taking
advantage of external guidance and actuation, several spermbots can be actuated towards a specific
target, either for drug delivery or for assisted fertilization.

3. Creating Biohybrid and Synthetic Spermbots—Technical Challenges and Solutions

Creating spermbots requires coupling sperm cells with a load. Researchers [55,57,58] have used
magnetic nanoparticles coupled with sperm cells for drug delivery and tracking cells in-vivo. However,
nanoparticle toxicity is still a contested topic [59,60]. Therefore, the pioneer group for spermbots [27]
decided to instead use microtubes to encapsulate the sperm cells. In fact, they were the first group to use
real sperm cells to propel a microrobot. The microtubes used are fabricated utilizing microfabrication
techniques by rolled-up nanotechnology on photoresist [61,62]. The method followed by the Dresden
group, as described in References [22,27,63], is as follows (Figure 3)—A photoresist structure (sacrificial
layer) is patterned on a glass slide as squares with 50 µm each dimensions. On these patterns,
nanometer thick layers of two different metals are deposited via electron-beam evaporation at an angle.
It is stated that the difference in deposition rates and the tilt angle creates a strained bilayer. When
the sacrificial layer is dissolved, this strained bilayer naturally rolls into microtubes of 50 µm length
and nanometer-scale thin walls. When these microtubes, with the diameter just slightly bigger than
the head of the sperm, are immersed in a spermatozoa solution, the sperm cells enter the microtubes,
get trapped and start propelling the microtubes along with them. However, this coupling is purely
physical and random too. As such, the coupling efficiency is not too high. To increase, the efficiency of
coupling, specific molecular binders can be used. There are several biomolecules that can be used to
bind the sperm cells to the inner tube surface [64–72]. In order to functionalize the inner surface of
the microtubes for better entrapment of sperm cells, two attachment methods are utilized—surface
linker chemistry and microcontact printing technology. While both the methods improve the trapping
of sperm cells, the coupling still relies on random events and is not controlled. Therefore, It will be
helpful to develop a method that attaches previously selected single sperm cells to the microtubes in a
controlled manner [73].
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In the case of artificial spermbots, they can be fabricated using two photon lithography (Nanoscribe
GmbH, Eggenstein-Leopoldshafen, Germany). When a photosensitive polymer is coated on a substrate
and exposed to a pulse laser of appropriate wavelength, duration and intensity, it gets locally cured due
to two photon absorption. When the process is repeated in 3D space while controlled by a computer,
it can generate 3D structures with very high resolutions (100 nm) [74]. For the purpose of mimicking
the screw like motion of the flagella, microhelices corresponding to the size of sperm cells can be
printed (Figure 3). To make these artificial flagella responsive to magnetic fields, they are coated
with a magnetic material like Nickel or Iron. To ensure biocompatibility, Titanium layer may also
be coated. Such magnetic microhelices demonstrate a screw-like forward/backward motion under
rotating magnetic fields. After their release from the substrate, they are transferred to a chamber
containing sperm cell solution for coupling. Unlike random coupling in case of spermbots, in this case,
the coupling is manual. The microhelices are magnetically driven to an immotile sperm and captured
tail-first [30]. With the advent of bottom-up self-assembly, 3D and 4D bioprinting [75–78], it may be
possible to print artificial spermbots in one step in the future.
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Figure 3. Fabrication routes for tubular (A,B) and helical (C) spermbots. A-(i) A schematic of the
rolled-up nanotechnology to fabricate nanomembranes into microtubes. A-(ii) The concept of the
tubular spermbots A-(iii) An array of 50 µm-long microtubes. Scale bar 50 µm. A-(iv) An optical image
of a tubular spermbot. Scale bar 20 µm. B-(i) The fabrication route for laser-written SU8 microtubes.
B-(ii) The control of microtubes length B-(iii) A scanning electron microscopy image of an array of
laser-written microtubes. Scale bar 40 µm. B-(iv) The SU8 tube with a trapped spermatozoon. The red
arrow indicates the sperm tail. Scale bar 10 µm. C-(i) Fabrication route of 3D nanoprinted helices
by two-photon absorption lithography. C-(ii) The concept of helical spermbots to transport immotile
sperm cells. C-(iii) A scanning electron microscopy image of the fabricated helices. Scale bar 2 µm.
C-(iv) A helical spermbot that is carrying a bovine sperm cell. Scale bar 10 µm. (Reprinted from
Reference [22] with permission from John Wiley & Sons, Inc.).
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4. Spermbot Assisted Targeted Delivery—Proof of Concept Examples with Assisted Fertilization
and Drug Delivery

As mentioned, among microswimmers, sperm cells belong to the fast swimming cells [51].
Spermbots and in general biological motors, are good sources for actuation due to the fact that they
do not require toxic media or fuel used like for the chemically powered micromotors for harnessing
energy [21,79,80]. In fact, researchers [81] have also designed a metabolic pathway which uses glucose,
which is non-toxic, as fuel for sperm-powered nanorobots. They are also generally biocompatible,
self-propelled and highly efficient [63]. When coupled with a magnetic material, the spermbots can
be directed and the direction of their motion can be controlled very well using external magnetic
fields [27,82] (Figure 4). Optical microscopes could also be used for a closed loop guidance of spermbots
where line of sight is maintained. While it is expected that the coupling of spermatozoa with a load
would slow it down, the spermbot is still very promising among its peers. However, there are some
interesting studies which show an improvement in propulsion speed with the addition of load in some
kinds of microswimmer experiments, which may help the spermbot community in the future [83–85].
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Figure 4. (a) Control of magnetic microtube containing a trapped sperm cell by external permanent
magnet. Red arrows show moving direction. Scale bar 50 µm. (b) Speed (left y-axis, black dots) and
directionality (right y-axis, white squares) over the time of coupling process of the sperm cell with
the microtube into a spermbot. (Reprinted from Reference [27] with permission from John Wiley &
Sons, Inc.).

Sperm driven microrobots have been specifically sought for their TDD potential into the female
reproductive tract [31,86]. The spermbots are also considered to be safer than microalgae/bacteria
driven robots since they neither express pathogenic proteins nor do they proliferate into biofilms or
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undesirable colonies. Moreover, sperm cells could be considered as on demand biological cells, which
could be considered to deliver to or depart from diseased sites. Exploiting the load carrying capability
of spermbots, traceable load could be loaded which may tremendously assist into accurate in vivo
tracking. Therefore, the spermbot could additionally serve as explorative device for studying the
natural pathways of spermatozoa inside the reproductive systems and neighboring organ [51]. This
could lead to a better understanding of obstacles faced by the spermatozoa in the female reproductive
tract and eventually, could help in understanding associated infertility. Spermbots have also been
proposed for the treatment of cervical cancer [31]. Traditionally, cervical cancer is either treated with
invasive surgeries or with chemotherapy. Each comes with its own set of side-effects and disadvantages.
As the sperm is already adapted to swimming in this environment, they could act as carriers for TDD.
Since sperm naturally fuses with other cells, they could also potentially release drugs directly into the
intended targeted cells [87,88] (Figure 5).
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Figure 5. (a) Schematic of the microfluidic chip for drug-loaded sperm transport and delivery. (b) Image
sequence of the sperm release process when the arms hit HeLa cells. Time lapse in min:s. Red arrows
point at the sperm head. (c) DOX-HCl distribution in a HeLa spheroid with overlaid z-stack images of
the fluorescence channel (20 images with a stack separation distance of 2 µm). Red arrows point at the
sperm head. (d) Scanning electron microscopy (SEM) images showing the sperm–HeLa cell fusion.
(i) Cell fusion with the DOX-HCl-loaded sperm; (ii) cell fusion with an unloaded sperm. Red arrows
point at a cell in apoptosis and the blue arrows point at live cells. (Reprinted from Reference [31] with
permission from ACS Publications).
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Another specific potential of the sperm-driven micro-biorobot is described [51] that might have
impact on the development of assisted reproductive technologies. It is stated that the success rate of
state-of-the-art assisted reproduction techniques is still low. These techniques involve the removal of
the oocyte from the body, fertilization in the petri dish, cultivation of embryos and reimplantation of
the embryo into the uterus. This is where the spermbots can be helpful in bypassing these lengthy
and cost associated steps and by guiding the spermbots to the target oocytes inside the human body
itself. Schmidt et al. [27,82] used a 50 µm long microtube with iron membrane to encapsulate bovine
spermatozoa. The flagellum of the sperm cell serves to propel the microtube forward while the iron
membrane is used to steer using untethered magnetic fields. Further, electromagnetic coils with
feedback from optical microscope can be used for closed loop control of the spermbots for the targeted
delivery to a selected reference point. Schmidt et al. [27] also studied the effect of microtube radius,
extent of sperm cell penetration inside the microtube and temperature on the speed of spermbots.
With an increase in microtube radius, the extent of spermatozoa penetration also increased. It was
found that spermbots with higher penetration percentage have decreased speed because of increased
confinement of the flagella. An increase in speed with increase in temperature was also observed.
It is reported that, in general, the speed of spermbots is considerably decreased to around 10% of
the speed of initial spermatozoa speed. In this case, the coupling of spermatozoa and microtubes
also occurs randomly which causes low coupling efficiency. To improve the performance, the same
group [73] proposes shortening the length of the microtube to 20 µm from 50 µm. The average speed
of the spermbots goes up from about 20% bodylength per second to about 65% bodylength per second.
To further enhance the performance, binding the sperm cells to the hollow space of microtubes using
Fibronectin (Fn) protein and adding caffeine to the environment to boost the motility of the cells was
proposed. As discussed above, there are several biomolecules which can be used to bind the sperm
cells to the inner tube surface [64–72]. Because the microtube is ferromagnetic, its orientation can be
controlled and maintained using an external magnetic field–like a compass needle. Therefore, while the
propulsion of an uncoupled sperm cell is random, the direction of propulsion of a coupled spermbot
can be highly controlled using an external magnetic field generated either by permanent magnets or
by electromagnets.

Artificial Spermbots

One of the main causes of infertility in men is sometimes called low sperm motility, a condition
where the sperm is healthy but unable to swim effectively to make it to an egg for fertilization. Among
the couples who struggle to have a baby, the male partner plays a role in the infertility about 40 percent
of the time according to the American Society for Reproductive Medicine [89]. Techniques like artificial
insemination or in vitro fertilization (IVF) can help but they tend to be not very reliable or complex
and expensive [51]. Researchers have come up with a possible solution to help sperm to swim more
quickly and effectively with the motorized ‘spermbot.’ Taking cue from the spermatozoa flagella itself,
researchers have prepared a metallic helix that can wrap around the flagella of the spermatozoa and
propel it using external magnetic field [30]. Once the sperm has entered the egg, the metal casing can
reverse direction to slip-off the spermbot with the help of the externally controlled magnetic field.

Researchers [28] have also tried to mimic the entire sperm cell with its head and tail for propulsion
using magnetic fields (Figure 6). By employing in-plane oscillating fields, the researchers have
shown that such robots reach speeds up to 50% body length per second, which is comparable to
the speeds achieved by sperm cells attached to microtubes [73]. The fabrication was done in two
steps-the head, neck and tail structures are defined from an SU-8 polymer using photolithography.
Then, a 200 nm thick cobalt-nickel layer (Co80Ni20) is patterned on the head by lift-off. It has
also been shown that fully artificial robotic sperm can be fabricated in a single fabrication step
using electrospinning [90]. A syringe pump injects the polymer solution of polystyrene in dimethyl
formamide (DMF) and iron-oxide nanoparticles at controlled flow rate. High electric potential draws
the polymer solution towards the grounded collector. Robotic sperms are collected with the iron-oxide
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nanoparticles contained within their beads. Such robotic sperms are actuated by applying appropriate
magnetic torques on the robotic sperm heads which propagates travelling waves along its flexible tail.
Out-of-plane wobbling of the head results in helical wave propagation along the flagellum, whereas
in-plane wobbling achieves planar wave propagation. Controllable switching between planar and
helical flagellar propulsion has also been shown [91]. Modifying the same process, artificial robotic
sperms with two collinear, unequal and opposite tails have also been fabricated which are able to
propel back and forth in bi-direction without a U-turn trajectory [92].
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5. Challenges

Spermbots are not without their own disadvantages in the female reproductive tract because
of the hostile environment and natural defense mechanisms. About 30 min after entering the body,
<1% of living sperm cells remain in the female reproductive tract due to vaginal flowback, the acidic
pH and phagocytosis by leukocytes [51,93]. However, with the microtube enveloping the sperm
cell in the spermbot, it could be equipped in ways to prevent the leukocytosis in the same fashion
that bacterial pathogens are able to overcome the phagocytic engulfment and killing by appropriate
blocking methods [63].

There are several challenges that need to be addressed before spermbots can truly be translated
into medical applications:

1. Sperm cells do not all have the same motility. Their motility varies from individual to individual
and from cell to cell even from the same individual. This is a cause for concern because we
need sperm cells that are highly motile, to be as efficient as possible for actuation. While there
is considerable interest in this particular field [94–104], a standardized method and protocol is
highly crucial and is the need of the hour.

2. The load/microtubes by itself should not be toxic and should be able to pass through any barriers
that it may encounter on the way to the targeted site.

3. The attachment of load or microtubes to the sperm cell is random and a very low-yielding
process [27]. Therefore, robust methods to increase this coupling efficiency are needed [38,73].
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Electrostatic-based self-assembly helps in partial coating of all sperm heads with magnetic
nanoparticle aggregates [38].

4. While the sperm cell by itself is highly biocompatible, there is a chance that harmful microbes
could attach themselves to it and render it useless for medical use. To avoid this, antibacterial
agents must be applied to the inside of the microtubes to protect the sperm cells.

5. While magnetic fields are very good in directing and orienting the motion of spermbots, other
good tactic behavior/control mechanisms also have to be explored. Spermatozoa respond to a
variety of stimuli, such as chemotaxis, thermotaxis, thigmotaxis or rheotaxis [105–108].

6. In order to ensure accurate site-targeting, an appropriate tracking technology is necessary for
imaging and guiding of the spermbots. Photoacoustic, Ultrasound and magnetic resonance
imaging (MRI) techniques are worth mentioning here as each comes with its own advantages and
promises [109–116].

7. There must be an easy-to-control strategy to help release the drug at the intended site once the
spermbots reaches there.

8. There may be other application specific challenges. For example, in the case of fertilization with
spermbots, we also need to select only the most fertile sperm cells.

6. Conclusions and Outlook

Spermbots, while very promising, have some challenges to overcome as described above. The main
weakness is the low sperm cell/load coupling efficiency, the loss of actuation speed of spermbots
compared to free sperm cells and the imaging and tracking techniques. Therefore, interaction modelling
are fundamental challenges for these biologically inspired artificial microrobots.

An example of advances to overcome some of these challenges is the Simple Periodic ARray
for Trapping and isolation (SPARTAN) [104] (Figure 7), a microfluidic sperm-sorting device. In this
process, a simple periodic array device is used to sort out individual sperm cells. Semen is introduced
in the device and allowed to incubate. It is stated that the sperm cells with defected morphology find it
difficult to maintain a directional motility. Therefore, when the sperm cells are collected at the end of
the array, most of them are highly motile. The percentage of motile sperm at the outlet were observed
to be higher (~99%) than that of the raw semen at the device inlet (~60%), achieved within a short assay
time of 10 min. With such demonstrable techniques, we now need to come up with a standardized
procedure and protocol.

Once all these challenges are overcome, then the collective behavior of microrobots can be
harnessed and truly translated into a clinical application. Swarms of microrobots could show higher
propulsion speed than single microrobots. Moreover, a swarm will be able to carry a higher combined
load to the targeted area. A swarm is also easier to track in the body due to the bigger tracking signal
they can generate. In conclusion, spermbots show very promising traits that could open up exciting
new applications in the medical field, especially in the female reproductive tract. The aim of spermbot
research community should be to develop spermbot which could operate autonomously in swarms,
while still giving the surgeons an option to control them. Any artificial load attached to spermbot has
to be biocompatible and/or biodegradable. The spermbot should be able to perform its task efficiently.
The directional guiding should be non-toxic and harmless by either several tactic stimuli or external
stimuli. The targeting capability should be very precise and accurate, considering the side-effects of
drug delivery in an unwanted tissue. Finally, drug release should be efficient and effective. As the
understanding of spermbots and their interaction with artificial loads and in-vivo biological matter
increases, their potential application areas will also keep expanding.
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Further, magnetic helices captured sperm delivery to female egg also has to pass through a long
road before entering into real infertility clinics. The human trials of these spermbots will uncover
the main doubts and lead to next level of applications in IVF reproductive sciences and artificial
inseminations. Caution around potential damage to sperm while capturing it and damage to Ova
while delivering the sperm via magnetic spermbot are other major concerns. Design and control can be
benefited from established soft lithography for synesthetic part design and usage of established clinical
imaging. Significant improvement can be made into capturing of the non-motile sperms or delivery
of pluripotent spermatozoa in azoospermia (no sperm) patients using these magnetic helices can be
further improved via interaction modeling and robotic path-planning related concepts in simulated
reproductive organs (Figure 2). Developing techniques and methods to reach the target disease site
(e.g., ovarian tumor site) or site of fertilization into fallopian tube and subsequently retrieving back
the synthetic robotic part from in vivo can be achieved via MRI and Ultrasound imaging established
in clinics. Further, there will be a long road to fulfill roboethics in context with societal, ethical and
religious moral opposition and outlook.
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